KR20020060002A - Multifunctional oxidation catalysts for removal of chlorinated volatile organic compounds - Google Patents

Multifunctional oxidation catalysts for removal of chlorinated volatile organic compounds Download PDF

Info

Publication number
KR20020060002A
KR20020060002A KR1020010001198A KR20010001198A KR20020060002A KR 20020060002 A KR20020060002 A KR 20020060002A KR 1020010001198 A KR1020010001198 A KR 1020010001198A KR 20010001198 A KR20010001198 A KR 20010001198A KR 20020060002 A KR20020060002 A KR 20020060002A
Authority
KR
South Korea
Prior art keywords
catalyst
weight
vocs
metal
carrier
Prior art date
Application number
KR1020010001198A
Other languages
Korean (ko)
Other versions
KR100390770B1 (en
Inventor
박상언
이철위
장종산
박중남
신재헌
Original Assignee
김충섭
한국화학연구원
신재헌
주식회사 불이화이버
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김충섭, 한국화학연구원, 신재헌, 주식회사 불이화이버 filed Critical 김충섭
Priority to KR10-2001-0001198A priority Critical patent/KR100390770B1/en
Publication of KR20020060002A publication Critical patent/KR20020060002A/en
Application granted granted Critical
Publication of KR100390770B1 publication Critical patent/KR100390770B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE: Provided is a multifunctional oxidation catalysts, which can remove chlorinated volatile organic compounds at low temperatures of 20 to 220°C as well as minimize generation of another forms of chlorinated volatile organic compounds after reaction. CONSTITUTION: The present invention is characterized in that sulfated metal oxide support is impregnated with (i) as active species, 0.5-2.0 wt.% of one novel metal selected from Pt, Pd, Ir and Rh; (ii) as subsidiary active species, Cu 2.0-10.0 wt.%, Ni 0.1-1.0 wt.%. The sulfated metal oxide support is selected from zirconia, titania and ceria containing SO4 in an amount of 0.3 to 2.3 wt.%. And a porous molecular sieve material is used as support, together with the sulfated metal oxide support within the range of less than 50%. The porous molecular sieve material, such as protonic zeolite or ammonium zeolite, is selected from BEA, MFI, MOR and FAU zeolite with a Si/Al ratio within the range of 10 to 100.

Description

휘발성 유기염소화합물 제거용 산화촉매{Multifunctional oxidation catalysts for removal of chlorinated volatile organic compounds}Multifunctional oxidation catalysts for removal of chlorinated volatile organic compounds}

본 발명은 휘발성 유기염소화합물 제거용 산화촉매에 관한 것으로서, 더욱 상세하게는 황산형 금속산화물(sulfated metal oxide) 담체상에 백금(Pt), 팔라듐(Pd), 이리듐(Ir) 및 로듐(Rh) 중에서 선택된 귀금속이 활성금속으로 함유되어 있고, 필요에 따라 구리(Cu) 및 니켈(Ni) 등의 전이금속이 보조활성금속으로서 귀금속과 함께 일정 함량비로 고르게 담지되어 있어 활성금속 및 담체로 사용되는 각 성분들의 기능을 극대화하고 서로간의 상승작용을 유도함으로써 20 ∼ 220 ℃의 낮은 온도조건에서 휘발성 유기염소화합물을 효과적으로 제거할 뿐만 아니라 반응 후 또 다른 형태의 휘발성 유기염소화합물의 생성을 최소화시킴으로써 환경정화 및 에너지 절약을 동시에 실현하게 되는 휘발성 유기염소화합물 제거용 산화촉매에 관한 것이다.The present invention relates to an oxidation catalyst for removing volatile organic chlorine compounds, and more particularly, platinum (Pt), palladium (Pd), iridium (Ir) and rhodium (Rh) on a sulfated metal oxide carrier. The precious metal selected from among them is contained as an active metal, and if necessary, transition metals such as copper (Cu) and nickel (Ni) are evenly supported in a certain content ratio together with the precious metal as auxiliary active metals, and thus used as active metals and carriers. By maximizing the function of the components and inducing synergies with each other, it not only effectively removes volatile organic chlorine compounds at low temperature of 20-220 ℃, but also minimizes the formation of another type of volatile organic chlorine compounds after the reaction. The present invention relates to an oxidation catalyst for removing volatile organochlorine compounds which simultaneously realizes energy saving.

할로겐화 휘발성 유기화합물(halogenated volatile organic compounds' 이하, "HVOCs,"라 약칭함)은 용매 사용 공정이나 정밀화학 제품 제조공정에서 많이사용되고 있으며, 일반적인 파라핀계 혹은 방향족 휘발성 유기화합물과는 달리 자체 독성이 매우 강하고 난 분해성 물질이므로 이들의 효율적 처리기술 개발이 절실히 필요하다. HVOCs를 처리하는 방법으로서 현재는 단순 소각 혹은 축열식 소각처리 등을 행하고 있지만, 이는 연소온도가 높고 이에 따른 연료소비량이 높아 상당량의 CO2가 배출되며, 질소산화물/다이옥신 등과 같은 2차 대기오염 물질이 발생될 가능성이 매우 높다.Halogenated volatile organic compounds (hereinafter abbreviated as "HVOCs") are frequently used in the solvent process or in the manufacturing of fine chemicals. Unlike general paraffinic or aromatic volatile organic compounds, their toxicity is very high. Strong and degradable materials are urgently needed to develop efficient treatment technologies. Currently, simple incineration or regenerative incineration is carried out as a method of treating HVOCs. However, since the combustion temperature is high and the fuel consumption is high, a considerable amount of CO 2 is emitted, and secondary air pollutants such as nitrogen oxides and dioxins are used. It is very likely to occur.

상기한 소각법이외에도 산화촉매를 이용한 HVOCs 처리방법이 공지되어 있는데, 이때 사용되는 산화촉매는 귀금속(Pt, Pd, Rh 등)계와 전이금속(V, Cr, Mn, Fe, Co, Ni, Cu 등)계의 두 종류로 크게 나눌 수 있다. 일반적으로 HVOCs의 산화거동은 보통의 휘발성유기화합물(VOCs, volatile organic compounds)과는 전혀 달라 금속 촉매와 반응하여 휘발성 유독물질인 금속 옥시할로겐화물(metal oxyhalide)이 생성되어 촉매를 피독시킬 뿐만 아니라 동시에 난분해성 2차 오염 물질이 생성된다. 특히 귀금속 촉매는 HVOCs와 반응하여 폴리할로겐화된 유기화합물을 발생시키기도 한다. 최근 보고에 의하면, 전이금속 촉매는 HVOCs를 산화할 때 염소와 염산에 대한 피독 저항성이 귀금속 보다 강하다고 알려져 있다.In addition to the above-described incineration method, a method of treating HVOCs using an oxidation catalyst is known, wherein the oxidation catalyst used is a noble metal (Pt, Pd, Rh, etc.) and a transition metal (V, Cr, Mn, Fe, Co, Ni, Cu). It can be divided into two types. In general, the oxidation behavior of HVOCs differs from ordinary volatile organic compounds (VOCs), which react with metal catalysts to produce volatile toxic metal oxyhalides, which not only poison the catalyst. Hardly degradable secondary pollutants are produced. In particular, noble metal catalysts may react with HVOCs to generate polyhalogenated organic compounds. According to recent reports, transition metal catalysts are known to have higher poisoning resistance to chlorine and hydrochloric acid than noble metals when oxidizing HVOCs.

한편, 제올라이트를 촉매 담체로 사용하거나 혹은 제올라이트 자체를 촉매로 사용하는 경우 HVOCs에 대하여 높은 산화활성을 보여준다. 예를 들어, Cr-Y, Cr-ZSM-5, Co-Y, Y 등 제올라이트형 촉매는 비교적 낮은 온도(200 ∼ 300 ℃)에서 CHCl3, CCl4등을 완전산화시켜 H2O, CO2, HCl로 전환하여 주요한 몇 가지 부산물인CO, COCl2, 폴리클로로화 탄화수소의 생성을 효율적으로 억제할 수 있다. 이러한 촉매활성은 제올라이트 촉매가 흡착 촉매로서의 역할을 유기적으로 결합시켜 제올라이트에 존재하는 산성점에서 반응이 수행되는 것으로 알려져 있다. VOCs의 촉매에 의한 완전산화(catalytic total oxidation) 기술은 이미 잘 알려져 있다.On the other hand, when zeolite is used as a catalyst carrier or zeolite itself is used as a catalyst, it shows high oxidation activity against HVOCs. For example, zeolite catalysts such as Cr-Y, Cr-ZSM-5, Co-Y, and Y are completely oxidized CHCl 3 , CCl 4, etc. at a relatively low temperature (200-300 ° C.) to produce H 2 O, CO 2. It can be effectively converted to HCl to inhibit the production of several major byproducts, CO, COCl 2 and polychlorolated hydrocarbons. Such catalytic activity is known that the zeolite catalyst organically combines the role of the adsorption catalyst to perform the reaction at the acidic point present in the zeolite. Catalytic total oxidation techniques of catalysts of VOCs are well known.

그러나, 휘발성 유기염소화합물'(이하 "Cl-VOCs"라 약칭함) 예를 들면 트리클로로에틸렌, 비닐 클로라이드, 테트라클로로에틸렌, 메틸렌 클로라이드, 1,2-디클로로에탄, 1,1,1-트리클로로에탄, 카본 테트라클로라이드, 클로로포름, 클로로벤젠 등과 같은 염소원자를 함유하고 있는 화합물에 대한 완전산화 기술은 기술적으로 극복의 여지가 많이 남아있다. 예컨대 Cl-VOCs는 산화 후 HCl 및 Cl2를 형성할 뿐만 아니라 이들이 촉매를 쉽게 피독시킨다. 그리고 산화반응 후 다이옥신 등과 같은 여러 다른 종류의 염소화 유도체 화합물을 형성하므로 단순한 산화능을 갖는 촉매로는 Cl-VOCs를 완전 산화시켜 제거하는 일은 그리 용이하지 않다. 또한 산업현장에서는 VOCs 뿐만 아니라 여러 종류의 Cl-VOCs도 함께 배출될 가능성이 많기 때문에 이들을 동시에 제거 및 처리하기 위해서는 다중기능성의 촉매소재를 설계 및 제조하여야 한다. 실제로 Cl-VOCs의 완전산화반응에 사용되는 대표적인 촉매로는 ① 귀금속(Pt/Pd) 계열, ② 바나디아 계열, ③ 크롬 계열, ④ 단일 혹은 복합산화물 계열(Perovskite형 산화물) 등으로 분리할 수 있다.However, volatile organic chlorine compounds' (hereinafter abbreviated as "Cl-VOCs"), for example trichloroethylene, vinyl chloride, tetrachloroethylene, methylene chloride, 1,2-dichloroethane, 1,1,1-trichloro Complete oxidation techniques for compounds containing chlorine atoms such as ethane, carbon tetrachloride, chloroform, chlorobenzene and the like remain technically inconvenient. Cl-VOCs, for example, not only form HCl and Cl 2 after oxidation, but they also easily poison the catalyst. In addition, since various different types of chlorinated derivative compounds such as dioxins are formed after the oxidation reaction, it is not easy to completely oxidize and remove Cl-VOCs as a catalyst having a simple oxidation capability. In addition, in the industrial field, not only VOCs but also various kinds of Cl-VOCs are discharged together, so multi-functional catalyst materials must be designed and manufactured to remove and process them simultaneously. Actually, representative catalysts used for complete oxidation of Cl-VOCs can be separated into ① precious metal (Pt / Pd) series, ② vanadia series, ③ chromium series, and ④ single or complex oxide series (Perovskite type oxide). .

현재까지 알려진 바에 의하면, 크롬산화물이나 백금담지 보헤마이트 촉매상에서 할로겐화 탄화수소를 산화 및 분해하는 기술[미국특허 제3,972,979호,제4,053,557호]; 루테늄(Ru), 루테늄-백금(Ru-Pt), 백금(Pt)이 담지된 촉매를 각각 사용하여 적어도 350 ℃ 이상의 온도에서 할로겐화 유기화합물을 산화 및 분해하는 기술[미국특허 제4,059,675호, 제4,059,676호, 제4,059,683호]; 지르코니움(Zr), 망간(Mn), 세륨(Ce), 코발트(Co), 바나듐(V) 산화물 중에서 선택된 하나 이상의 담체에 백금을 분산 및 담지시킨 촉매 제조기술[미국특허 제5,283,041호]; 산성도가 다른 종류의 담체를 사용한 촉매기술[미국특허 제5,643,545호] 등이 공지되어 있다. 그러나, 상기한 종래 기술에서는 반응 후 다른 조성을 갖는 여러 종류의 Cl-VOCs가 부산물로 생성되어 2차적인 오염을 유발하므로, 이러한 HVOCs을 완전산화 및 제거를 위해서는 필요 이상의 높은 온도가 요구된다. 예를 들어 1,1,1-트리클로로에탄이 촉매에 의해 산화되는 경우, 트리클로로에틸렌, 디클로로에틸렌, 테트라클로로에틸렌, 모노클로로에틸렌의 또 다른 형태의 Cl-VOCs가 부산물로 생성되는데, 이는 촉매 활성온도, 촉매의 활성 성분에 따른 기능성, 그리고 반응조건 등에 의하여 부산물의 생성을 최소화시킬 수 있으므로, 최적의 촉매 설계가 선행되어야 한다.To date, techniques for oxidizing and decomposing halogenated hydrocarbons on chromium oxide or platinum-supported boehmite catalysts (US Pat. Nos. 3,972,979, 4,053,557); A technique for oxidizing and decomposing halogenated organic compounds at a temperature of at least 350 ° C. using ruthenium (Ru), ruthenium-platinum (Ru-Pt), and platinum (Pt) supported catalysts, respectively [US Pat. Nos. 4,059,675, 4,059,676] 4,059,683; Catalyst production technology in which platinum is dispersed and supported on at least one carrier selected from zirconium (Zr), manganese (Mn), cerium (Ce), cobalt (Co), and vanadium (V) oxides (US Pat. No. 5,283,041); Catalyst technology using a carrier of a different acidity (US Pat. No. 5,643,545) and the like are known. However, in the above-described prior art, various kinds of Cl-VOCs having different compositions after reaction are generated as by-products, causing secondary contamination, and thus, higher temperatures than necessary are required for complete oxidation and removal of such HVOCs. For example, when 1,1,1-trichloroethane is oxidized by a catalyst, another form of Cl-VOCs of trichloroethylene, dichloroethylene, tetrachloroethylene, monochloroethylene is produced as a by-product, which is a catalyst Since the generation of by-products can be minimized by the activation temperature, the functionality according to the active ingredients of the catalyst, and the reaction conditions, the optimum catalyst design must be preceded.

Cl-VOCs을 제거하는데 사용되는 촉매로서, 백금 등과 같은 귀금속이 담지된 촉매[J. Corella, J.M. Toledo and A.M. Padilla,Appl. Catal. B.27(2000) 243], 크롬 등과 같은 전이 금속이 담지된 촉매[A. M. Padilla, J. Corella and J. M. Toledo,Appl. Catal. B. 22(1999) 107]가 상용화되어 있다. 백금계열 촉매는 활성은 우수하나 비경제적인 반면, 크롬계열 촉매는 활성이 우수하고 경제적이나 촉매중 크롬 성분이 반응물인 염소와 반응하여 휘발성 염소화크롬 화합물이 형성되기 때문에 장시간 사용하면 촉매중 크롬 성분이 소진되는 단점을 가지고 있으므로 이들이 갖는 단점을 극복할 수 있는 촉매 설계 및 제조가 필요하다.Catalysts used to remove Cl-VOCs, supported by precious metals such as platinum [J. Corella, JM Toledo and AM Padilla, Appl. Catal. B. 27 (2000) 243], catalysts supported by transition metals such as chromium [AM Padilla, J. Corella and JM Toledo, Appl. Catal. B. 22 (1999) 107 is commercially available. Platinum-based catalysts have good activity but are uneconomical, while chromium-based catalysts have good activity and are economical. There is a need to design and manufacture a catalyst that can overcome the disadvantages they have.

이에, 본 발명자들은 촉매의 활성이 활성금속자리(active metal site)와 산성자리(acidic site), 그리고 촉매성분의 산소 흡착능 등에 의해 결정된다는 것을 기본 개념으로하여, 낮은 온도에서 Cl-VOCs을 효과적으로 산화시켜 제거하고 산화 후에 또 다른 형태의 Cl-VOCs 형성을 최대한 억제하는 새로운 촉매계를 개발하고자 노력하였다. 즉, 본 발명에서는 활성금속 및 담체로 사용되는 각 성분들의 기능을 극대화시키거나 서로간의 상승작용을 유도하고, 산화 후에 또 다른 형태의 Cl-VOCs를 형성할 가능성이 적은 강력한 산화력을 갖는 촉매를 개발한 것이다.Accordingly, the present inventors based on the basic concept that the activity of the catalyst is determined by the active metal site (acidic site), acidic site, and the oxygen adsorption capacity of the catalyst component, effectively oxidizing Cl-VOCs at low temperatures We have tried to develop a new catalyst system that can be removed by removal and maximal inhibition of formation of another form of Cl-VOCs after oxidation. That is, the present invention develops a catalyst having a strong oxidizing power that maximizes the functions of each of the components used as the active metal and the carrier or induces synergism with each other, and is unlikely to form another form of Cl-VOCs after oxidation. It is.

따라서, 본 발명은 최적의 활성금속 및 담체가 사용되어 초강산 자리가 공존하는 촉매로서 기존의 귀금속 단독 담지 촉매보다 약 65 ∼ 250 ℃ 낮은 온도에서 Cl-VOCs을 제거할 뿐만 아니라 반응 후 또 다른 형태의 Cl-VOCs의 생성을 최소화시킴으로써 환경정화 및 에너지 절약을 동시에 실현할 수 있는 복합기능성 촉매를 제공하는 것을 목적으로 한다.Therefore, the present invention is not only removes Cl-VOCs at a temperature of about 65 to 250 ° C. lower than conventional noble metals alone as a catalyst in which an optimal active metal and a carrier are used to coexist with super acidic sites, and another form after the reaction. It is an object of the present invention to provide a multifunctional catalyst that can simultaneously realize environmental purification and energy saving by minimizing the production of Cl-VOCs.

본 발명은 황산형 금속산화물(sulfated metal oxide) 담체에 활성금속으로서 백금(Pt), 팔라듐(Pd), 이리듐(Ir) 및 로듐(Rh) 중에서 선택된 귀금속이 0.5 ∼2.0 중량% 담지되어 있고, 보조활성금속으로서 전이금속이 0.0 ∼ 15.0 중량%가 담지되어 있는 휘발성 유기염소화합물(Cl-VOCs) 제거용 산화촉매를 그 특징으로 한다.In the present invention, a sulfated metal oxide carrier is supported by 0.5 to 2.0% by weight of a precious metal selected from platinum (Pt), palladium (Pd), iridium (Ir), and rhodium (Rh) as an active metal. It is characterized by an oxidation catalyst for removing volatile organochlorine compounds (Cl-VOCs) carrying 0.0 to 15.0% by weight of a transition metal as an active metal.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 황산형(sulfated) 금속산화물 담체상에 특정 활성금속을 일정 함량비로 담지시킴으로써 고 분산된 금속과 산성자리를 동시에 함유하도록하여 낮은 온도에서도 Cl-VOCs을 효율적으로 산화 제거하고, 산화과정 중에 또 다른 형태의 Cl-VOCs의 생성을 최소화하는 휘발성 유기염소화합물(Cl-VOCs) 제거용 산화촉매에 관한 것이다.The present invention is to support a specific active metal on a sulfated metal oxide carrier in a certain content ratio to simultaneously contain a highly dispersed metal and acidic sites to efficiently oxidize and remove Cl-VOCs even at low temperatures, during the oxidation process It relates to an oxidation catalyst for removing volatile organochlorine compounds (Cl-VOCs) that minimizes the production of another type of Cl-VOCs.

본 발명에서 담체로 사용하는 황산형 금속산화물은 황산기(SO4)가 0.1 ∼ 3.5 중량%, 바람직하기로는 0.3 ∼ 2.3 중량% 함유된 지르코니아(ZrO2), 티타니아(TiO2) 및 세리아(CeO2) 중에서 선택된다. 본 발명이 담체로서 황산형 금속산화물을 사용하는 것을 특징으로 하고 있는 바, 이는 단순 금속산화물이나 산성형(H)금속산화물에 비하여 산성도가 월등히 강하므로 탄화수소를 더 쉽게 파쇄(cracking)시킬 수 있기 때문이다. 이에, 금속산화물 중의 황산기 함량이 0.1 중량% 미만으로 너무 적으면 황산기의 기능을 충분히 발휘하지 못하고, 3.5 중량%를 초과하여 과다하게 함유되면 화학적으로 결합된 황산기 이외 물리적으로 결합된 황산기가 존재함으로 인하여 필요이상의 황산기가 고온에서 SOx 등의 형태로 발생, 소거되며, 이로 인하여 Cl-VOC 산화반응을 저해 한다.In the present invention, the sulfate type metal oxide used as a carrier includes zirconia (ZrO 2 ), titania (TiO 2 ) and ceria (CeO 2 ) containing 0.1 to 3.5% by weight of sulfuric acid group (SO 4 ), preferably 0.3 to 2.3% by weight. ) Is selected from. The present invention is characterized by using a sulfate type metal oxide as a carrier, because the acidity is much stronger than a simple metal oxide or acid type (H) metal oxide, so that hydrocarbons can be more easily cracked. to be. Therefore, if the amount of sulfuric acid groups in the metal oxide is less than 0.1% by weight, the function of the sulfuric acid group may not be sufficiently exhibited. If the content of the sulfuric acid group is more than 3.5% by weight, the sulfuric acid groups other than the chemically bonded sulfuric acid groups may be present. More sulfuric acid than necessary is generated and eliminated in the form of SOx at high temperature, thereby inhibiting Cl-VOC oxidation.

한편, 본 발명에서는 담체로서 상기한 황산형 금속산화물과 함께 통상의 다공성 분자체를 혼합 사용할 수도 있는 바, 이로써 황산형 금속산화물의 표면적이 작은 단점을 보완할 수 있다. 즉, 황산형 금속산화물과 다공성 분자체는 단순한 물리적 혼합이 아닌 화학적 혼합물로서 단면적이 방대한 분자체 표면에 황산형 금속산화물과 활성 금속성분이 균일하게 분산되어 있으므로 촉매의 유효한 활성성분이 우수한 활성을 갖도록 하여준다. 다공성 분자체는 황산형 금속산화물에 대하여 50 중량% 미만의 범위로 혼합 사용하도록 하며, 그 혼합 사용량이 50 중량%를 초과하여 너무 많으면 활성성분을 고분산시킬 수 있는 장점이 있으나, 독성이 강한 Cl-VOC 분위기에서 다공성 분자체가 쉽게 피독되어 오랫동안 사용하기 어려운 문제가 있다. 본 발명이 담체로서 혼합 사용할 수 있는 다공성 분자체는 양성자형 또는 암모늄형 제올라이트로서 Si/Al비가 5 ∼ 500, 바람직하기로는 10 ∼ 100 범위에 속하는 BEA, MFI, MOR 및 FAU 구조를 갖는 제올라이트 중에서 선택된다.On the other hand, in the present invention, the porous metal sieve may be mixed with the above-described sulfate type metal oxide as a carrier, thereby making up for the disadvantage that the surface area of the sulfate type metal oxide is small. That is, the sulfate type metal oxide and the porous molecular sieve are chemical mixtures, not just physical mixtures, and since the sulfate type metal oxide and the active metal components are uniformly dispersed on the surface of the molecular sieve with a large cross-sectional area, the active active ingredient of the catalyst has excellent activity. Do it. The porous molecular sieve should be mixed and used in a range of less than 50% by weight with respect to the sulfate type metal oxide. If the amount of the mixture is more than 50% by weight, the active ingredient may be highly dispersed, but Cl is highly toxic. In the VOC atmosphere, porous molecular sieves are easily poisoned and have a problem of being difficult to use for a long time. The porous molecular sieve which can be mixed and used as a carrier according to the present invention is selected from zeolites having BEA, MFI, MOR and FAU structures in the range of 5 to 500, preferably 10 to 100, as proton- or ammonium-type zeolites. do.

또한, 본 발명에서는 활성금속으로서 백금, 팔라듐, 이리듐 및 로듐 중에서 선택된 귀금속을 담지시키며, 필요에 따라 보조활성금속으로서 전이금속을 일정 함량범위로 함께 담지시킬 수도 있다. 활성금속으로서 귀금속을 단독으로 함유시켜도 충분한 촉매활성을 얻을 수 있으나, 전이금속을 함께 담지시키면 활성금속의 기능을 극대화시키거나 서로간의 상승작용을 유도함으로써 더욱 우수한 촉매활성을 얻을 수 있다. 실제로 본 발명자들의 실험 결과에 따르면, 동일 조성의 담체상에 귀금속 또는 전이금속을 각각 담지시킨 산화촉매에 비교하여 이들을 일정 함량비로 혼합 사용한 산화촉매가 월등히 우수한 촉매활성을 가짐을 확인할 수 있었다.본 발명의 산화촉매에 함유되는 활성금속은 담체에 대하여 귀금속 0.5 ∼ 2.0 중량%와 전이금속 2.0 ∼ 15.0 중량% 함유되었을 때 촉매활성은 극대화한다. 상기 전이금속으로서는 니켈 또는 구리를 선택 사용하는 것이 바람직하고, 특히 활성금속으로서 담체에 대하여 귀금속 0.5 ∼ 2.0 중량%, 구리 2.0 ∼ 10.0 중량%, 니켈 0.1 ∼ 1.0 중량%가 동시에 함유될 경우 촉매 활성이 향상된 결과를 나타낸다.In addition, the present invention supports a precious metal selected from platinum, palladium, iridium and rhodium as the active metal, and may optionally support the transition metal as a secondary active metal in a predetermined content range. Even if a noble metal is contained alone as an active metal, sufficient catalytic activity can be obtained. However, when supporting the transition metal together, the catalytic activity can be obtained by maximizing the function of the active metal or inducing synergy with each other. In fact, according to the experimental results of the present inventors, it was confirmed that the oxidation catalysts mixed with these in a certain content ratio had superior catalytic activity compared to the oxidation catalysts each supporting a precious metal or transition metal on a carrier having the same composition. The catalytic activity is maximized when the active metal contained in the oxidation catalyst is contained 0.5 to 2.0% by weight of the noble metal and 2.0 to 15.0% by weight of the transition metal with respect to the carrier. It is preferable to use nickel or copper as the transition metal, and especially when 0.5 to 2.0% by weight of precious metal, 2.0 to 10.0% by weight of copper and 0.1 to 1.0% by weight of nickel are simultaneously contained as an active metal with respect to the carrier. Improved results.

상기와 같은 성분으로 구성된 본 발명의 산화촉매는 활성도를 평가하기 전 산소분위기, 500 ∼ 600 ℃에서 5 ∼ 15 시간 동안 소성시킴으로써 전처리 하였다.The oxidation catalyst of the present invention composed of the above components was pretreated by firing in an oxygen atmosphere, 500-600 ° C. for 5-15 hours before assessing the activity.

이상에서 설명한 바와 같은 본 발명은 다음의 실시예 및 실험예에 의거하여 더욱 상세히 설명하겠는 바, 본 발명이 이에 한정되는 것은 아니다.The present invention as described above will be described in more detail based on the following Examples and Experimental Examples, but the present invention is not limited thereto.

실시예 1 : Pd/SOExample 1 Pd / SO 44 -ZrO-ZrO 22 촉매의 제조Preparation of the catalyst

1.51 g (NH4)2SO4를 1 M의 황산용액에 포화될 때까지 녹인 후, 건조된 12.6 g Zr(OH)4를 110℃에서 4 시간 동안 투입하고 밤새도록 교반하였다. 그리고 80℃에서 교반하면서 건조시키고 550℃에서 4 시간 동안 공기 분위기에서 소성하여 SO4-ZrO2를 제조하였다. 16% 암모니아수 500 ㎖에 0.0877 g PdCl2를 넣어 잘 녹인 다음 5 g SO4-ZrO2를 넣은 후 80℃에서 8 시간 유지한 뒤, 교반하면서 증발시켰다. 제조한 촉매는 110℃에서 2 시간 건조한 후 500℃에서 6 시간 소성하였다.1.51 g (NH 4 ) 2 SO 4 was dissolved in 1 M sulfuric acid solution until it was saturated, and then dried 12.6 g Zr (OH) 4 was charged at 110 ° C. for 4 hours and stirred overnight. Then, the mixture was dried with stirring at 80 ° C. and calcined at 550 ° C. for 4 hours to prepare SO 4 -ZrO 2 . After dissolving 0.0877 g PdCl 2 in 500 ml of 16% ammonia water, 5 g SO 4 -ZrO 2 was added thereto, and the mixture was maintained at 80 ° C. for 8 hours, and then evaporated while stirring. The prepared catalyst was dried at 110 ° C. for 2 hours and then calcined at 500 ° C. for 6 hours.

실시예 2 : Pd, Cu/SOExample 2 Pd, Cu / SO 44 -ZrO-ZrO 22 촉매의 제조Preparation of the catalyst

1.5g (NH4)2SO4를 1M의 황산용액에 포화 될 때 까지 녹인 후 110 ℃에서 4 시간동안 건조된 12.6g Zr(OH)4를 상기 용액에 넣어 밤새 교반하였다. 그 후 80 ℃에서 교반하면서 건조시키고 550 ℃에서 4 시간 동안 공기 분위기에서 소성하여 SO4-ZrO2를 제조하였다. PdCl2, CuCl2, Cu(NO3)2·H2O 등의 각 수용액을 사용하여 일정비율의 혼합용액을 만든 후, 담체 SO4-ZrO2이 간신히 젖을 때 까지 특정비율의 혼합용액을 혼합하였다. 이때 담체에 담지되는 Pd과 Cu는 각각 1 중량%, 6.58 중량%이고, 담체는 0.1N HCl용액으로 2 ∼ 3회 세척, 증류수로 여과한 후 300 ℃에서 3 시간 소성된 것을 사용하였다. 그 후 상온에서 8 시간 건조한 후 500 ℃에서 6 시간 소성하였다.1.5 g (NH 4 ) 2 SO 4 was dissolved in 1 M sulfuric acid solution until it was saturated, and then 12.6 g Zr (OH) 4 dried at 110 ° C. for 4 hours was added to the solution and stirred overnight. Thereafter, the mixture was dried with stirring at 80 ° C. and calcined at 550 ° C. for 4 hours to prepare SO 4 -ZrO 2 . Using a solution of PdCl 2 , CuCl 2 , Cu (NO 3 ) 2 H 2 O, etc., make a fixed ratio of the mixed solution, and then mix a specific ratio of the mixed solution until the carrier SO 4 -ZrO 2 is barely wetted. It was. At this time, Pd and Cu supported on the carrier were 1% by weight and 6.58% by weight, respectively, and the carrier was washed 2-3 times with 0.1 N HCl solution, filtered with distilled water, and then calcined at 300 ° C. for 3 hours. Thereafter, the mixture was dried at room temperature for 8 hours and calcined at 500 ° C. for 6 hours.

실시예 3 : Pd,Cu,Ni/SOExample 3 Pd, Cu, Ni / SO 44 -ZrO-ZrO 22 촉매의 제조Preparation of the catalyst

PdCl2, CuCl2, CuSO4·H2O, NiCl2·H2O 등의 각 수용액을 사용하여 일정비율의 혼합용액을 만든 후, 실시예 1에서 같이 제조된 담체 SO4-ZrO2이 간신히 젖을 때까지 특정비율의 혼합용액을 혼합하였다. 이때 담체에 담지되는 Pd, Cu, Ni는 각각 1 중량%, 6.58 중량%, 0.12 중량%이고, 담체는 0.1 N HCl용액으로 2 ∼ 3회 세척, 증류수로 여과한 후 300 ℃에서 3 시간 소성 된 것을 사용하였다. 그 후상온에서 8 시간 건조한 후 500 ℃에서 6 시간 소성하였다.After a certain ratio of the mixed solution was prepared using each aqueous solution such as PdCl 2 , CuCl 2 , CuSO 4 · H 2 O, NiCl 2 · H 2 O, and the carrier SO 4 -ZrO 2 prepared in Example 1 was barely A specific ratio of the mixed solution was mixed until wet. At this time, Pd, Cu, Ni supported on the carrier were 1% by weight, 6.58% by weight, 0.12% by weight, respectively, and the carrier was washed 2-3 times with 0.1 N HCl solution, filtered with distilled water, and then calcined at 300 ° C. for 3 hours. Was used. After drying at room temperature for 8 hours, it was calcined at 500 ° C. for 6 hours.

실시예 4 : Pd,Cu,Ni/SOExample 4 Pd, Cu, Ni / SO 44 -ZrO-ZrO 22 ,USY-제올라이트 촉매의 제조, USY-zeolite catalyst

1.51g (NH4)2SO4를 1M의 황산용액에 포화 될 때 까지 녹인 후, 110 ℃에서 4시간 동안 건조된 Zr(OH)4와 USY-제올라이트를 중량비 1:1인 혼합물을 상기용액에 혼합하고 80 ℃에서 교반하면서 건조시키고 550 ℃에서 4 시간 동안 공기 분위기에서 소성하여 혼합/산성형 담체를 준비하였다. PdCl2, CuCl2, Cu(NO3)2·H2O, NiCl2·H2O 와 H2O를 사용하여 일정비율의 혼합용액을 만든 후 준비된 혼합/산성형 담체에 간신히 젖을때까지 특정비율의 혼합용액을 혼합하였다. 이때 담체에 담지되는 Pd, Cu, Ni는 각각 1 중량%, 6.58 중량%, 0.12 중량%이고, 담체는 0.1 N HCl용액으로 2 ∼ 3회 세척, 증류수로 여과한 후 300 ℃에서 3 시간 소성된 것을 사용하였다. 그 후 상온에서 8 시간 건조한 후 500 ℃에서 6 시간 소성하였다.1.51g (NH4)2SO4Dissolved in 1M sulfuric acid solution until saturated, and then Zr (OH) dried at 4 ° C.4And USY-zeolite were mixed in a weight ratio of 1: 1 to the solution and 80 Dried under stirring at 550C and 550 The mixed / acid-forming carrier was prepared by baking in an air atmosphere at 4 ° C. for 4 hours. PdCl2, CuCl2, Cu (NO3)2H2O, NiCl2H2O and H2After using O to make a mixed solution of a certain ratio, the mixed solution of a specific ratio was mixed until the barely wet with the prepared mixed / acid-forming carrier. At this time, Pd, Cu, Ni supported on the carrier were 1% by weight, 6.58% by weight, 0.12% by weight, respectively, and the carrier was washed 2-3 times with 0.1 N HCl solution, filtered with distilled water, and then calcined at 300 ° C. for 3 hours. Was used. Thereafter, the mixture was dried at room temperature for 8 hours and calcined at 500 ° C. for 6 hours.

실시예 5 : Pt/SOExample 5 Pt / SO 44 -ZrO-ZrO 22 ,USY-제올라이트 촉매의 제조, USY-zeolite catalyst

1.51 g (NH4)2SO4를 1 M의 황산용액에 포화될 때까지 녹인 후, 110 ℃에서 4 시간 동안 건조된 Zr(OH)4와 USY(제올라이트)를 중량비 1:1인 혼합물을 혼합하고 80 ℃에서 교반하면서 건조시키고 550 ℃에서 4 시간 동안 공기 분위기에서 소성하여혼합/산성형 담체를 준비하였다.Dissolve 1.51 g (NH 4 ) 2 SO 4 in 1 M sulfuric acid until saturated, and then mix Zr (OH) 4 and USY (zeolite) in a weight ratio of 1: 1, which was dried at 110 ° C. for 4 hours. Then, the mixture was dried with stirring at 80 ° C. and calcined at 550 ° C. for 4 hours in an air atmosphere to prepare a mixed / acidic carrier.

PtCl20.0688 g이 완전히 녹을 때 까지 16% 암모니아 수 500 ㎖를 가하고 상기 혼합/산성형 담체 5 g을 균일하게 혼합시키고 80 ℃에서 15 시간 동안 교반하면서 유지한 후, 증발시켜 Pt이 담지된 촉매를 제조하였다. 이때 혼합용액과 담체와의 비는 100 ㎖ 혼합용액당 1 g 담체로 하며, 최종 Pt이 담체에 담지되는 비율은 1 중량% 이었다. 증발시킨 후 110 ℃에서 2 시간 건조한 후 500 ℃에서 6 시간 소성하였다.500 ml of 16% ammonia was added until 0.0688 g of PtCl 2 was completely dissolved, and 5 g of the mixed / acid-forming carrier were uniformly mixed and maintained at 80 ° C. for 15 hours with stirring, followed by evaporation to carry out the Pt-supported catalyst. Prepared. At this time, the ratio of the mixed solution and the carrier was 1 g carrier per 100 ml mixed solution, and the ratio of the final Pt supported on the carrier was 1% by weight. After evaporation, the resultant was dried at 110 ° C. for 2 hours and calcined at 500 ° C. for 6 hours.

실시예 6: Pd, Ni/SOExample 6: Pd, Ni / SO 44 -ZrO-ZrO 22 촉매의 제조Preparation of the catalyst

PdCl2, NiCl2·H2O 등의 각 수용액을 사용하여 일정비율의 혼합용액을 만든 후, 실시예 1에서 같이 제조된 담체 SO4-ZrO2을 간신히 젖을 때 까지 특정비율의 혼합용액을 혼합하였다. 이때 담체에 담지되는 Pd과 Ni는 각각 1 중량%, 0.12 중량%이고, 담체는 0.1 N HCl용액으로 2 ∼ 3회 세척, 증류수로 여과한 후 300 ℃에서 3 시간 소성된 것을 사용하였다. 그 후 상온에서 8 시간 건조한 후 500 ℃에서 6 시간 소성하였다.After a certain ratio of the mixed solution was prepared using each aqueous solution such as PdCl 2 , NiCl 2 · H 2 O, and the like, the mixed solution of a specific ratio was mixed until the carrier SO 4 -ZrO 2 prepared in Example 1 was barely wetted. It was. Pd and Ni supported on the carrier were 1% by weight and 0.12% by weight, respectively, and the carrier was washed 2-3 times with 0.1 N HCl solution, filtered with distilled water, and then calcined at 300 ° C. for 3 hours. Thereafter, the mixture was dried at room temperature for 8 hours and calcined at 500 ° C. for 6 hours.

비교예 1 : Pd/ZrOComparative Example 1: Pd / ZrO 22 촉매의 제조Preparation of the catalyst

16% 암모니아수 500 ㎖에 0.0877 g PdCl2를 넣어 잘 녹인 다음 5 g SO4-ZrO2를 넣은 후 80 ℃에서 8 시간 유지한 뒤, 교반하면서 증발시켰다. 제조한 촉매는 110 ℃에서 2 시간 건조한 후 500 ℃에서 6 시간 소성하였다.After dissolving 0.0877 g PdCl 2 in 500 ml of 16% ammonia water, 5 g SO 4 -ZrO 2 was added thereto, and the mixture was maintained at 80 ° C. for 8 hours, and then evaporated while stirring. The prepared catalyst was dried at 110 ° C. for 2 hours and then calcined at 500 ° C. for 6 hours.

비교예 2 : SOComparative Example 2: SO 44 -ZrO-ZrO 22 촉매의 제조Preparation of the catalyst

1.51 g (NH4)2SO4를 1 M의 황산용액에 포화될 때까지 녹인 후, 건조된 12.6 g Zr(OH)4를 110 ℃에서 4 시간 동안 투입하고 밤새도록 교반하였다. 그리고나서, 80 ℃에서 교반하면서 건조시키고 550 ℃에서 4 시간 동안 공기 분위기에서 소성하여 SO4-ZrO2를 제조하였다.1.51 g (NH 4 ) 2 SO 4 was dissolved in 1 M sulfuric acid solution until it was saturated, and then dried 12.6 g Zr (OH) 4 was charged at 110 ° C. for 4 hours and stirred overnight. Then, the mixture was dried with stirring at 80 ° C. and calcined at 550 ° C. for 4 hours in an air atmosphere to prepare SO 4 -ZrO 2 .

비교예 3 : SOComparative Example 3: SO 44 /TiO/ TiO 22 촉매의 제조Preparation of the catalyst

1.5 g의 (NH4)2SO4를 일정량의 수용액에포화될 때 까지 녹인 후 35.6 g의 티타늄(IV) 포로폭사이드를상기 용액에 넣고 10 시간 동안 교반하였다. 그 후 80 ℃에서 교반하면서 건조시키고 550 ℃에서 4 시간 동안 공기 분위기에서 소성하여 SO4/TiO2를 제조하였다.After dissolving 1.5 g of (NH 4 ) 2 SO 4 in a certain amount of aqueous solution until it was saturated, 35.6 g of titanium (IV) poroxide was added to the solution and stirred for 10 hours. Thereafter, the mixture was dried with stirring at 80 ° C. and calcined at 550 ° C. for 4 hours in an air atmosphere to prepare SO 4 / TiO 2 .

비교예 4 : Pd/AlComparative Example 4: Pd / Al 22 OO 33 촉매의 제조Preparation of the catalyst

16% 암모니아수 500 ㎖ 용액에 0.0877 g PdCl2를 넣어 잘 녹인 다음 5g Al2O3를 넣은 후 80 ℃로 8 시간 동안 유지한 뒤 교반하면서 증발시켰다. 150 ℃에서 1 시간 동안 건조하고 550 ℃에서 4 시간 소성하였다.0.0877 g PdCl in 500 ml solution of 16% aqueous ammonia2Put it in and melt it well 5g Al2O380 after inserting It was kept for 8 hours at ℃ and then evaporated while stirring. 150 Dry for 1 hour at ℃ 550 It baked at 4 degreeC for 4 hours.

비교예 5 : Pt/AlComparative Example 5: Pt / Al 22 OO 33 촉매의 제조Preparation of the catalyst

16% 암모니아수 500 ㎖ 용액에 0.0688 g PtCl2를 넣어 녹인 다음 5 g Al2O3를 넣은 후 80 ℃로 8 시간 동안 유지한 뒤 교반하면서 증발시켰다. 150 ℃에서 1 시간 동안 건조하고 550 ℃에서 4 시간 소성하였다.0.0688 g PtCl 2 was dissolved in 500 ml of 16% aqueous ammonia solution, and 5 g Al 2 O 3 was added thereto. The mixture was maintained at 80 ° C. for 8 hours, and evaporated while stirring. It dried at 150 degreeC for 1 hour, and baked at 550 degreeC for 4 hours.

비교예 6 : Pd/USY-제올라이트 촉매의 제조Comparative Example 6: Preparation of Pd / USY-zeolite Catalyst

16% 암모니아수 500 ㎖ 용액에 0.0877 g PdCl2를 넣어 잘 녹인 다음 5 g USY 제올라이트를 넣은 후 80 ℃로 8 시간 동안 교반하였다. 그 후 상온으로 서서히 냉각하여 여과한 뒤 과량의 70 ℃ 물로 씻어 주었다. 상온에서 건조시킨 후 500 ℃에서 4 시간 소성하였다.0.0877 g PdCl 2 was dissolved in a 500 ml solution of 16% ammonia water, and 5 g USY zeolite was added thereto, followed by stirring at 80 ° C. for 8 hours. Thereafter, the mixture was slowly cooled to room temperature, filtered, and washed with excess 70 ° C water. After drying at room temperature it was calcined at 500 ℃ for 4 hours.

비교예 7 : Co/Y-제올라이트 촉매의 제조Comparative Example 7: Preparation of Co / Y-zeolite Catalyst

100 ㎖ 0.1 M의 Co(CH3COO)2수용액에 1 g의 Y-제올라이트를 넣어 상온에서 10 시간동안 교반하였다. 교반된 용액을 여과하고 40 ℃의 H2O로 씻어주었다. 상온에서 건조시켜 공기분위기에서 500 ℃에서 2 시간 동안 소성하였다.1 g of Y-zeolite was added to 100 ml of 0.1 M Co (CH 3 COO) 2 aqueous solution and stirred at room temperature for 10 hours. The stirred solution was filtered and washed with 40 ° C H 2 O. It was dried at room temperature and calcined at 500 ° C. for 2 hours in an air atmosphere.

비교예 8 : Cr/ZSM-5Comparative Example 8: Cr / ZSM-5 제올라이트 촉매의 제조Preparation of Zeolite Catalyst

12 ㎖ 물에 0.777 g의 Cr(NO3)3·9H2O을 녹인 수용액을 10 g의 ZSM-5에 방울방울 떨구어 균일하게 적신 후 잘 섞어 상온에서 건조하였다. 110 ℃에서 2 시간 건조한 뒤 500 ℃에서 4 시간 소성하였다.An aqueous solution of 0.777 g of Cr (NO 3 ) 3 .9H 2 O was dissolved in 12 ml of water, and 10 g of ZSM-5 was dropped and uniformly wetted, and then mixed well and dried at room temperature. After drying for 2 hours at 110 ℃ and calcined at 500 ℃ 4 hours.

비교예 9 : Ni/NiAlComparative Example 9: Ni / NiAl 22 OO 44 촉매의 제조Preparation of the catalyst

NiAl2O4는 다음과 같은 방법으로 제조하였다. Ni(NO3)2·6H2O, Al(NO3)3·9H2O 수용액을 사용하여 Ni과 Al의 몰비를 1:2로 만든 혼합용액을 0.6 M NH4OH를 사용하여 pH가 4에서 8이 될 때까지 서서히 혼합시키고 8 시간 교반하였다. 침전물을 여과, 증류수로 씻어준 다음 100 ℃에서 8 시간 건조한 후 700 ℃에서 5 시간 동안 소성하였다. 준비된 10 g NiAl2O4에 10.45 g의 NiAl2O4·6H2O 수용액을 사용하여 침윤시키고 350 ℃에서 30 분간 소성시킴으로써 Ni/NiAl2O4를 제조하였다.NiAl 2 O 4 was prepared by the following method. Ni (NO 3 ) 2 · 6H 2 O, Al (NO 3 ) 3 · 9H 2 O Aqueous solution in which the molar ratio of Ni and Al is 1: 2 using an aqueous solution is 0.6 M NH 4 OH using a pH of 4 The mixture was slowly mixed until it reached 8 and stirred for 8 hours. The precipitate was filtered, washed with distilled water, dried at 100 ° C. for 8 hours and calcined at 700 ° C. for 5 hours. Ni / NiAl 2 O 4 was prepared by infiltrating the prepared 10 g NiAl 2 O 4 with 10.45 g of an aqueous NiAl 2 O 4 .6H 2 O solution and calcining at 350 ° C. for 30 minutes.

비교예 10 : NiMnOComparative Example 10 NiMnO 33 촉매의 제조Preparation of the catalyst

2.91 g의 Ni(NO3)2·H2O, 2.56 g의 Mn(NO3)2·H2O, 200 ㎖ 물을 사용하여 0.5M 혼합 수용액을 만든 후, 100 ㎖의 H2O에 8.41 g의 NaHCO3을 넣어 만든 1 M의 NaHCO3수용액을 혼합 수용액에 서서히 떨구어 공침하였다. 공침 된 혼합 수용액을 여과하여 물로 씻어준 후 60 ℃에서 건조하고 400 ℃에서 5 시간 동안 소성하였다.A 0.5M mixed aqueous solution was prepared using 2.91 g Ni (NO 3 ) 2 H 2 O, 2.56 g Mn (NO 3 ) 2 H 2 O, 200 mL water, and then 8.41 in 100 mL H 2 O. A 1 M aqueous NaHCO 3 solution prepared by adding g of NaHCO 3 was gradually dropped into the mixed aqueous solution to coprecipitate. The coprecipitated mixed aqueous solution was filtered, washed with water, dried at 60 ° C., and calcined at 400 ° C. for 5 hours.

비교예 11 : NaComparative Example 11: Na 33 FeFe 0.50.5 ZrZr 1.51.5 (PO(PO 44 )) 33 촉매의 제조Preparation of the catalyst

물 100 ㎖에 8.5 g의 NaNO3, 13.5 g의 Fe(NO3)·9H2O, 8.5 g의 ZrO(NO3)2·2H2O, 23 g의 NH4H2PO4를 사용하여 각각의 수용액을 만들었다. 이때 NaNO3, Fe(NO3)3·9H2O, ZrO(NO3)2·2H2O, NH4H2PO4각각의 수용액 당 시료의 몰비는 1.5/0.5/1.5/3로 하였다. 그 후 각각의 수용액을 교반되어지는 NH4H2PO4수용액에 NaNO3, Fe(NO3)3·9H2O, ZrO(NO3)2·2H2O 수용액을 차례로 천천히 떨구어 공침하였다. 공침된 혼합 수용액을 60 ℃에서 3 시간동안 가열하여 겔 상태로 만든 후, 110 ℃에서 건조 겔이 될 때까지 가열하였다. 그 후 750 ℃에서 1 시간 동안 소성하였다.To 100 ml of water, 8.5 g NaNO 3 , 13.5 g Fe (NO 3 ) .9H 2 O, 8.5 g ZrO (NO 3 ) 2 .2H 2 O, 23 g NH 4 H 2 PO 4 , respectively An aqueous solution of was made. At this time, the molar ratio of the samples per aqueous solution of NaNO 3 , Fe (NO 3 ) 3 .9H 2 O, ZrO (NO 3 ) 2 .2H 2 O, and NH 4 H 2 PO 4 was set to 1.5 / 0.5 / 1.5 / 3. Thereafter, each aqueous solution was slowly precipitated by dropping NaNO 3 , Fe (NO 3 ) 3 · 9H 2 O, and ZrO (NO 3 ) 2 · 2H 2 O aqueous solution in order to the stirred NH 4 H 2 PO 4 aqueous solution. The co-precipitated mixed aqueous solution was heated at 60 ° C. for 3 hours to gel, and then heated at 110 ° C. until it became a dry gel. It was then calcined at 750 ° C. for 1 hour.

비교예 12 : Pd,Cu/ZrOComparative Example 12: Pd, Cu / ZrO 22 촉매의 제조Preparation of the catalyst

PdCl2, CuCl2, Cu(NO3)2·H2O 등의 각 수용액을 사용하여 일정비율의 혼합용액을 만든 후 담체 ZrO2이 간신히 젖을 때 까지 특정비율의 혼합용액을 혼합하였다. 이때 담체에 담지되는 Pd 과 Cu는 각각 1 중량%, 6.58 중량%이고, 담체는 0.1N HCl용액으로 2 ∼ 3회 세척, 증류수로 여과한 후 300 ℃에서 3 시간 소성된 것을 사용하였다. 그 후 상온에서 8 시간 건조한 후 500 ℃에서 6 시간 소성하였다.Each solution of PdCl 2 , CuCl 2 , Cu (NO 3 ) 2 H 2 O, etc. was used to form a constant ratio of the mixed solution, and the mixed solution of the specific ratio was mixed until the carrier ZrO 2 became barely wet. At this time, Pd and Cu supported on the carrier were 1% by weight and 6.58% by weight, respectively, and the carrier was washed 2-3 times with 0.1 N HCl solution, filtered with distilled water, and then calcined at 300 ° C. for 3 hours. Thereafter, the mixture was dried at room temperature for 8 hours and calcined at 500 ° C. for 6 hours.

비교예 13 : Pd,Cu,Ni/ZrOComparative Example 13: Pd, Cu, Ni / ZrO 22 촉매의 제조Preparation of the catalyst

PdCl2, CuCl2, CuSO4·H2O, NiCl2·H2O 등의 각 수용액을 사용하여 일정비율의 혼합용액을 만든 후 담체 ZrO2이 간신히 젖을 때까지 특정비율의 혼합용액을 혼합하였다. 이때 담체에 담지되는 Pd, Cu, Ni는 각각 1 중량%, 6.58 중량%, 0.12 중량%이고, 담체는 0.1N HCl용액으로 2 ∼ 3회 세척, 증류수로 여과한 후 300 ℃ 에서 3 시간 소성된 것을 사용하였다. 그 후 상온에서 8 시간 건조한 후 500 ℃ 에서 6 시간 소성하였다.A certain ratio of mixed solution was prepared using each aqueous solution such as PdCl 2 , CuCl 2 , CuSO 4 · H 2 O, and NiCl 2 · H 2 O, and then the mixed solution of a specific ratio was mixed until the carrier ZrO 2 became barely wet. . At this time, Pd, Cu, Ni supported on the carrier were 1% by weight, 6.58% by weight, 0.12% by weight, respectively, and the carrier was washed 2-3 times with 0.1N HCl solution, filtered with distilled water, and then calcined at 300 ° C for 3 hours. Was used. Then, it dried at room temperature for 8 hours, and baked at 500 degreeC for 6 hours.

비교예 14 : Pd,Cu/USY 촉매의 제조Comparative Example 14 Preparation of Pd, Cu / USY Catalyst

PdCl2, CuCl2·H2O, Cu(NO3)2·H2O와 H2O를 사용하여 일정비율의 혼합용액을 만든 후 500 ℃에서 소성된 USY 제올라이트에 특정비율의 혼합용액을 입혔다. 이때 담지시킨 Pd, Cu의 양은 각각 1 중량%, 10 중량% 이었다. 그 후 상온에서 건조시켜 500 ℃에서 5 시간 소성하였다.After mixing PdCl 2 , CuCl 2 · H 2 O, Cu (NO 3 ) 2 · H 2 O and H 2 O to produce a certain ratio of mixed solution, USY zeolite fired at 500 ℃ was coated with a specific ratio of mixed solution. . At this time, the amounts of Pd and Cu supported were 1% by weight and 10% by weight, respectively. Thereafter, the mixture was dried at room temperature and calcined at 500 ° C. for 5 hours.

실험예 : 촉매활성도 평가Experimental Example: Evaluation of Catalytic Activity

상기 실시예 및 비교예에서 제조한 촉매를 온도 조절기가 부착된 고정층 반응기에 넣어 대기압 하에서 기상반응을 수행하였다. 대부분의 Cl-VOCs는 증기압이 높기 때문에 원하는 농도의 Cl-VOCs를 반응기에 공급하기 위하여, Cl-VOC가 온도 조절이 가능한 냉각기를 통과되도록 하고 반응물에 공기를 혼합시켜 일정 온도에서 Cl-VOCs 1000 ppm의 초기 농도를 조절 유지하였다. 반응전 후의 Cl-VOCs 농도는 BP-624 칼럼과 HID(Helium Ionization Detector)가 장착된 GC로 정량 분석하였다. 촉매의 활성도 평가는 100 ∼ 550 ℃ 범위에서 50 ℃ 간격으로 수행하였다. Cl-VOCs의 전환율은 아래 수학식 1에 의해 계산하였다.The catalysts prepared in Examples and Comparative Examples were placed in a fixed bed reactor equipped with a temperature controller to perform a gas phase reaction under atmospheric pressure. Since most of Cl-VOCs have high vapor pressure, in order to supply Cl-VOCs of the desired concentration to the reactor, Cl-VOC is passed through a temperature-controlled chiller and air is mixed with the reactants to make 1000 ppm Cl-VOCs at a certain temperature. The initial concentration of was kept controlled. Cl-VOCs concentrations before and after the reaction were quantitatively analyzed by GC equipped with BP-624 column and Helium Ionization Detector (HID). The activity evaluation of the catalyst was performed at 50 ° C. intervals in the range of 100-550 ° C. The conversion rate of Cl-VOCs was calculated by Equation 1 below.

촉매에 의한 1,1,1-트리클로로에탄(TCA) 산화/제거 활성도1,1,1-trichloroethane (TCA) oxidation / removal activity by catalyst 구 분division 촉 매catalyst 초기 TCA 농도, ppmInitial TCA Concentration, ppm GHSV, h-1 GHSV, h -1 T(50), ℃T (50), ℃ T(90), ℃T (90), ℃ 실시예 1Example 1 Pd/SO4-ZrO2 Pd / SO 4 -ZrO 2 1,0001,000 14,00014,000 5555 9090 실시예 2Example 2 Pd,Cu/SO4-ZrO2 Pd, Cu / SO 4 -ZrO 2 1,0001,000 14,00014,000 6060 9090 실시예 3Example 3 Pd,Cu,Ni/SO4-ZrO2 Pd, Cu, Ni / SO 4 -ZrO 2 1,0001,000 14,00014,000 6565 125125 실시예 6Example 6 Pd,Ni/SO4-ZrO2 Pd, Ni / SO 4 -ZrO 2 1,0001,000 14,00014,000 7070 120120 비교예 1Comparative Example 1 Pd/ZrO2 Pd / ZrO 2 1,0001,000 6,6006,600 120120 150150 비교예 2Comparative Example 2 SO4-ZrO2 SO 4 -ZrO 2 1,0001,000 14,00014,000 110110 140140 비교예 9Comparative Example 9 Ni/NiAl2O4 Ni / NiAl 2 O 4 1,0001,000 6,6006,600 175175 225225 비교예 10Comparative Example 10 NiMnO3 NiMnO 3 1,0001,000 8,3608,360 210210 240240 비교예 11Comparative Example 11 Na3Fe0.5Zr1.5(PO4)3 Na 3 Fe 0.5 Zr 1.5 (PO 4 ) 3 1,0001,000 6,6006,600 270270 300300 비교예 12Comparative Example 12 Pd,Cu/ZrO2 Pd, Cu / ZrO 2 1,0001,000 6,6006,600 7575 135135 비교예 13Comparative Example 13 Pd,Cu,Ni/ZrO2 Pd, Cu, Ni / ZrO 2 1,0001,000 6,6006,600 8585 140140 T(50) : 초기 TCA농도의 50% 제거온도T(90) : 초기 TCA농도의 90% 제거온도GHSV : Gas Hourly Space VelocityT (50): 50% removal temperature of initial TCA concentration T (90): 90% removal temperature of initial TCA concentration GHSV: Gas Hourly Space Velocity

상기 표 1에는 여러 다른 종류의 촉매에서 상대적인 1,1,1-트리클로로에탄(TCA) 산화 및 제거 활성도를 비교하여 나타낸 것이다. 황산기(sulfated) 등과 같은 초 강산기를 함유한 담체상에 Pd 등과 같은 귀금속이 단독으로 함유된 촉매(실시예 1), 또는 귀금속과 함께 구리, 니켈 등과 같은 전이금속이 동시에 함유된 촉매(실시예 2, 3, 6)는 유사한 반응 조건하에서 귀금속이나 황산기를 각각 별도로 포함시킨 촉매(비교예 1, 2) 또는 황산기를 함유하지 않은 담체상에 귀금속 및 전이금속을 담지하여 제조한 촉매(비교예 12, 13) 또는 여타 다른 촉매(비교예 9, 10, 11)에 비하여 20 ∼ 175 ℃ 정도 낮은 온도에서 동일한 활성도를 보여준다.Table 1 shows a comparison of the relative 1,1,1-trichloroethane (TCA) oxidation and removal activity in several different types of catalysts. A catalyst containing only a noble metal such as Pd or the like on a carrier containing a strong acid group such as a sulfate group (Example 1), or a catalyst simultaneously containing a transition metal such as copper and nickel together with the precious metal (Example 2) , 3, and 6) are catalysts prepared by separately supporting noble metals and sulfuric acid groups under similar reaction conditions (Comparative Examples 1 and 2) or supporting precious metals and transition metals on carriers containing no sulfate groups (Comparative Example 12, 13) or the same activity at temperatures as low as 20 ~ 175 ℃ compared to other catalysts (Comparative Examples 9, 10, 11).

촉매에 의한 사염화탄소의 산화/제거 활성도Oxidation / Removal Activity of Carbon Tetrachloride by Catalyst 구 분division 촉 매catalyst 초기 CCl4농도, ppmInitial CCl 4 Concentration, ppm GHSV, h-1 GHSV, h -1 T(50), ℃T (50), ℃ T(90), ℃T (90), ℃ 실시예 1Example 1 Pd/SO4-ZrO2 Pd / SO 4 -ZrO 2 1,0001,000 20,00020,000 140140 230230 실시예 2Example 2 Pd,Cu/SO4-ZrO2 Pd, Cu / SO 4 -ZrO 2 1,0001,000 20,00020,000 140140 230230 실시예 3Example 3 Pd,Cu,Ni/SO4-ZrO2 Pd, Cu, Ni / SO 4 -ZrO 2 1,0001,000 20,00020,000 145145 235235 비교예 3Comparative Example 3 SO4/TiO2 SO 4 / TiO 2 1,0001,000 20,00020,000 220220 265265 비교예 6Comparative Example 6 Pd/USYPd / USY 1,0001,000 20,00020,000 330330 400400 비교예 7Comparative Example 7 Co/YCo / Y 1,0001,000 20,00020,000 350350 420420 비교예 14Comparative Example 14 Pd,Cu/USYPd, Cu / USY 1,0001,000 20,00020,000 175175 290290 T(50) : 초기 사염화탄소 농도의 50% 제거온도T(90) : 초기 사염화탄소 농도의 90% 제거온도GHSV : Gas Hourly Space VelocityT (50): 50% removal temperature of initial carbon tetrachloride concentration T (90): 90% removal temperature of initial carbon tetrachloride concentrationGHSV: Gas Hourly Space Velocity

상기 표 2에는 여러 다른 종류의 촉매에서 상대적인 사염화탄소의 산화/제거 활성도를 비교하여 나타낸 것이다. 황산기(sulfated) 등과 같은 초강산기를 함유한 담체상에 Pd 등과 같은 귀금속이 단독으로 함유된 촉매(실시예 1) 또는 귀금속과 함께 구리, 니켈 등과 같은 전이금속이 동시에 함유된 촉매(실시예 2, 3)는 동일한 반응 조건하에서 귀금속이나 전이금속이 각각 단독으로 포함시켰거나 황산기를 함유하지 않은 담체상에 귀금속 및 전이금속을 담지하여 제조한 촉매(비교예 3, 6, 7, 14)에 비하여 30 ∼ 185 ℃ 정도 낮은 온도에서 동일한 활성도를 보여준다.Table 2 shows a comparison of the oxidation / removal activity of the carbon tetrachloride relative to the different types of catalysts. A catalyst containing only a noble metal such as Pd or the like on a carrier containing a superacidic group such as sulfated (Example 1) or a catalyst simultaneously containing a transition metal such as copper, nickel, etc. (Example 2, 3) compared to the catalyst prepared by supporting the noble metal and the transition metal on a carrier which alone or each containing no noble metal or transition metal under the same reaction conditions (Comparative Examples 3, 6, 7, 14). The same activity is exhibited at temperatures as low as -185 ° C.

촉매에 의한 이염화메탄(CH2Cl2)의 산화/제거 활성도Oxidation / Removal Activity of Methane Dichloride (CH 2 Cl 2 ) by Catalyst 구 분division 촉 매catalyst 초기 CH2Cl2농도, ppmInitial CH 2 Cl 2 Concentration, ppm GHSV, h-1 GHSV, h -1 T(50), ℃T (50), ℃ T(90), ℃T (90), ℃ 실시예 1Example 1 Pd/SO4-ZrO2 Pd / SO 4 -ZrO 2 1,0001,000 20,00020,000 210210 280280 실시예 2Example 2 Pd,Cu/SO4-ZrO2 Pd, Cu / SO 4 -ZrO 2 1,0001,000 20,00020,000 210210 280280 실시예 3Example 3 Pd,Cu,Ni/SO4-ZrO2 Pd, Cu, Ni / SO 4 -ZrO 2 1,0001,000 20,00020,000 208208 277277 비교예 4Comparative Example 4 Pd/Al2O3 Pd / Al 2 O 3 1,0001,000 20,00020,000 410410 500500 비교예 5Comparative Example 5 Pt/Al2O3 Pt / Al 2 O 3 1,0001,000 20,00020,000 350350 400400 비교예 7Comparative Example 7 Co-YCo-Y 1,0001,000 20,00020,000 300300 360360 비교예 8Comparative Example 8 Cr/ZSM-5Cr / ZSM-5 1,0001,000 20,00020,000 280280 350350 T(50) : 초기 이염화메탄 농도의 50% 제거온도T(90) : 초기 이염화메탄 농도의 90% 제거온도GHSV : Gas Hourly Space VelocityT (50): 50% removal temperature of initial methane dichloride concentration T (90): 90% removal temperature of initial methane dichloride concentrationGHSV: Gas Hourly Space Velocity

상기 표 3에는 여러 다른 종류의 촉매에서 상대적인 이염화메탄의 산화/제거 활성도를 비교하여 나타낸 것이다. 황산기(sulfated) 등과 같은 초강산기를 함유한 담체상에 Pd 등과 같은 귀금속이 단독으로 함유된 촉매(실시예 1) 또는 귀금속과 함께 구리, 니켈 등과 같은 전이금속을 동시에 함유한 촉매(실시예 2, 3)는 동일한 반응 조건하에서 귀금속이나 전이금속이 각각 단독으로 포함시켰거나 황산기를 함유하지 않은 담체상에 귀금속 및 전이금속을 담지하여 제조한 촉매(비교예 4, 5, 7, 8)에 비하여 70 ∼ 220 ℃ 정도 낮은 온도에서 동일한 활성도를 보여준다.Table 3 shows a comparison of the oxidation / removal activity of the methane dichloride relative to the different types of catalysts. A catalyst containing only a noble metal such as Pd or the like on a carrier containing a super acidic group such as sulfated (Example 1) or a catalyst simultaneously containing a transition metal such as copper, nickel, etc. (Example 2, 3) is 70 compared to the catalyst prepared by supporting the noble metal and the transition metal on the carrier which alone or each containing no noble metal or transition metal under the same reaction conditions (Comparative Examples 4, 5, 7, 8). It shows the same activity at a temperature as low as ~ 220 ℃.

촉매에 의한 삼염화에틸렌(TCE)의 산화/제거 활성도Oxidation / Removal Activity of Trichloroethylene (TCE) by Catalyst 구 분division 촉 매catalyst 초기 TCE 농도, ppmInitial TCE Concentration, ppm GHSV, h-1 GHSV, h -1 T(50), ℃T (50), ℃ T(90), ℃T (90), ℃ 실시예 1Example 1 Pd/SO4-ZrO2 Pd / SO 4 -ZrO 2 1,0001,000 15,00015,000 290290 350350 실시예 2Example 2 Pd,Cu/SO4-ZrO2 Pd, Cu / SO 4 -ZrO 2 1,0001,000 15,00015,000 285285 350350 실시예 3Example 3 Pd,Cu,Ni/SO4-ZrO2 Pd, Cu, Ni / SO 4 -ZrO 2 1,0001,000 15,00015,000 285285 350350 실시예 4Example 4 Pd,Cu,Ni/[SO4-ZrO2+USY]Pd, Cu, Ni / [SO 4 -ZrO 2 + USY] 1,0001,000 15,00015,000 290290 355355 실시예 5Example 5 Pt/[SO4-ZrO2+USY]Pt / [SO 4 -ZrO 2 + USY] 1,0001,000 15,00015,000 350350 410410 비교예 4Comparative Example 4 Pd/Al2O3 Pd / Al 2 O 3 1,0001,000 15,00015,000 425425 520520 비교예 5Comparative Example 5 Pt/Al2O3 Pt / Al 2 O 3 1,0001,000 15,00015,000 400400 475475 비교예 8Comparative Example 8 Cr/ZSM-5Cr / ZSM-5 1,0001,000 15,00015,000 400400 470470 T(50) : 초기 TCE 농도의 50% 제거온도T(90) : 초기 TCE 농도의 90% 제거온도GHSV : Gas Hourly Space VelocityT (50): 50% removal temperature of initial TCE concentration T (90): 90% removal temperature of initial TCE concentrationGHSV: Gas Hourly Space Velocity

상기 표 4에는 여러 다른 종류의 촉매에서 상대적인 TCE 산화/제거 활성도를 비교하여 나타낸 것이다. 황산기(sulfated) 등과 같은 초강산기를 함유한 담체상에 Pd 등과 같은 귀금속이 단독으로 함유된 촉매(실시예 1, 5) 또는 귀금속과 함께 구리, 니켈 등과 같은 전이금속을 동시에 함유한 촉매(실시예 2, 3), 황산형 금속산화물과 이에 대하여 50 중량% 이하의 범위내에서 다공성 분자체가 함께 사용된 담체상에 Pd, Pt 등과 같은 귀금속과 Cu, Ni 등과 같은 전이금속을 동시에 함유한 촉매(실시예 4, 5)는 동일한 반응 조건하에서 귀금속이나 전이금속이 각각 단독으로 포함시킨 촉매(비교예 4, 5, 8) 비하여 50 ∼ 170℃ 정도 낮은 온도에서 동일한 활성도를 보여준다.Table 4 shows a comparison of the relative TCE oxidation / removal activity in several different types of catalysts. Catalysts containing noble metals such as Pd alone (Examples 1 and 5) on carriers containing superacidic groups such as sulfated groups, or catalysts containing transition metals such as copper and nickel together with precious metals (Examples 2, 3) a catalyst which simultaneously contains a noble metal such as Pd, Pt and a transition metal such as Cu, Ni and the like on a carrier having a sulfate type metal oxide and a porous molecular sieve together within a range of 50% by weight or less ( Example 4, 5) shows the same activity at a temperature of about 50 ~ 170 ℃ lower than the catalyst (Comparative Examples 4, 5, 8) containing a noble metal or a transition metal alone under the same reaction conditions.

이상에서 설명한 바와 같이, 본 발명의 산화촉매는 황산기를 함유하는 담체상에 귀금속과 전이금속이 일정 함량비로 담지되어 산성자리가 서로 상승작용을 하여 더욱 낮은 온도에서 활성을 보여 주는 것으로 해석되며, 이들 활성금속 들이 단독으로 존재하는 촉매 상에서는 상대적으로 우수한 활성을 보여 주지 못한다. 또한, 본 발명에서 제시한 촉매는 기존의 귀금속 단독 담지 촉매보다 약 20 ∼ 220℃ 낮은 온도에서 휘발성 유기염소화합물을 제거할 뿐만 아니라, 반응 후 또 다른 형태의 휘발성 유기염소화합물 생성을 최소화시킴으로써 환경정화 및 에너지 절약을 동시에 실현할 수 있는 복합기능성 촉매의 제조방법을 제공한다.As described above, the oxidation catalyst of the present invention is interpreted to show activity at a lower temperature because the acid sites synergize with each other by supporting a certain amount of precious metal and transition metal on a sulfate-containing carrier. The catalysts in which the active metals are present alone do not show relatively good activity. In addition, the catalyst proposed in the present invention not only removes the volatile organic chlorine compounds at a temperature lower than about 20-220 ° C. than the conventional noble metal-supported catalysts, but also minimizes the formation of another type of volatile organic chlorine compounds after the reaction. And it provides a method for producing a multifunctional catalyst that can realize energy saving at the same time.

Claims (6)

황산형 금속산화물(sulfated metal oxide) 담체에 활성금속으로서 백금(Pt), 팔라듐(Pd), 이리듐(Ir) 및 로듐(Rh) 중에서 선택된 귀금속이 0.5 ∼ 2.0 중량% 담지되어 있고, 보조활성금속으로서 전이금속이 0.0 ∼ 15.0 중량%가 담지되어 있는 것임을 특징으로 하는 휘발성 유기염소화합물(Cl-VOCs) 제거용 산화촉매.0.5 to 2.0% by weight of a noble metal selected from platinum (Pt), palladium (Pd), iridium (Ir) and rhodium (Rh) as an active metal is supported on a sulfated metal oxide carrier, and as an auxiliary active metal Oxidation catalyst for removing volatile organochlorine compounds (Cl-VOCs), characterized in that the transition metal is supported by 0.0 to 15.0% by weight. 제 1 항에 있어서, 상기 황산형 금속산화물 담체는 황산기(SO4)가 0.3 ∼ 2.3 중량% 함유된 지르코니아, 티타니아 및 세리아 중에서 선택된 것임을 특징으로 하는 휘발성 유기염소화합물(Cl-VOCs) 제거용 산화촉매.The oxidizing catalyst for removing volatile organochlorine compounds (Cl-VOCs) according to claim 1, wherein the sulfuric acid type metal oxide carrier is selected from zirconia, titania, and ceria containing 0.3 to 2.3 wt% of sulfuric acid group (SO 4 ). . 제 1 항 또는 제 2 항에 있어서, 상기 담체로서는 황산형 금속산화물과 이에 대하여 50 중량% 이하의 범위내에서 다공성 분자체가 함께 사용된 것임을 특징으로 하는 휘발성 유기염소화합물(Cl-VOCs) 제거용 산화촉매.The method of claim 1 or 2, wherein the carrier is used to remove volatile organic chlorine compounds (Cl-VOCs), characterized in that the sulfuric acid-type metal oxide and the porous molecular sieve is used together within the range of 50% by weight or less. Oxidation catalyst. 제 3 항에 있어서, 상기 다공성 분자체는 양성자형 또는 암모늄형 제올라이트로서 Si/Al비가 10 ∼ 100 범위에 속하는 BEA, MFI, MOR 및 FAU 구조를 갖는 제올라이트 중에서 선택된 것을 특징으로 하는 휘발성 유기염소화합물(Cl-VOCs) 제거용 산화촉매.The volatile organic chlorine compound according to claim 3, wherein the porous molecular sieve is selected from zeolites having BEA, MFI, MOR and FAU structures having Si / Al ratios ranging from 10 to 100 as proton- or ammonium-type zeolites. Oxidation catalyst for the removal of Cl-VOCs). 제 1 항에 있어서, 상기 전이금속은 구리, 니켈 또는 이들의 혼합금속인 것임을 특징으로 하는 휘발성 유기염소화합물(Cl-VOCs) 제거용 산화촉매.The oxidation catalyst for removing volatile organic chlorine compounds (Cl-VOCs) according to claim 1, wherein the transition metal is copper, nickel or a mixed metal thereof. 제 1 항에 있어서, 상기 황산형 금속산화물(sulfated metal oxide) 담체에 대하여 귀금속 0.5 ∼ 2.0 중량%, 구리 2.0 ∼ 10.0 중량%, 니켈 0.1 ∼ 1.0 중량%가 담지된 것임을 특징으로 하는 휘발성 유기염소화합물(Cl-VOCs) 제거용 산화촉매.The volatile organic chlorine compound according to claim 1, wherein 0.5 to 2.0% by weight of the noble metal, 2.0 to 10.0% by weight of copper, and 0.1 to 1.0% by weight of nickel are supported on the sulfated metal oxide carrier. Oxidation catalyst for removing (Cl-VOCs).
KR10-2001-0001198A 2001-01-09 2001-01-09 Multifunctional oxidation catalysts for removal of chlorinated volatile organic compounds KR100390770B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0001198A KR100390770B1 (en) 2001-01-09 2001-01-09 Multifunctional oxidation catalysts for removal of chlorinated volatile organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0001198A KR100390770B1 (en) 2001-01-09 2001-01-09 Multifunctional oxidation catalysts for removal of chlorinated volatile organic compounds

Publications (2)

Publication Number Publication Date
KR20020060002A true KR20020060002A (en) 2002-07-16
KR100390770B1 KR100390770B1 (en) 2003-07-10

Family

ID=27691202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0001198A KR100390770B1 (en) 2001-01-09 2001-01-09 Multifunctional oxidation catalysts for removal of chlorinated volatile organic compounds

Country Status (1)

Country Link
KR (1) KR100390770B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115518673A (en) * 2022-10-25 2022-12-27 浙江大学 Preparation method of Pt-CeTi composite molecular sieve catalyst for efficiently degrading VOCs (volatile organic compounds)
CN115634712A (en) * 2022-10-31 2023-01-24 天津大学 Preparation method of CVOCs catalytic oxidation double-acidic-site catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101816706B1 (en) 2010-03-17 2018-02-21 삼성전자주식회사 Porous oxide catalyst and process for preparing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1248591B (en) * 1991-06-28 1995-01-19 Eniricerche Spa SUPERACID CATALYST AND PROCEDURE FOR ITS PREPARATION
US5629257A (en) * 1994-01-21 1997-05-13 Sun Company, Inc. (R&M) Solid superacid catalysts comprising platinum metal
KR100403436B1 (en) * 1996-02-02 2004-02-11 사카이 가가쿠 고교 가부시키가이샤 Catalysts and Methods for Treating Emissions
FR2769519B1 (en) * 1997-10-13 1999-12-31 Total Raffinage Distribution ACID CATALYST BASED ON SULFATED ZIRCONE AND USES THEREOF
DE19857314A1 (en) * 1997-12-12 2000-02-03 Sec Dep Of Science And Technol Highly acidic mesoporous synergistic solid state catalyst and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115518673A (en) * 2022-10-25 2022-12-27 浙江大学 Preparation method of Pt-CeTi composite molecular sieve catalyst for efficiently degrading VOCs (volatile organic compounds)
CN115634712A (en) * 2022-10-31 2023-01-24 天津大学 Preparation method of CVOCs catalytic oxidation double-acidic-site catalyst
CN115634712B (en) * 2022-10-31 2024-04-09 天津大学 Preparation method of CVOCs catalytic oxidation double-acid-site catalyst

Also Published As

Publication number Publication date
KR100390770B1 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
Ye et al. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation
US9399208B2 (en) Catalysts for oxidation of carbon monoxide and/or volatile organic compounds
JP3626754B2 (en) Catalytic incineration of organic compounds
Zhang et al. Synergistic effect for simultaneously catalytic ozonation of chlorobenzene and NO over MnCoOx catalysts: Byproducts formation under practical conditions
US5653949A (en) Catalytic oxidation catalyst and method for controlling voc, CO and halogenated organic emissions
US20040028589A1 (en) Catalyst for destruction of co, voc, and halogenated organic emissions
CN1157255C (en) Metal oxide catalyst for clearing halogenated aromatic through catalytic oxidation
JP2008246473A (en) Catalyst and method for cleaning exhaust gas
KR100336967B1 (en) A process for preparing honeycomb type monolithic catalyst
KR100336963B1 (en) Honeycomb type monolithic catalyst for removing VOCs
KR100390770B1 (en) Multifunctional oxidation catalysts for removal of chlorinated volatile organic compounds
ES2299219T3 (en) PROCEDURE FOR THE OXIDATION OF HALOGENATED AND NON-HALOGENED GASEOUS ORGANIC COMPOUNDS.
Heneghan et al. AND STUART H. TAYLOR
KR100533877B1 (en) Catalyst for Removing Aromatic Halogenated Compounds Comprising Dioxin, Carbon Monoxide, and Nitrogen Oxide and Use Thereof
JP2007090331A (en) Catalyst for oxidizing and removing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas
KR100402430B1 (en) Catalyst for decomposition of toxic pollutants and producing process thereof
KR100332224B1 (en) Oxidation Catalyst for Emission Control of Dioxin in Flue Gas, method of preparing and using the same
KR100862272B1 (en) Catalyst for Removal of Carbon Monoxide and Preparation Method Thereof
KR100343752B1 (en) High active composite catalyst for simultaneous oxidation of halogenated volatile organic compounds(HVOCs) and volatile organic compounds(VOCs), and prepararation method of it, and controlling method of its reaction
JP3702398B2 (en) Exhaust gas purification catalyst and purification method
KR20050069178A (en) Catalytic composition for destroying volatile organic compound and carbon monoxide and method of catalytic conversion using the same
JP3332024B2 (en) Organic compound combustion removal catalyst and combustion removal method
JP3785558B2 (en) Organochlorine compound removal catalyst and organochlorine compound removal method
JP2002001065A (en) Decomposition catalyst and decomposition method for organic chlorine compound
JP2000176289A (en) Catalyst for purifying hydrocarbon in waste gas, and purification method of waste gas

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20061228

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee