KR20020057378A - Gap-filling method of semiconductor device using atomic layer deposition method - Google Patents

Gap-filling method of semiconductor device using atomic layer deposition method Download PDF

Info

Publication number
KR20020057378A
KR20020057378A KR1020010000379A KR20010000379A KR20020057378A KR 20020057378 A KR20020057378 A KR 20020057378A KR 1020010000379 A KR1020010000379 A KR 1020010000379A KR 20010000379 A KR20010000379 A KR 20010000379A KR 20020057378 A KR20020057378 A KR 20020057378A
Authority
KR
South Korea
Prior art keywords
semiconductor device
gap
atomic layer
layer deposition
gap filling
Prior art date
Application number
KR1020010000379A
Other languages
Korean (ko)
Inventor
윤종호
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1020010000379A priority Critical patent/KR20020057378A/en
Publication of KR20020057378A publication Critical patent/KR20020057378A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps

Abstract

PURPOSE: A method for gap-filling a semiconductor device by an atomic layer deposition(ALD) method is provided to greatly improve step coverage by controlling the thickness of a deposition layer, and to increase reliability by preventing a void phenomenon occurring in a gap-filling process for the semiconductor device. CONSTITUTION: A semiconductor substrate having a gap is placed in a reaction receptacle. The first reaction gas is injected to the reaction receptacle and is absorbed to the semiconductor substrate to generate a reaction material. Purge gas is injected into the reaction receptacle to purge the unabsorbed first reaction gas. The second reaction gas is injected into the reaction receptacle to react with the reaction material so that a thin film is formed. Purge gas is injected into the reaction receptacle to purge the second reaction gas not reacting with the reaction material. The abovementioned processes form a repetition cycle.

Description

원자층 증착법을 이용하는 반도체 소자의 갭필링 방법{Gap-filling method of semiconductor device using atomic layer deposition method}Gap-filling method of semiconductor device using atomic layer deposition method

본 발명은 반도체 소자의 갭필링 방법에 관한 것으로, 특히 공정챔버내에 반응기체를 분리 제공하여 반도체 소자상에 흡착되도록 하고, 반도체 소자상에 흡착되지 못한 반응기체를 공정챔버 밖으로 퍼지시키는 퍼지 가스가 공정챔버내부로 제공되는 단계를 가지는 사이클로 구성되는 원자층 증착법(ALD, Automic Layer Deposition, 이하 "원자층 증착법"이라 함)을 이용하여 반도체 소자의 갭을 채우는 갭필링 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gap filling method of a semiconductor device, and in particular, a purge gas for separating and providing a reactive gas in a process chamber to be adsorbed onto a semiconductor device, and purging a reactive gas that has not been adsorbed on the semiconductor device out of the process chamber. The present invention relates to a gap filling method for filling a gap of a semiconductor device using atomic layer deposition (ALD), which is composed of cycles having a step provided inside a chamber.

근래에 반도체 소자가 점차 고집적화되어감에 따라 다층배선이 필수적으로 요구되며, 이에 따라 층간 절연막이 배선사이를 절연하는 갭필링 기술이 요구되고 있는 실정이며, 셀 회로와 주변회로들간의 단차가 심해지는 현상이 발생하므로 필수적으로 평탄화 공정을 수행하여야 한다.In recent years, as semiconductor devices have been increasingly integrated, multi-layer wiring is indispensable. Therefore, a gap filling technique in which an interlayer insulating film insulates wiring is required, and a step between cell circuits and peripheral circuits is increased. Since the phenomenon occurs, it is essential to perform the planarization process.

그러므로, 256 메가급 또는 그 이상의 고집적 메모리 소자의 경우에는 갭필링을 위해 ILD(Inter Layer Deposition, 층간증착, 이하 "ILD"라 함) 또는 IMD(Inter Metal Deposition, 메탈간 증착, 이하 "IMD"라 함) 등을 이용하여 갭을 필링하는 갭필링 방법이 현재 보편적으로 이용되고 있다.Therefore, in the case of 256 mega or more highly integrated memory devices, an interlayer deposition (ILD) or an intermetal deposition (IMD) is referred to as "IMD" for gap filling. The gap filling method of filling the gap using the (or the like) is currently commonly used.

이러한 ILD나 IMD를 형성하기 위해서는 일반적으로 CVD(Chemical Vaporing Deposition, 이하"화학기상증착법"이라 함)가 이용되는데, 통상 소정의 혼합가스를 이용하여 박막을 증착(Deposition) 형성한 후, 어닐(Anneal)이라는 지냉 기법에 의해 형성된 박막을 천천히 냉각시켜 안정화된 구조를 갖도록 갭필링한다.In order to form the ILD or IMD, CVD (Chemical Vapor Deposition) is generally used. Generally, a thin film is deposited using a predetermined mixed gas and then annealed. Slowly cool the thin film formed by the cooling technique called) to gapfill to have a stabilized structure.

이때, 보편적으로 이용되는 혼합가스에는 SiON, SROX 등이 있으며, 증착시키는 막질은 공정의 플로우특성을 유지하면서 낮은 온도에서 플로우가 가능하고 스트레스도 작은 BPSG(Borophosilicate glass)막질이 많이 이용되고 있다.At this time, the commonly used mixed gas is SiON, SROX and the like, the film quality to be deposited is a BPSG (Borophosilicate glass) film quality that can be flowed at a low temperature while maintaining the flow characteristics of the process and low stress is used a lot.

하지만, 반도체 소자가 점차 고집적화되어감에 따라 0.15㎛ 이하로 트렌치간격이 좁아지는 1 기가급 이상의 D램의 경우에는 위에서 언급한 갭필링 방법은 그 신뢰성이 충분치 못한 상황이다.However, the above-mentioned gap filling method is not sufficient in the case of D-RAM of 1 giga-class or more, in which the trench gap is narrowed to 0.15 μm or less as the semiconductor device is gradually integrated.

구체적인 일례로, 도 1의 경우와 같이 높은 종횡비를 갖는 트랜치를 갖는 반도체 소자(1)를 고밀도 플라즈마 장비를 이용하여 증착공정에 의해 갭필링을 하면,도시된 바와 같이 트랜치 입구에서 스퍼터링된 물질(2)들이 재증착되어 도면번호 3의 부위에서와 같이 반대편 측벽에 붙어버리므로써 트랜치 입구, 즉 갭의 입구를 막아버려 그 내부가 비어있는 보이드(void)(4) 현상이 발생된다.As a specific example, when the semiconductor device 1 having a trench having a high aspect ratio as shown in FIG. 1 is gap-filled by a deposition process using a high-density plasma equipment, the material sputtered at the trench inlet as shown in FIG. ) Is redeposited and stuck to the opposite sidewall as in the region of reference number 3, thereby blocking the trench inlet, i.e., the inlet of the gap, resulting in a void 4 phenomenon.

이러한 보이드(4)는 기 언급한 바와 같이 이미 반도체 소자(1)에 증착된 물질(2)들이 증착공정 진행중에 재증착되어 발생하는 현상으로 동일한 공정진행시간에 비해 부위별로 증착되는 두께가 다르도록 하여 결과적으로 내부에 빈 공간을 형성시키는 것으로, 보이드(4)는 저항을 증가시키고 후속 공정에서 여러가지 문제를 유발하게 된다.As described above, the void 4 is a phenomenon in which the materials 2 deposited on the semiconductor device 1 are redeposited during the deposition process, so that the thicknesses of the voids 4 are different for each region compared to the same process progress time. By consequently forming an empty space therein, the voids 4 increase resistance and cause various problems in subsequent processes.

결국, 보이드(4) 현상이 발생하지 않고 갭을 완전히 채우는 갭필링 공정의 확보는 소자의 집적도를 증가시키면서 소자의 신뢰성을 향상시킬 수 있는 중대한 과제로 인식되고 있는 실정이다.As a result, securing the gap filling process that completely fills the gap without the void 4 phenomenon is recognized as a serious problem that can improve the reliability of the device while increasing the degree of integration of the device.

본 발명은 상술한 바와 같은 문제를 해결하기 위해 도출된 것으로서, 본 발명의 목적은 갭을 가지는 반도체 소자의 갭을 보이드가 없는 일정한 두께로 채우는 갭필링 방법을 제공함에 있다.The present invention was derived to solve the above problems, and an object of the present invention is to provide a gap filling method for filling a gap of a semiconductor device having a gap with a void-free constant thickness.

본 발명의 다른 목적은 반도체 소자의 갭을 채우고 평탄화함에 있어서 공정진행 횟수에 따른 박막두께를 정밀하게 제어하도록 함에 있다.Another object of the present invention is to precisely control the thickness of the thin film according to the number of process steps in filling and planarizing the gap of the semiconductor device.

도 1은 보이드가 발생한 반도체 소자의 단면도.1 is a cross-sectional view of a semiconductor device in which voids are generated.

도 2a 내지 2c는 본 발명의 따른 바람직한 실시예의 단면도.2A-2C are cross-sectional views of a preferred embodiment of the present invention.

도 3은 본 발명을 실시하는 공정진행 사이클을 나타내는 예시도.3 is an exemplary view showing a process progress cycle for carrying out the present invention.

도 4는 본 발명의 다른 실시예를 나타내는 단면도.4 is a cross-sectional view showing another embodiment of the present invention.

본 발명에 따른 반도체 소자의 갭필링 방법은 갭이 형성된 반도체 소자가 배치된 공정챔버속에 반응기체를 투입하여 반도체 소자 표면에 흡착되도록 하여 반응물을 생성하고, 공정챔버에 퍼지가스를 투입하여 흡착단계에서 흡착되지 못한 반응기체를 퍼지시키고, 공정챔버에 산화제를 투입하여 반응물과 반응하도록 하여 박막을 형성한 후, 공정챔버에 퍼지가스를 투입하여 반응물과 반응하지 못한 산화제를 퍼지시키는 과정을 하나의 반복 사이클로 하는 원자층 증착법을 이용함을 특징으로 한다.In the gap filling method of a semiconductor device according to the present invention, a reactant is introduced into a process chamber in which a semiconductor device having a gap is disposed to be adsorbed onto a surface of a semiconductor device to generate a reactant, and a purge gas is introduced into the process chamber in an adsorption step. Purge the unresorbed reactant, inject the oxidant into the process chamber to react with the reactants to form a thin film, and then add the purge gas to the process chamber to purge the oxidant that did not react with the reactant in one iteration cycle. It is characterized by using an atomic layer deposition method.

바람직하게 반응기체는 SiHxF4-x, SiHxCl4-x(x=0~4),Si2H6 등을 포함하는 무기 실란계 가스나, TEOS, OMCTS, HMDSO, DES, DEDEOS 등을 포함하는 유기실란계 화합물이 이용되며, 산화제는 H2O, O2, O3, N2O, NO2 등을 포함하는 산화가스 또는 이소프로필알콜을 포함하는 솔벤트로 구성된다.Preferably, the reactant is an inorganic silane gas containing SiHxF4-x, SiHxCl4-x (x = 0 to 4), Si2H6, or the like, or an organosilane compound including TEOS, OMCTS, HMDSO, DES, DEDEOS, or the like. The oxidizing agent is composed of an oxidizing gas containing H 2 O, O 2, O 3, N 2 O, NO 2, or a solvent containing isopropyl alcohol.

그리고, 퍼지가스로는 N2, Ar, He 등을 포함하는 불활성 가스가 이용되고, 상기 사이클을 구성하는 반응기체의 사이클 시간이 0.001초에서 60초 사이에서 진행된다.As the purge gas, an inert gas containing N 2, Ar, He, or the like is used, and a cycle time of the reactor body constituting the cycle is performed between 0.001 seconds and 60 seconds.

또한, 반응조내의 온도와 압력은 바람직하게 25 ℃ ~ 1500 ℃, 0.1 mTorr ~ 50 Torr에서 공정이 진행된다.In addition, the temperature and pressure in the reaction tank is preferably carried out at 25 ℃ ~ 1500 ℃, 0.1 mTorr ~ 50 Torr.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하고자 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2c는 본 발명에 따른 반도체 소자의 갭필링 방법의 일실시예를 나타내는 공정 단면도이다.2A to 2C are cross-sectional views illustrating an example of a gap peeling method for a semiconductor device according to the present invention.

도 2a에 따르면 반도체 소자(1)에는 높은 종횡비를 갖는 갭(7)이 형성되어있으며, 이 반도체 소자(1)는 공정챔버(미도시)내에서 위치되어 있으며, 공정챔버(미도시)내로 투입된 반응기체, 바람직한 예로 SiH4원자(6)들이 반도체 소자(1)의 표면에 흡착되어 반응물(8)이 형성되어 있다.According to FIG. 2A, a gap 7 having a high aspect ratio is formed in the semiconductor device 1, which is located in a process chamber (not shown) and is introduced into the process chamber (not shown). The reactant, preferably SiH 4 atoms 6, are adsorbed on the surface of the semiconductor device 1 to form a reactant 8.

그리고, 반도체 소자(1)상에 흡착되지 못한 SiH4원자(6)들은 이후에 공정챔버(미도시)내로 투입되는 퍼지가스에 의해 공정챔버(미도시)에서 빠져나간다.Then, the SiH 4 atoms 6 which are not adsorbed on the semiconductor element 1 are subsequently removed from the process chamber (not shown) by the purge gas introduced into the process chamber (not shown).

도 2b는 도 2a의 반도체 소자(1)가 위치한 공정챔버(미도시)내에 산화제(11)가 투입되어 반응물(8)과 반응하여 박막(10)을 형성한 것을 나타내는 것으로, 본 발명에 따라 바람직하게 이용되는 산화제(11)인 H2O가 반도체 소자(1)의 표면에 흡착된 SiH4반응물(8)을 산화시켜 층간절연박막(10)을 형성한 것이다.FIG. 2B shows that the oxidant 11 is introduced into a process chamber (not shown) in which the semiconductor device 1 of FIG. 2A is placed to react with the reactant 8 to form the thin film 10, which is preferable according to the present invention. H 2 O, which is an oxidant 11 used, is oxidized to the SiH 4 reactant 8 adsorbed on the surface of the semiconductor element 1 to form the interlayer insulating thin film 10.

그리고, 이때도 반응물과 반응하지 못한 산화제(11)는 이후에 공정챔버내로 투입되는 퍼지가스에 의해 공정챔버(미도시)내에서 빠져 나가게 된다.In this case, the oxidant 11 that has not reacted with the reactant is then discharged from the process chamber (not shown) by the purge gas introduced into the process chamber.

도 2c는 도 2a와 도 2b의 과정으로 이루어지는 사이클을 반복하여 박막 두께를 아주 정밀하게 제어하여 갭(7)을 평탄하게 필링한 반도체 소자(1)의 갭필링 단면도이다.FIG. 2C is a cross-sectional view of gap filling of the semiconductor device 1 in which the gap 7 is flatly filled by repeating the cycle of FIG. 2A and FIG. 2B to precisely control the thickness of the thin film.

도 2c에 따르면 본 발명은 공정 사이클을 제어하여 박막의 두께를 조절하는 것이 가능하여 공정진행후에 보이드(4)가 발생하지 않고, 공정의 신뢰성이 좋은 것을 알 수 있다.According to FIG. 2C, it is possible to adjust the thickness of the thin film by controlling the process cycle so that voids 4 do not occur after the process is progressed, and the process reliability is good.

도 3은 본 발명에 따른 공정진행에서 가장 기본이 되는 하나의 사이클을 구성하는 공정 흐름을 나타낸다.3 shows a process flow constituting one cycle which is the most basic in the process progress according to the present invention.

도 3에 따르면 원자층 증착법은 네개의 단계가 하나의 사이클을 구성한다.According to FIG. 3, in the atomic layer deposition method, four steps constitute one cycle.

먼저 반응기체를 공정챔버내에 투입하는 단계와, 공정챔버내에 투입된 반응 기체중에서 반도체 소자의 표면에 흡착되지 못하여 반응물을 생성하지 못한 반응 기체를 외부로 배출시키도록 퍼지가스를 투입하는 단계와, 반응물과 반응하여 박막을 형성하도록 공정챔버내에 산화제를 투입하는 단계 및 반응물과 반응하여 박막을 형성하지 못한 산화제를 공정챔버에서 외부로 배출시키도록 퍼지가스를 투입하는 단계가 하나의 사이클을 이루고 있다.First, the step of introducing the reaction gas into the process chamber, the step of introducing a purge gas to discharge the reaction gas that is not adsorbed on the surface of the semiconductor element from the reaction gas introduced into the process chamber to the outside, and reactants and In one cycle, an oxidant is introduced into the process chamber to react to form a thin film, and a purge gas is introduced to discharge an oxidant that does not form a thin film by reacting with a reactant to the outside from the process chamber.

이때, 반응기체는 무기 실란계 가스나 유기 실란계 화합물이 이용될 수 있는데, 무기 실란계 가스에는 SiHxF4-x, SiHxCl4-x(x= 0~4), Si2H6등을 예로 들 수 있고, 유기 실란계 화합물에는 TEOS(tetraethylorthosilicate), OMCTS(octa-methyl-tetra0siloxane), HMDSO(hexa-methyl-disiloxane), DES(di-ethyl-silane), DEDEOS( diethyl-diethyl-silane) 등을 들 수 있으며, T-12나 SILK등을 포함하는 화합물 역시 반응기체로 이용가능하다.In this case, the reactive gas may be an inorganic silane-based gas or an organic silane-based compound, and examples of the inorganic silane-based gas include SiHxF 4-x , SiHxCl 4-x (x = 0 to 4), and Si 2 H 6 . The organic silane compound may include tetraethylorthosilicate (TEOS), octa-methyl-tetra0siloxane (OMCTS), hexa-methyl-disiloxane (HMDSO), di-ethyl-silane (DES), and diethyl-diethyl-silane (DEDEOS). And compounds including T-12 or SILK may also be used as the reactor.

또한, 공정챔버는 온도와 압력과 같은 공정변수들이 소정 온도 및 압력으로 세팅되어 있는데, 바람직하게 온도는 25 ℃ ~ 1500 ℃, 압력은 0.1 mTorr ~ 50 Torr사이에서 공정조건들이 정해져 있다.In the process chamber, process variables such as temperature and pressure are set to a predetermined temperature and pressure. Preferably, process conditions are set between 25 ° C. and 1500 ° C. and pressure between 0.1 mTorr and 50 Torr.

그리고, 공정챔버내에 투입된 산화제는 반응물과 반응하여 박막을 형성하도록 하기 위해 투입되는 것으로서, 본 발명에서는 반응물과의 반응성이 너무 커서 산화제로 사용할 수 없었던 H2O를 산화제로 하여 기체상태인 증기의 형태로 공정챔버내로 투입되며, 이는 저온에서의 박막 형성이 가능하게 해준다.In addition, the oxidant introduced into the process chamber is added to react with the reactants to form a thin film. In the present invention, H 2 O, which cannot be used as an oxidant because the reactivity with the reactants is too large, is in the form of a gaseous vapor. Into the process chamber, which allows for the formation of thin films at low temperatures.

H2O 외에도 O2, O3, N2O, NO2와 같은 산화가스나 이소프로필알콜을 포함하는 솔벤트가 산화제로서 이용가능하다.In addition to H 2 O, oxidizing gases such as O 2 , O 3 , N 2 O, NO 2 or solvents containing isopropyl alcohol are available as oxidizing agents.

또한, 퍼지가스는 N2, Ar, He 등을 포함하는 불활성 가스가 이용되며, 퍼지가스가 투입되는 사이클 시간은 바람직하게 0.001초에서 60초 사이에서 진행된다.In addition, an inert gas including N 2 , Ar, He, or the like is used as the purge gas, and the cycle time for introducing the purge gas is preferably performed between 0.001 seconds and 60 seconds.

본 발명의 다른 실시예로서 도 4와 같이 2단계 갭필링 방법을 들 수 있다.Another embodiment of the present invention includes a two-step gap filling method as shown in FIG.

2단계 갭필링 방법은 반도체 소자(1)에 형성된 갭(7)에 도 3에 나타난 바와 같은 사이클의 반복으로 갭필링을 진행하여 제 1 박막(15)을 형성한 후, 반도체 소자(1)의 갭(7)이 충분히 채워지면 종래의 갭필링 방법, 예를 들어 ILD층나 IMD를 이용하여 제 2 박막(17)을 형성하는 방법을 이용하여 나머지 부분을 채운다.In the two-step gap filling method, gap filling is performed in the gap 7 formed in the semiconductor device 1 by repeating the cycle as shown in FIG. 3 to form the first thin film 15. When the gap 7 is sufficiently filled, the remaining portion is filled using a conventional gap filling method, for example, a method of forming the second thin film 17 using the ILD layer or the IMD.

이러한 2단계 갭필링 방법은 반도체 소자(1)에 있어서 단차가 크고 밀도가 높은 셀지역의 갭(7)일수록 적절한 이용가능성을 가진다.This two-step gap filling method has a suitable applicability as the gap 7 in the cell region having a large step height and density in the semiconductor device 1 is used.

상술한 바와 같이 본 발명의 실시예에 대해 상세히 설명하였지만, 본 발명의 분야에 속하는 통상의 지식을 가진 자라면 본 발명의 범위를 벗어나지 않는 범위내에서 얼마든지 변형 또는 변경하여 실시할 수 있음을 알 수 있을 것이다.Although the embodiments of the present invention have been described in detail as described above, it will be understood by those skilled in the art that the present invention may be modified or modified without departing from the scope of the present invention. Could be.

본 발명에 따르면 종래의 화학기상증착공정에 따른 갭필링 방법과는 달리 각각의 반응기체를 분리하여 공정챔버내로 투입하는 원자층 증착법을 이용함으로써,반용용기내에서 반응하지 못한 잉여의 반응기체를 공정챔버에서 밖으로 퍼지시켜 하나의 공정 사이클마다 증착되는 박막의 두께가 제한되어 증착막의 두께를 컨트롤하는 것이 가능하여 스텝 커버리지가 매우 우수하도록 제어가 가능해진다.According to the present invention, unlike the gap filling method according to the conventional chemical vapor deposition process, by using the atomic layer deposition method that separates each reactor body and puts it into the process chamber, to process the excess reactor body that did not react in the half vessel It is possible to control the thickness of the deposited film by controlling the thickness of the deposited film by limiting the thickness of the deposited film in one process cycle by purging it out of the chamber, so that the step coverage can be controlled very well.

따라서, 본 발명에 따라 원자층 증착법을 이용하여 반도체 소자의 갭을 필링하면 갭필링 과정에서 발생하는 보이드 현상이 발생하지 않아 공정상의 신뢰성이 증가하고, 반도체 소자의 불량이 감소하며, 전체적으로는 제품의 생산성을 향상시키는 효과가 있다.Therefore, when the gap of the semiconductor device is filled using the atomic layer deposition method according to the present invention, voids occurring during the gap filling process do not occur, thereby increasing process reliability, and reducing defects of the semiconductor device. There is an effect of improving the productivity.

Claims (8)

갭이 형성된 반도체 기판을 반응용기에 넣은 다음 제 1 반응기체를 투입하여 상기 반도체 기판에 흡착되도록 하여 반응물을 생성하는 흡착단계;An adsorption step of generating a reactant by placing a gap-formed semiconductor substrate in a reaction vessel and then introducing a first reactor to be adsorbed onto the semiconductor substrate; 상기 반응용기에 퍼지가스를 투입하여 흡착되지 못한 제 1 반응기체를 퍼지시키는 제 1 배기단계;A first exhaust step of purging the first reactor body which is not adsorbed by introducing a purge gas into the reaction vessel; 상기 반응용기에 제 2 반응기체를 투입하여 상기 반응물과 반응하도록 하여 박막을 형성하는 박막형성단계; 및A thin film forming step of adding a second reactor to the reaction vessel to react with the reactants to form a thin film; And 상기 반응용기에 퍼지가스를 투입하여 상기 반응물과 반응하지 못한 제 2 반응기체를 퍼지시키는 제 2 배기단계;가 하나의 반복 주기를 구성함을 특징으로 하는 원자층 증착법을 이용하는 반도체 소자의 갭필링방법.A second exhausting step of purging the second reactor body which has not reacted with the reactant by introducing a purge gas into the reaction vessel; a gap filling method of a semiconductor device using an atomic layer deposition method comprising one repetition cycle . 제 1항에 있어서,The method of claim 1, 제 1 반응기체는 SiHxF4-x, SiHxCl4-x(x=0~4),Si2H6와 같은 비유기-실란계 가스가 이용됨을 특징으로 하는 원자층 증착법을 이용하는 반도체 소자의 갭필링방법.Gap filling of a semiconductor device using an atomic layer deposition method is characterized in that the first reactor is a non-organic-silane-based gas such as SiHxF 4-x , SiHxC l4-x (x = 0 to 4), Si 2 H 6 Way. 제 1항에 있어서,The method of claim 1, 제 1 반응기체는 TEOS, OMCTS, HMDSO, DES, DEDEOS와 같은 유기-실란계 화합물이 이용됨을 특징으로 하는 원자증 증착법을 이용하는 반도체 소자의 갭필링방법.The first reactor is a gap filling method of a semiconductor device using an atomic vapor deposition method, characterized in that an organic-silane-based compound such as TEOS, OMCTS, HMDSO, DES, DEDEOS is used. 제 1항에 있어서,The method of claim 1, 상기 제 2 반응기체는 산화가스가 이용됨을 특징으로 하는 원자층 증착법을 이용하는 반도체 소자의 갭필링방법.The second reactor is a gap filling method of a semiconductor device using an atomic layer deposition method characterized in that the oxidizing gas is used. 제 1항에 있어서,The method of claim 1, 상기 제 2 반응기체는 IPA를 포함하는 솔벤트로 구성됨을 특징으로 하는 원자층 증착법을 이용하는 반도체 소자의 갭필링방법.The second reactor is a gap filling method of a semiconductor device using an atomic layer deposition method, characterized in that consisting of a solvent containing IPA. 제 1항에 있어서,The method of claim 1, 상기 퍼지가스로 N2, Ar, He등을 포함하는 인에테르 가스가 이용됨을 특징으로 하는 원자층 증착법을 이용하는 반도체 소자의 갭필링방법.A gap filling method of a semiconductor device using an atomic layer deposition method, characterized in that an inether gas containing N 2 , Ar, He, etc. is used as the purge gas. 제 1항에 있어서,The method of claim 1, 상기 사이클을 구성하는 반응기체의 반응기체시간이 0.001초에서 60초 사이에서 진행됨을 특징으로 하는 원자층 증착법을 이용하는 반도체 소자의 갭필링 방법.The gap filling method of a semiconductor device using the atomic layer deposition method characterized in that the reaction time of the reactor body constituting the cycle proceeds between 0.001 seconds to 60 seconds. 제 1항에 있어서,The method of claim 1, 상기 반응용기내의 온도와 압력이 25 ℃~1500 ℃, 0.1 mTorr~ 50 Torr에서 공정이 진행됨을 특징으로 하는 원자층 증착법을 이용하는 반도체 소자의 갭필링 방법.The gap filling method of the semiconductor device using the atomic layer deposition method characterized in that the temperature and pressure in the reaction vessel is carried out at 25 ℃ ~ 1500 ℃, 0.1 mTorr ~ 50 Torr.
KR1020010000379A 2001-01-04 2001-01-04 Gap-filling method of semiconductor device using atomic layer deposition method KR20020057378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010000379A KR20020057378A (en) 2001-01-04 2001-01-04 Gap-filling method of semiconductor device using atomic layer deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010000379A KR20020057378A (en) 2001-01-04 2001-01-04 Gap-filling method of semiconductor device using atomic layer deposition method

Publications (1)

Publication Number Publication Date
KR20020057378A true KR20020057378A (en) 2002-07-11

Family

ID=27690742

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010000379A KR20020057378A (en) 2001-01-04 2001-01-04 Gap-filling method of semiconductor device using atomic layer deposition method

Country Status (1)

Country Link
KR (1) KR20020057378A (en)

Similar Documents

Publication Publication Date Title
US6632478B2 (en) Process for forming a low dielectric constant carbon-containing film
US7148155B1 (en) Sequential deposition/anneal film densification method
KR100743775B1 (en) Method and apparatus for treating l0w k dielectric layers to reduce diffusion
EP0573911B1 (en) Method for depositing silicon oxide films of improved properties
US7297608B1 (en) Method for controlling properties of conformal silica nanolaminates formed by rapid vapor deposition
JP5225268B2 (en) A novel deposition plasma hardening cycle process to enhance silicon dioxide film quality
US9390914B2 (en) Wet oxidation process performed on a dielectric material formed from a flowable CVD process
US7589028B1 (en) Hydroxyl bond removal and film densification method for oxide films using microwave post treatment
US20130260564A1 (en) Insensitive dry removal process for semiconductor integration
JP2021511672A (en) Treatment method for thin films of silicon nitride
US8685832B2 (en) Trench filling method and method of manufacturing semiconductor integrated circuit device
US6001728A (en) Method and apparatus for improving film stability of halogen-doped silicon oxide films
US7662728B2 (en) Substrate processing method
US7399364B2 (en) Hermetic cap layers formed on low-κ films by plasma enhanced chemical vapor deposition
US20120164848A1 (en) Method for forming nitride film
WO2004010467A2 (en) Low temperature dielectric deposition using aminosilane and ozone
JPH09172008A (en) Method and device that form good boundary between sacvd oxide film and pecvd oxide film
TW201308432A (en) Capping layer for reduced outgassing
US20160126089A1 (en) Flowable film curing penetration depth improvement and stress tuning
JP2002134495A (en) Method of depositing a nitrogen-doped fluorinated silicate glass layer
US20020090467A1 (en) Method and apparatus for forming a borophosphosilicate film
KR20090011765A (en) Method of depositing silicon oxide layer with increased gap-fill ability
KR20000062745A (en) An improved method for depositing and planarizing fluorinated bpsg films
KR100467369B1 (en) Hydrogen barrier and method for fabricating semiconductor device having the same
US6090725A (en) Method for preventing bubble defects in BPSG film

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination