JPS6146426B2 - - Google Patents

Info

Publication number
JPS6146426B2
JPS6146426B2 JP56107980A JP10798081A JPS6146426B2 JP S6146426 B2 JPS6146426 B2 JP S6146426B2 JP 56107980 A JP56107980 A JP 56107980A JP 10798081 A JP10798081 A JP 10798081A JP S6146426 B2 JPS6146426 B2 JP S6146426B2
Authority
JP
Japan
Prior art keywords
infrared
far
powder
emissivity
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56107980A
Other languages
Japanese (ja)
Other versions
JPS589871A (en
Inventor
Katsuaki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56107980A priority Critical patent/JPS589871A/en
Publication of JPS589871A publication Critical patent/JPS589871A/en
Publication of JPS6146426B2 publication Critical patent/JPS6146426B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 (産業上の利用分野) この発明は熱輻射体として利用する遠赤外線放
射セラミツクス体を得る方法に関する。 (従来の技術) 従来、暖房や乾燥装置に用いられるている遠赤
外線放射体は、近赤外から赤外領域において高い
放射率を示す高純度なジルコニア、アルミナ、チ
タニアなどの新素材からなるセラミツクスが用い
られて居り、常時高温で加熱するような構造体を
有し且つ高温下で使用に耐えられるよう高温下で
の焼結を必要とした。従つて、従来の遠赤外線放
射体は価格が高く入手が困難であつた。 (本発明の解決しようとする問題点) この発明は高温度で焼結による調整を要するこ
となく適温で適切な波長域(特に遠赤外線領域)
で適切な放射率をもつた安価な遠赤外線放射体を
常温で硬化せしめることで容易に得ることを目的
としている。 食品、生鮮野菜、魚介類、人体のように水分の
多い遠赤外線被射体は特有の遠赤外線波長を吸収
する特性をもつている。このような物質に対して
は近赤外線から赤外線にかけての放射は必要でな
くむしろより長波長の遠赤外線を必要とする。 〔問題点を解決するための手段〕 このような遠赤外線放射セラミツクス体を得る
には、遠赤外線の波長領域で高放射率の放射特性
をもつ物質を組み合わせ常温で水和硬化能を有
し、しかも水和硬化物が高温で分解することのな
いアルミナセメントを硬化剤として使用すること
で調整できる。 本発明によるセラミツクスにおいて主成分とな
る焼成白磁は遠赤外線機能を有した焼結体粉末で
あり容易に入手できる。またアルミナ粉末も同じ
ように遠赤外線放射機能を有しており安価に入手
できる。更にこれらに2−15%加えられるシリ
カ、ヌグネシア、酸化第一鉄、炭素、炭化珪素粉
末は全体として遠赤外線の放射率を高めることが
できる。 而も更に0.5−10の配合添加するアルミナセメ
ントは常温でこれらセラミツクス混合体を容易に
結合するバインダー兼硬化剤としての役割をもつ
ものである。 即ち、上記混合セラミツクスに0.5−10%アル
ミナセメントと5−20%の水とを添加し混練し成
型したセラミツクス体は常温で自ら水和硬化し硬
い遠赤外線放射セラミツクス体となる。これは従
来のキヤスタブル耐火物と同様な使用の態様を示
すものである。 本発明によるセラミツクスは高温焼結せしめる
ものでないが常温自己硬化型の強い結合を有する
遠赤外線放射体であり、このままで遠赤外線放射
体として使用に耐えるものである。更に高強度の
構造材の目的を合わせ持たせるためには1700℃の
温度で高温焼成させることができる。因に現在で
の未焼成品の耐熱限度は1600℃であり、圧縮荷重
15.6tOn/cm2に十分耐える強度を有している。 (発明の作用) 本発明の特徴であるアルミナセメントを配合使
用することにより調整されたセラミツクスは任意
の形状に常温で容易に硬化成型できるとともに適
度の強度をもち高い遠赤外線放射率を有してい
る。 本発明によるセラミツクスから放射される遠赤
外線の被放射物質におよぼす効果は従来のそれに
比べて優れた効果を示した。 その実施例を以下に示す。 (実施例) 本発明による遠赤外線放射セラミツクス体の配
合例を示すと表−1の通りである。これら配合に
よつて均一に混合したセラミツクス粉末は最後の
工程で水とよく混合し、その混合体を予め定めた
型に流し込み常温で放置乾燥効果せしめるもので
ある。 このようにして調整しセラミツクス体は遠赤外
線を高い放射率で放射する放射特性を示す。その
配合例No.1,3,6の放射率曲線を示すと図面の
通りである。 このようにして調整したセラミツクス体から放
射する遠赤外線の乾燥効果を牛肉やトリ肉などの
食肉、野菜、きのこ類を対象に調べた結果これら
の乾燥状態および減水率は従来の対流伝熱を主体
とする熱風乾燥のそれに比べて極めて優れた成果
を示した。同時に省エネ効果も示した。
[Object of the Invention] (Industrial Application Field) This invention relates to a method for obtaining a far-infrared emitting ceramic body used as a heat radiator. (Prior technology) Conventionally, far-infrared radiators used in heating and drying equipment are ceramics made of new materials such as high-purity zirconia, alumina, and titania, which exhibit high emissivity in the near-infrared to infrared region. was used, had a structure that was constantly heated at high temperatures, and required sintering at high temperatures to withstand use at high temperatures. Therefore, conventional far-infrared radiators are expensive and difficult to obtain. (Problems to be Solved by the Present Invention) This invention is capable of achieving a suitable wavelength range (particularly far infrared region) at an appropriate temperature without requiring adjustment by sintering at high temperatures.
The aim is to easily obtain an inexpensive far-infrared radiator with an appropriate emissivity by curing it at room temperature. Far-infrared ray-emitting objects that contain a lot of water, such as food, fresh vegetables, seafood, and the human body, have the characteristic of absorbing specific far-infrared wavelengths. For such substances, radiation in the range from near-infrared to infrared is not necessary, but rather far-infrared radiation with longer wavelengths is required. [Means for solving the problem] In order to obtain such a far-infrared emitting ceramic body, materials having radiation characteristics of high emissivity in the far-infrared wavelength region are combined, and have hydration hardening ability at room temperature. Moreover, it can be adjusted by using alumina cement, whose hydrated hardened product does not decompose at high temperatures, as a hardening agent. The fired white porcelain, which is the main component in the ceramics according to the present invention, is a sintered powder having far-infrared function and is easily available. Alumina powder also has a far-infrared radiation function and can be obtained at low cost. Furthermore, silica, nugnesia, ferrous oxide, carbon, and silicon carbide powder added in an amount of 2 to 15% can increase the far-infrared emissivity as a whole. Moreover, the alumina cement added in an amount of 0.5 to 10 has the role of a binder and hardening agent that easily binds these ceramic mixtures at room temperature. That is, a ceramic body made by adding 0.5-10% alumina cement and 5-20% water to the above-mentioned mixed ceramics, kneading and molding the mixture hydrates and hardens by itself at room temperature to become a hard far-infrared emitting ceramic body. This shows a mode of use similar to that of conventional castable refractories. Although the ceramic according to the present invention is not sintered at a high temperature, it is a far-infrared radiator that self-cures at room temperature and has strong bonds, and can be used as a far-infrared radiator as it is. Furthermore, in order to serve the purpose of a high-strength structural material, it can be fired at a high temperature of 1700°C. Incidentally, the current heat resistance limit for unfired products is 1600℃, and the compressive load
It has sufficient strength to withstand 15.6tOn/cm 2 . (Operation of the invention) Ceramics prepared by blending and using alumina cement, which is a feature of the present invention, can be easily hardened and molded into any shape at room temperature, have moderate strength, and have high far-infrared emissivity. There is. The effect of the far infrared rays emitted from the ceramics of the present invention on the radiated material was superior to that of the conventional method. Examples are shown below. (Example) Table 1 shows formulation examples of far-infrared emitting ceramic bodies according to the present invention. The ceramic powder uniformly mixed with these formulations is thoroughly mixed with water in the final step, and the mixture is poured into a predetermined mold and left to dry at room temperature. The ceramic body adjusted in this manner exhibits radiation characteristics that emit far-infrared rays at a high emissivity. The emissivity curves of Blend Example Nos. 1, 3, and 6 are shown in the drawing. The drying effect of far infrared rays emitted from the ceramic body prepared in this way was investigated on meat such as beef and poultry, vegetables, and mushrooms, and the results showed that the drying state and water loss rate of these were mainly due to conventional convection heat transfer. It showed extremely superior results compared to that of hot air drying. At the same time, it also showed an energy saving effect.

〔発明の効果〕〔Effect of the invention〕

本発明によつて調理されたセラミツクスは図1
に示した通り遠赤外線領域で高い放射率を有して
おり、イ)ガス化炭化炉、ロ)食品等の乾燥、
ハ)暖房、ニ)リハビリテーシヨン機器の熱源体
として広く応用が可能である。以上から本発明は
首題の目的を達成するまことに有益なものであ
る。
Ceramics prepared according to the present invention are shown in Figure 1.
As shown in , it has a high emissivity in the far infrared region, and is used in a) gasification carbonization furnaces, b) drying of foods, etc.
It can be widely applied as a heat source for c) heating and d) rehabilitation equipment. In view of the foregoing, the present invention is highly beneficial in achieving the object in question.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明セラミツクスによる遠赤外線の放
射率曲線である。
The drawing shows a far-infrared emissivity curve of the ceramics of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 焼成白磁(SiO2,Al2O3,Na2O)粉末とアル
ミナ(Al2O3)粉末を主成分とし、これに酸化第
一鉄(FeO)、酸化珪素(SiC)、炭素(C)、マ
グネシア(MgO)、シリカ(SiO2)の粉末を少な
くとも一種以上添加し、さらにアルミナセメン
ト、水を混合して混練し成型することを特徴とす
る遠赤外線発生放射セラミツクスの製造法。
1 The main components are fired white porcelain (SiO 2 , Al 2 O 3 , Na 2 O) powder and alumina (Al 2 O 3 ) powder, and ferrous oxide (FeO), silicon oxide (SiC), and carbon (C ), magnesia (MgO), and silica (SiO 2 ) powder, and furthermore, alumina cement and water are mixed, kneaded, and molded.
JP56107980A 1981-07-09 1981-07-09 Manufacture of far infrared generation radiation ceramics Granted JPS589871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56107980A JPS589871A (en) 1981-07-09 1981-07-09 Manufacture of far infrared generation radiation ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56107980A JPS589871A (en) 1981-07-09 1981-07-09 Manufacture of far infrared generation radiation ceramics

Publications (2)

Publication Number Publication Date
JPS589871A JPS589871A (en) 1983-01-20
JPS6146426B2 true JPS6146426B2 (en) 1986-10-14

Family

ID=14472928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56107980A Granted JPS589871A (en) 1981-07-09 1981-07-09 Manufacture of far infrared generation radiation ceramics

Country Status (1)

Country Link
JP (1) JPS589871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237330U (en) * 1988-09-02 1990-03-12

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0309680D0 (en) * 2003-04-29 2003-06-04 Applied Energy Products Ltd Improved process for brick manufacture
JP2009113529A (en) * 2007-11-02 2009-05-28 Mazda Motor Corp Mounting structure for vehicle suspension and assembling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237330U (en) * 1988-09-02 1990-03-12

Also Published As

Publication number Publication date
JPS589871A (en) 1983-01-20

Similar Documents

Publication Publication Date Title
CN104341156B (en) A kind of carborundum based material microwave-absorbing heat-generating body composition and method of making the same
JPS6146426B2 (en)
CN1064857A (en) Produce the manufacture method of far infrared irradiation ceramic body
ES2218495T3 (en) MICROPOROUS CONFORMED BODY OF THERMAL INSULATION CONTAINING ELECTRIC ARC SILICONE ACID.
JPH0238355A (en) Electrically conductive ceramic heating unit emitting far infrared rays
JPS62202865A (en) Ceramic far infrared radiator
JPS6117477A (en) Heat insulative heat resistant material
KR20010085151A (en) The far infra red ray emissive heater and method for its preparation
JPH01131056A (en) Far infrared radiating material
SU1534039A1 (en) Initial charge for high-temperature insulation
JPS58167483A (en) Manufacture of glazed ceramic infrared radiator
JPS61232268A (en) Far infrared radiation ceramic
JPH04139057A (en) Wear resistant refractory
JP2021169394A (en) Ceramics, method for manufacturing ceramics, ceramic production granule and production method thereof
JPS5950069A (en) Infrared radiation material
JPH0465337A (en) Cement-base molded body
SU371188A1 (en) REFRACTORY MATERIAL
SU1583395A1 (en) Method of producing heat-insulating ceramic-vermiculite articles
JPS6119582B2 (en)
SU76604A1 (en) A method of manufacturing unburned refractory and heat-resistant products
SU1738794A1 (en) Sagger body
JPS62105984A (en) Manufacture of ceramic heat radiator
SU380612A1 (en) REFRACTORY MATERIAL
JP2022087559A (en) Heating tool
GB931185A (en) Improvements in and relating to ceramic, refractory and like products