KR20020062536A - A stand radiating far infrared rays - Google Patents

A stand radiating far infrared rays Download PDF

Info

Publication number
KR20020062536A
KR20020062536A KR1020010003659A KR20010003659A KR20020062536A KR 20020062536 A KR20020062536 A KR 20020062536A KR 1020010003659 A KR1020010003659 A KR 1020010003659A KR 20010003659 A KR20010003659 A KR 20010003659A KR 20020062536 A KR20020062536 A KR 20020062536A
Authority
KR
South Korea
Prior art keywords
far
infrared
far infrared
emissivity
radiator
Prior art date
Application number
KR1020010003659A
Other languages
Korean (ko)
Inventor
엄옥희
Original Assignee
엄옥희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엄옥희 filed Critical 엄옥희
Priority to KR1020010003659A priority Critical patent/KR20020062536A/en
Publication of KR20020062536A publication Critical patent/KR20020062536A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0625Warming the body, e.g. hyperthermia treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/007Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/06Artificial hot-air or cold-air baths; Steam or gas baths or douches, e.g. sauna or Finnish baths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/06Artificial hot-air or cold-air baths; Steam or gas baths or douches, e.g. sauna or Finnish baths
    • A61H33/063Heaters specifically designed therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/047Zeolites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • A61N2005/066Radiation therapy using light characterised by the wavelength of light used infrared far infrared

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Civil Engineering (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Radiation-Therapy Devices (AREA)
  • Devices For Medical Bathing And Washing (AREA)

Abstract

PURPOSE: A far infrared ray radiation panel capable of increasing a high far infrared ray radiation rate at low temperature by using a sintered body of zeolite, diatomaceous earth and mica is provided which is effectively used in fomenting bathroom, sweating bathroom, sauna or the like. CONSTITUTION: Zeolite, silica, mica or the like are sintered at 1,200 to 1,500deg.C to give a far infrared ray radiator(1), which is assembled with a support rod(2) and an electrical wire(4) is connected to a groove formed at the back face of the far infrared ray radiator.

Description

원적외선 방사대{A STAND RADIATING FAR INFRARED RAYS}Far infrared radiation band {A STAND RADIATING FAR INFRARED RAYS}

본 발명은 열원에 의한 원적외선 방사체에 의해 인체의 생리, 생체적으로 유익한 효과를 얻을 수 있는 원적외선 방사체로 구성된 원적외선 방사대에 관한 것으로 더욱 구체적으로는 근적외선역의 방사율은 낮지만 장파장(원적외선)역으로 나아감에 따라 방사율이 높아지는 원적외선 방사체를 이용 찜질방 또는 한증막에 설치하는 원적외선 방사대에 관한 것이다.The present invention relates to a far-infrared radiation band composed of a far-infrared radiator which can obtain a physiological and biologically beneficial effect of the human body by a far-infrared radiator caused by a heat source. More specifically, the emissivity of the near-infrared region is low but is long wavelength (far-infrared) region. It relates to a far-infrared radiation band that is installed in the jjimjilbang or steam room using a far-infrared radiator, the emissivity of which increases with progress.

종래에는 인체의 생리, 생체적으로 유익한 효과를 얻기 위하여 고열로 작열된 맥반석이나 핀란드 사우나에서 사용하는 작열된 흑연을 이용하여 왔으나 고열로 인한 인체호흡기의 질환과 피부의 고열에 의한 화상으로 물집이 생기는 경우가 빈번히 발생하며 윈(wein)의 법칙에 의하면 최대강도의 방사파장은 절대온도에 반비례하는 것으로, 즉, 온도가 낮을 때에는 눈에 감지되지 않는 원적외선의 방사가 주체를 이루지만 온도가 높아짐에 따라 점차 눈으로 감지할 수 있는 가시광으로 방사의 중심이 옮겨가는 것을 의미한다. 즉, 원적외선이 아닌 단파장으로 옮겨가는 것을 의미한다. 이와 같은 원리에 의해 원적외선 방사체가 어떠한 것인 지에는 그다지 관계없이 종래의 방법으로는 인체의 생리, 생체에 유익한 원적외선 방사효과는 기대하기 힘들다.Conventionally, in order to obtain a physiological and biologically beneficial effect of the human body, it has been used to burn a high-heat burned ganban stone or a burned graphite used in a Finnish sauna. It is a frequent occurrence and according to Wein's law, the radiation intensity of maximum intensity is inversely proportional to the absolute temperature. Gradually, the center of radiation shifts to visible light that can be detected by the eye. In other words, it means moving to a short wavelength rather than far infrared rays. According to this principle, regardless of what the far-infrared radiator is, it is difficult to expect the far-infrared radiation effect beneficial to the physiology and living body of the human body by the conventional method.

본 발명은 찜질방에서 고열로 작열된 맥반석이나 핀란드 사우나실에 설치된 로내에 고열로 달구어진 흑연물질로부터 방사되는 적외선을 얻는 방법과는 달리 먼저 원적외선 방사율이 높은 방사체를 선택하고 그 중에서 비교적 낮은 온도 영역에서 원적외선 방사율이 높은 물질의 방사체를 선택하여 이를 열원에 의해 원적외선을 방사하는 에너지를 얻고 온도 조절에 의해 원적외선의 방사파장을 조절할 수 있게 함은 물론 고열에 의한 호흡기 질환이나 피부의 손상을 방지할 수 있는 원적외선 방사대를 제공함에 목적이 있다 하겠다.The present invention is different from the method of obtaining infrared rays emitted from high-heated graphite material in a furnace installed in a Finnium sauna or a high-heat burnt chamber in a sauna, and first select a emitter having a high far-infrared emissivity, and at a relatively low temperature region. By selecting a radiator of a material having a high far-infrared emissivity, it is possible to obtain energy to radiate far-infrared rays by a heat source, and to control the radiation wavelength of far-infrared rays by temperature control as well as to prevent respiratory diseases or skin damage caused by high heat. The purpose is to provide far infrared radiation band.

도 1a는 본 발명의 정면도,1A is a front view of the present invention,

도 2b는 본 발명의 평면도,2b is a plan view of the present invention;

도 1c는 본 발명의 배면도이다.1C is a rear view of the present invention.

근적외선, 적외선, 원적외선의 발생은 분자운동에 의존하는 전자기력선의 진동인데 냉반사와 열방사가 있으며 열방사는 가장 일반적인 것으로서 가열된 물체로 부터 쉽게 발생할 수 있으며 물체를 구성하고 있는 원자나 분자가 에너지(열)를 흡수하면 이 에너지에 의해 여기된 분자 원자로 방사되는 에너지라 할 수 있다. 그러나 물체마다 그 나름의 고유한 적외선 방사특성이 있다 구체적으로는 방사율이 높은 물체가 있는가 하면 온도 영역에 따라 근적외선, 적외선, 원적외선의 방사량이루미나 각각의 분광적외선, 방사곡선에 의하면 500℃의 측정 파장역에서 알루미늄의 방사율0.19, 방사량 3.75kw/m-2이고, 황갈색으로 가공한 알루마이트는 방사율0.58, 방사량 11.5kw/m-2이 되며, 알루미나의 경우는 방사율 0.59, 방사량 116kw/m-2, 100℃에서는 알루미늄 0.16, 163kw/m-2, 알루마이트 0.80, 833kw/m-2, 알루미나의 경우 0.86, 892kw/m-2이다. 이와 같은 차이를 500℃와 1000℃ 까지 2미크론에서 4미크론까지의 근적외선과 4미크론에서 30.3미크론까지의 원적외선 역어로 나누어 방사율을 측정한 결과는 다음 표 1로 알려지고 있다.The generation of near-infrared, infrared and far-infrared rays are vibrations of electromagnetic force lines that depend on molecular motion. Cold reflection and heat radiation are the most common, and thermal radiation is the most common and can easily occur from a heated object. The atoms or molecules that make up an object are energy (heat). When absorbed, it can be said to be energy radiated to molecular atoms excited by this energy. However, each object has its own inherent infrared radiation characteristics. Specifically, there are objects with high emissivity. Emissivity of aluminum at the station 0.19, emissivity 3.75kw / m -2, and the tanned alumite has emissivity 0.58, emissivity of 11.5kw / m -2 , emissivity of 0.59 for alumina, 116kw / m -2 for emissivity, 0.16, 163kw / m -2 for aluminum, 0.80, 833kw / m -2 for alumina, and alumina for 100 ℃ 0.86, 892 kw / m -2 . Emissivity was measured by dividing this difference into 500- and 1000-degree near-infrared rays ranging from 2 microns to 4 microns and far infrared rays from 4 microns to 30.3 microns.

[표 1] 알루미늄, 알루마이트, 알루미나의 온도에 따른 파장의 전방사량, 전방사율 비교표[Table 1] Comparison of forward radiation and forward emissivity of wavelength according to temperature of aluminum, aluminite and alumina

또 하나의 500℃에서 금속과 그의 산화물의 예로서 니켈 방사율은 0.36이지만 그 산화물 산화니켈은 0.9가되며, 크롬의 경우는 0.34이지만 산화크롬(Cr2O3)은 0.70이 되고, 철은 0.35이고, 산화철은 0.7이다. 그밖에도 마그네슘과 알루미늄, 규소의 착화합물이나 마그네슘과 알루미늄의 착화합물이 우수한 원적외선 방사체로 알려져 있다. 이상의 예로서 금속보다 그의 산화물이 적외선 또는 원적외선의 방사율이 높고 상기 산화물의 착화합물을 얻기 위해서는 세라믹 제품이 원적외선 방사율이 높다는 것을 알 수 있다.Another example of a metal and its oxide at 500 ° C. is nickel emissivity of 0.36 but its oxide nickel oxide is 0.9, and chrome is 0.34 but chromium oxide (Cr 2 O 3 ) is 0.70 and iron is 0.35 And iron oxide is 0.7. In addition, it is known as a far-infrared radiator having a good complex of magnesium, aluminum and silicon or a complex of magnesium and aluminum. As mentioned above, it can be seen that the ceramic product has a higher far-infrared emissivity than that of the metal whose oxide has a higher emissivity of infrared rays or far infrared rays and in order to obtain a complex compound of the oxide.

본 발명에서 상기와 같은 원리도 착안해야 하지만 본 발명에 의한 원적외선 방사체가 고열을 받기 때문에 내열성이 우수해야 하며 일정한 온도를 장기간 유지하는 기능도 있어야 하므로 열흡수열이 크고 비열 큰 물질이 요구되고 있다. 결국 본 발명에 사용되는 원적외선 방사체는 위와 같은 조건을 충족하는 재료를 선택하고 이를 소성 하여 원적외선 방사체를 얻고 이 소성체를 일정한 지지체에 조립 구성시키고 열원으로 전기 저항체를 원적외선 방사체에 직접 구성시키거나 별도로 설치하여 되는 원적외선 방사대라 할 수 있다.In the present invention, the principle as described above should also be taken into consideration, but since the far-infrared radiator according to the present invention receives a high temperature, it must be excellent in heat resistance and must also have a function of maintaining a constant temperature for a long time. As a result, the far-infrared radiator used in the present invention selects a material that satisfies the above conditions and fires it to obtain a far-infrared radiator, which is assembled on a constant support, and the electric resistor is directly configured on the far-infrared radiator as a heat source or installed separately. It can be called far infrared radiation band.

상기 본 발명의 원적외선 방사대에 사용되는 원적외선 방사체의 제조방법으로는 지오라이트 원석 450부, 규조토 300부, 우모 250부를 분쇄 각각의 미세한 분말을 가압하여 분체 성형한 다음 온도 150-1200℃ 소성 시킨 소성철이다.As a method of manufacturing the far-infrared radiator used in the far-infrared radiation band of the present invention, 450 parts of zeolite gemstones, 300 parts of diatomaceous earth, and 250 parts of feathers are pulverized. Sungcheol.

상기에서 사용된 지오라이트(비석)는 여러 가지 형태가 있으나, 여기에서는 화학식 Ca(Al2Si7O18) · 6H2O을 갖는 휘비석(Heulandite), 화학식 Ca(AlSi2O6)24H2O등의 칼슘이온을 갖는 지오라이트가 유리하고, K, Na 이온을 갖는 지오라이트에 비해 여기에서 함께 소성 되는 화학성분이 SiO270wt%, Al2O316wt%, Fe2O32.7wt%, CaO 0.34wt%, Mg0 1.34wt%, Igloss 7.4wt%이고, 마그네슘산화물이 많은 것을 사용하는 것이 유리하다.The zeolite (zeolite) used in the above may be in various forms, but here, the zeolite (Heulandite) having the formula Ca (Al 2 Si 7 O 18 ) 6H 2 O, the formula Ca (AlSi 2 O 6 ) 2 4H Zeolites with calcium ions such as 2 O are advantageous, and compared with those with K and Na ions, the chemical components calcined together are 70 wt% of SiO 2 , 16 wt% of Al 2 O 3 , and 2.7 wt of Fe 2 O 3 . %, CaO 0.34wt%, Mg0 1.34wt%, Igloss 7.4wt%, it is advantageous to use a lot of magnesium oxide.

운모의 화학성분은 kx(Al, Fe", Fe"', Mg)y, (Si, Al)4· O10(OH)2 · H2O이고, 여기서 X=1-0.5, Y=2로 나타낸다.The chemical composition of mica is kx (Al, Fe ", Fe"', Mg) y, (Si, Al) 4 · O 10 (OH) 2 · H 2 O, where X = 1-0.5, Y = 2 Indicates.

여기에서 소성온도는 극히 중요하다. 상기 소성온도 보다 낮으면 소성반응이 일어나지 않아 소기의 산화물이나 착화합물을 얻을 수 없고 소정의 강도를 얻을 수 없으며 한정된 범위 이상의 온도로 소성 되면 유리화 되어 후술하는 구조의 원적외선 방사체를 얻을 수 없다. 이상에서 원적외선 방사체인 소성물을 얻기 위하여 사용되는 성분의 대부분이 금속산화물로서 방사율이 높고 저온에서 원적외선 방사율이 높은 금속화합물이다.The firing temperature is of great importance here. If the firing temperature is lower than the firing reaction, no desired oxide or complex compound can be obtained, and a predetermined strength cannot be obtained. Most of the components used to obtain a fired product which is a far infrared emitter are metal oxides having high emissivity and high far infrared emissivity at low temperature.

또 소성공정을 거치므로서 알루미늄과 마그네슘의 산화물로된 스피넬구조 착화합이 생성되고 알루미늄, 규소, 마그네슘의 착염산화물이 생성되어 저온 방사율을 향상시킬 수 있다. 그밖에도 소성과정을 통해 방사율을 크게 저해시키는 유기물과 수분 및 각성분들이 갖고 있는 결정수 들이 제거된다.In addition, as a result of the firing process, a spinel structure complex composed of an oxide of aluminum and magnesium is produced, and a complex salt of aluminum, silicon, and magnesium is produced to improve low-temperature emissivity. In addition, the calcination process removes organic matter, moisture, and crystallized water that each component has.

예를 들어 운모의 소성과정을 살펴보면 100℃에서 흡착수를 방출하고 500-800℃에서 결정수를 일어 무수물로 되면 1050-1100℃에서 스피넬구조로 변한다.For example, the calcination process of mica releases adsorbed water at 100 ° C and raises the crystallized water at 500-800 ° C.

또 본 발명에 의한 원적외선 방사체에 요구되는 또 하나의 성질로서 열원에 의하여 방사체를 통과 고열이 방사되어서는 안되고 일정한 온도에서 장시간 방사되어야한다. 이와 같은 조건은 원적외선 방사체의 소성 원료중 지오라이트나 규조토를 첨가함으로써 달성된다. 원래 원료로서 지오라이트의 특징은 다공성이여서 가스흡수제나 여과제로 이용되고 규조토 또한 다공성이고 이들의 소성물 또한 미세한 기공이 많아 내화 벽돌 세라믹 단열재로 이용되고 있으며 본 발명의 소성물에도 이와 같은 특성을 이용하고 있다. 이와 같은 소성체의 구조는 열흡수용량이 커서 빨리 뜨거워지거나 식지 않고 비교적 일정한 온도를 장시간 유지할 수 있으며 표면이거칠어 열반사량을 줄일 수 있으므로 키르히호프 법칙에 의하여 방사율을 높일 수 있는 이점이 있다. 이상과 같이 얻어진 원적외선 방사체(1)를 지지대(2)에 조립하고 방사체(1)의 후면의 형성된 홈(3)에 텅스텐, 니크롬, 칸달과 같은 전기저항선(4)을 결합시킨 원적외선 방사대(A)라 할 수 있다.In addition, as another property required for the far-infrared radiator according to the present invention, high heat must not be radiated through the radiator by a heat source, but radiated for a long time at a constant temperature. Such conditions are achieved by adding zeolite or diatomaceous earth in the firing raw material of the far-infrared radiator. As a raw material, the feature of geolite is porous, so it is used as a gas absorber or filter agent, diatomaceous earth is also porous, and its fired products also have fine pores, so it is used as a refractory brick ceramic insulation. have. Such a structure of the fired body has an advantage that the emissivity can be increased by Kirchhoff's law because the heat absorption capacity is large, so that it can maintain a relatively constant temperature for a long time without rapidly heating up or cooling down, and the surface has a rough surface to reduce the amount of heat reflection. The far-infrared radiation band A in which the far-infrared radiator 1 obtained as described above is assembled to the support 2 and the electrical resistance wires 4 such as tungsten, nichrome and candall are coupled to the grooves 3 formed on the rear surface of the radiator 1. It can be said.

본 발명에 의한 원적외선 방사체는 방사기능에 있어 알루미늄산화물보다 방사율이 높아 500℃에서 전반사량 0.89-0.9까지 높일 수 있고 특히 저온 영역인 100℃에서 파장 4㎛ 이상의 원적외선 방사량을 0.895까지 올릴 수 있으며 열팽창계수가 2.3 ×10-6정도로 500℃까지는 거의 열팽창이나 수축이 일어나지 않는다.The far-infrared radiator according to the present invention has a higher emissivity than aluminum oxide in the radiation function, which can increase the total reflection amount up to 0.89-0.9 at 500 ° C. In particular, the far-infrared ray radiation having a wavelength of 4 μm or more at a temperature of 100 ° C in the low temperature range can be raised to 0.895 and the coefficient of thermal expansion. The thermal expansion or shrinkage hardly occurs up to 500 ° C. at about 2.3 × 10 −6 .

더욱이 원적외선 방사 소성체에 미세한 기공이 무수히 존재하여 열 흡수 용량이 크고 쉽게 뜨거워지거나 쉽게 식지 않아 원적외선 방사체의 일정한 온도 유지가 용이하며 고온의 열방사에 의해 호흡장애나 피부손상을 방지할 수 있으며 열원의 조절로 원적외선 파장이나 방사율을 조절할 수 있어 찜질방이나, 한증막, 사우나 등에 아주 적합한 원적외선 방사대라할 수 있다.Moreover, since there are a lot of fine pores in the far-infrared radiating plastic body, the heat absorption capacity is large and it does not easily heat up or cool down, so it is easy to maintain a constant temperature of the far-infrared radiator, and to prevent respiratory disorder or skin damage by high temperature heat radiation, By controlling the far infrared wavelength and emissivity, it can be called a far-infrared radiation band that is very suitable for jjimjilbang, steam room and sauna.

Claims (2)

원적외선 방사체(1)를 지지대(2)에 조립하고 방사체(1)의 후면에 형성된 홈(3)에 전기저항선(4)을 결합시킨 원적외선 방사대.Far-infrared radiation band assembled the far-infrared radiator (1) to the support (2) and coupled the electric resistance wire (4) to the groove (3) formed on the back of the radiator (1). 제 1 항에 있어서, 원적외선 방사체는 지오라이트, 규석, 운모, 분말을 1200-1500℃로 소성 시킨 세라믹 소성체임을 특징으로 하는 원적외선 방사대.The far-infrared radiation band according to claim 1, wherein the far-infrared radiator is a ceramic calcined body obtained by firing zeolite, silica, mica and powder at 1200-1500 ° C.
KR1020010003659A 2001-01-22 2001-01-22 A stand radiating far infrared rays KR20020062536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010003659A KR20020062536A (en) 2001-01-22 2001-01-22 A stand radiating far infrared rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010003659A KR20020062536A (en) 2001-01-22 2001-01-22 A stand radiating far infrared rays

Publications (1)

Publication Number Publication Date
KR20020062536A true KR20020062536A (en) 2002-07-26

Family

ID=27692444

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010003659A KR20020062536A (en) 2001-01-22 2001-01-22 A stand radiating far infrared rays

Country Status (1)

Country Link
KR (1) KR20020062536A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870001175U (en) * 1985-06-28 1987-02-20 주식회사금성사 Video tape recorder reel table
KR19990046048A (en) * 1999-03-17 1999-06-25 서보룡 Radioactive room to expose far infrared rays
KR200163240Y1 (en) * 1999-07-01 2000-02-15 서칠환 Germana radiotheraphy a manufacturing balneum room
KR200217158Y1 (en) * 2000-05-08 2001-03-15 안정오 Remote infrared radiator for mats
KR200296885Y1 (en) * 2002-09-11 2002-11-30 허진행 Assembly packing box pallet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870001175U (en) * 1985-06-28 1987-02-20 주식회사금성사 Video tape recorder reel table
KR19990046048A (en) * 1999-03-17 1999-06-25 서보룡 Radioactive room to expose far infrared rays
KR200163240Y1 (en) * 1999-07-01 2000-02-15 서칠환 Germana radiotheraphy a manufacturing balneum room
KR200217158Y1 (en) * 2000-05-08 2001-03-15 안정오 Remote infrared radiator for mats
KR200296885Y1 (en) * 2002-09-11 2002-11-30 허진행 Assembly packing box pallet

Similar Documents

Publication Publication Date Title
CN103496947A (en) Cooking ware for induction cooker and production technology thereof
KR20020062536A (en) A stand radiating far infrared rays
JP2008162866A (en) Composite ceramic material for infrared emission, method for producing the same, member for cookware and rice cooker
KR930000003B1 (en) Far-ir radiating ceramic composition and processing method therefore
JP2002509513A (en) Infrared emitting ceramic material
KR950008189B1 (en) The method of making far-infra red ray radiation ceramics for charcoal
JPS62202865A (en) Ceramic far infrared radiator
KR20190065709A (en) A health belt that emits far infrared rays and negative ions
KR101884016B1 (en) Heat resistance ceramic kaolin manufacture method using induction
KR930009893B1 (en) Process for the production ceramic
JPH09173478A (en) Active ion generating tube
KR940005085B1 (en) Radiate substance of farinfrared rays
KR102016165B1 (en) Heater panel and heater including the same
JP2003325298A (en) Ovenware for microwave oven
KR20040080678A (en) Heater pannel of imitation marble having multiple function
KR970010301B1 (en) Process for the preparation of far-infrared radiator
KR940000731B1 (en) Composition of far-infrared radiation ceramic
JPS61151986A (en) Ceramic far infrared ray heater
JPS6114167A (en) Infrared gas burner
JP2004215945A (en) Grill board
RU2262552C1 (en) Coating material with high radiating capacity
JPS5950068A (en) Manufacture of high minuteness magnesia sintered body
KR101438922B1 (en) Ceramic heater and atopic itching relief using the same
JPS6146426B2 (en)
JP2002167266A (en) Conductive ceramic composite material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application