KR20020053547A - Method of manufacturing a capacitor in semiconductor device - Google Patents

Method of manufacturing a capacitor in semiconductor device Download PDF

Info

Publication number
KR20020053547A
KR20020053547A KR1020000083207A KR20000083207A KR20020053547A KR 20020053547 A KR20020053547 A KR 20020053547A KR 1020000083207 A KR1020000083207 A KR 1020000083207A KR 20000083207 A KR20000083207 A KR 20000083207A KR 20020053547 A KR20020053547 A KR 20020053547A
Authority
KR
South Korea
Prior art keywords
heat treatment
capacitor
atmosphere
semiconductor device
temperature range
Prior art date
Application number
KR1020000083207A
Other languages
Korean (ko)
Other versions
KR100705175B1 (en
Inventor
임관용
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1020000083207A priority Critical patent/KR100705175B1/en
Publication of KR20020053547A publication Critical patent/KR20020053547A/en
Application granted granted Critical
Publication of KR100705175B1 publication Critical patent/KR100705175B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor

Abstract

PURPOSE: A method for manufacturing a capacitor of a semiconductor device is provided to remove the high C-V(Capacitance-Voltage) hysteresis occurring on the capacitor of a MOS(Metal-Oxide-Silicon) structure using a high dielectric film. CONSTITUTION: A silicate is formed on a semiconductor substrate(1) and a gate insulation film(2) is formed on the surface. The gate insulation film is heat-treated at a temperature range of 500-1000 deg.C under a O2, N2, N2O, NO, UV-O3 or Ar atmosphere for 5-60 minutes, at the temperature range of 600-1000 deg.C under the O2, N2, N2O, NO, UV-O3 or vacuum atmosphere for 10-300 seconds by a rapid heat treatment, or at the temperature range of 700-1100 deg.C under the H2 and O2 atmosphere for 10-300 seconds by an ISSG(In-Situ Stream Generator) rapid heat treatment. An upper electrode(3) is formed on the gate insulation film. After forming a photoresist film on the upper electrode, a capacitor pattern is formed by successively etching the upper electrode and the gate insulation film.

Description

반도체 소자의 캐패시터 제조 방법{Method of manufacturing a capacitor in semiconductor device}Method of manufacturing a capacitor in semiconductor device

본 발명은 반도체 소자의 캐패시터 제조 방법에 관한 것으로서, 특히 반도체 기판 상부에 SiO2층을 형성하고 그 상부에 얇은 유전체막을 형성한 후, 고온에서 O2로 열처리하거나, UV-O3를 이용하여 열처리를 한 후, 고온에서 N2로 열처리하고 그 상부에 상부전극을 형성하여 캐패시터를 형성함으로써, C-V 히스테리시스의 크기를 감소시킬 수 있는 반도체 소자의 캐패시터 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a capacitor of a semiconductor device. In particular, a SiO 2 layer is formed on a semiconductor substrate and a thin dielectric film is formed thereon, and then heat-treated with O 2 at a high temperature, or heat-treated using UV-O 3 . After the heat treatment at high temperature with N 2 and to form a capacitor by forming an upper electrode on the upper, it relates to a capacitor manufacturing method of a semiconductor device capable of reducing the size of the CV hysteresis.

통상, SiO를 이용한 MOS(metal-oxide-silicon)구조에서는 C-V 히스테리시스(hysteresis)의 크기가 매우 작은 반면에, AlO, TaO5, HfO, ZrO, LaO, YO, CeO, TiO및 그 의 실리케이트(silicate)등의 고유전 산화막을 이용한 MOS구조에서는 C-V 히스테리시스가 상대적으로 크게 나타나는 문제점이 있다.In general, MOS (metal-oxide-silicon) structure using SiO has very small CV hysteresis, whereas Al O , Ta O 5 , HfO , ZrO, La O , Y In the MOS structure using high dielectric oxide films such as O , CeO , TiO and silicates thereof, CV hysteresis is relatively large.

이러한, C-V 히스테리시스는 게이트절연막과 반도체 기판(예를 들면 실리콘 기판)의 계면 근처에 형성되는 트랩 차아지(trap charge)에 의한 것으로 여겨지는데, 이는 캐패시터 특성 및 트랜지스터(transistor)의 특성 등에 영향을 주기 때문에 그 크기를 감소시키기 위한 연구가 활발히 진행중에 있다.This CV hysteresis is believed to be due to trap charges formed near the interface between the gate insulating film and the semiconductor substrate (e.g., silicon substrate), which affects capacitor characteristics and transistor characteristics. Therefore, research to reduce the size is actively underway.

최근, 고온의 열처리공정에 의해 C-V 히스테리시스가 감소하는 것이 관찰되어 C-V 히스테리시스를 감소시키기 위한 연구가 한 단계 진전되었다. 그러나, C-V 히스테리시스를 감소시키기 위한 열처리공정은 최소한 800℃이상의 높은 온도가 필요하게 된다. 이로 인해, MOS를 구성하는 다른 물질이 산화됨과 아울러 손상되어 MOS의 특성이 저하되는 문제가 도출되고 있다.Recently, a decrease in C-V hysteresis has been observed by a high temperature heat treatment process, and the research for reducing C-V hysteresis has been advanced one step. However, the heat treatment process to reduce the C-V hysteresis requires a high temperature of at least 800 ℃. As a result, other materials constituting the MOS are oxidized and damaged, leading to deterioration of the characteristics of the MOS.

따라서, 본 발명의 목적은 고유전체막을 이용한 MOS구조의 캐패시터에서 발생되는 높은 C-V 히스테리시스를 제거하기 위한 반도체 소자의 캐패시터 제조 방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a method of manufacturing a capacitor of a semiconductor device for removing high C-V hysteresis generated in a capacitor of a MOS structure using a high dielectric film.

본 발명의 또 다른 목적은 반도체 기판 상부에 SiO2층을 형성하고 그 상부에 얇은 유전체막을 형성한 후, 고온에서 O2로 열처리하거나, UV-O3를 이용하여 열처리를 한 후, 고온에서 N2로 열처리하고 그 상부에 상부전극을 형성하여 캐패시터를 형성함으로써, C-V 히스테리시스의 크기를 감소시킬 수 있는 반도체 소자의 캐패시터 제조 방법을 제공함에 있다.Another object of the present invention is to form a SiO 2 layer on the semiconductor substrate and a thin dielectric film thereon, and then heat-treated with O 2 at high temperature, or heat-treated with UV-O 3 , followed by N at high temperature. The present invention provides a method of manufacturing a capacitor of a semiconductor device capable of reducing the size of CV hysteresis by heat-treating to 2 and forming a capacitor by forming an upper electrode thereon.

도 1(a) 내지 도 1(e)는 본 발명의 일 실시예에 따른 반도체 소자의 캐패시터 제조 방법을 설명하기 위해 순서적으로 도시한 반도체 소자의 단면도.1 (a) to 1 (e) are cross-sectional views of semiconductor devices sequentially shown to explain a method of manufacturing a capacitor of a semiconductor device according to an embodiment of the present invention.

도 2는 본 발명을 적용한 실시예로서, 열처리 하지 않은 n+ poly-Si /Al2O3(80Å)/p-Si MOS구조 캐패시터의 C-V 히스테리시스 특성 그래프.FIG. 2 is a graph illustrating CV hysteresis characteristics of an n + poly-Si / Al 2 O 3 (80 μs) / p-Si MOS structure capacitor, which is not thermally treated as an embodiment to which the present invention is applied. FIG.

도 3은 O2열처리 온도에 따른 n+ poly-Si /Al2O3(80Å)/p-Si MOS구조 캐패시터의 C-V 히스테리시스 특성 그래프.3 is a graph of CV hysteresis characteristics of n + poly-Si / Al 2 O 3 (80 Å) / p-Si MOS structure capacitor according to O 2 heat treatment temperature.

도 4는 열처리 방법에 따른 n+ poly-Si /Al2O3(80Å)/p-Si MOS구조 캐패시터의 C-V 히스테리시스 특성 그래프.Figure 4 is a graph of CV hysteresis characteristics of n + poly-Si / Al 2 O 3 (80 Å) / p-Si MOS structure capacitor according to the heat treatment method.

도 5은 SiO2형성유무에 따른 n+ poly-Si /Al2O3(80Å)/p-Si MOS구조 캐패시터의 C-V 히스테리시스 특성 그래프.5 is a graph of CV hysteresis characteristics of n + poly-Si / Al 2 O 3 (80 Å) / p-Si MOS structure capacitor with or without SiO 2 formation.

도 6은 Al2O3의 두께에 따른 n+ poly-Si/Al2O3(80Å)/p-Si MOS구조 캐패시터의 C-V 히스테리시스 특성 그래프.FIG. 6 is a graph of CV hysteresis characteristics of n + poly-Si / Al 2 O 3 (80 μs) / p-Si MOS structure capacitor according to Al 2 O 3 thickness; FIG.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1 : 반도체 기판 2 : 유전체막1 semiconductor substrate 2 dielectric film

3 : 상부전극3: upper electrode

본 발명은 소정의 반도체 기판 상부에 고유전체 산화막으로 게이트절연막을 형성한 후, 열처리하는 단계와; 상기 게이트절연막 상부에 전극을 형성하는 단계를 포함한다.The present invention comprises the steps of forming a gate insulating film of a high dielectric oxide film on a predetermined semiconductor substrate, and then heat-treating; Forming an electrode on the gate insulating layer.

이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

도 1(a) 내지 도 1(e)은 본 발명의 일 실시예에 따른 반도체 소자의 제조 방법을 설명하기 위해 순서적으로 도시한 반도체 소자의 단면도이다.1A to 1E are cross-sectional views of semiconductor devices sequentially illustrated to explain a method of manufacturing a semiconductor device according to an embodiment of the present invention.

도 1(a)를 참조하면, 우선 필드영역과 액티브영역으로 분리하기 위한 소정의 소자 분리막(도시되지 않음)이 형성된 반도체 기판(1) 상부에 게이트절연막(2)이 형성된다.Referring to FIG. 1A, first, a gate insulating film 2 is formed on a semiconductor substrate 1 on which a predetermined device isolation film (not shown) is formed to separate a field region and an active region.

또한, 반도체 기판(1) 상부에는 게이트절연막(2)이 형성되기전에 SiO2, Al, Ta, Hf, Zr, La, Y, Ce, Ti등의 금속을 포함한 실리케이트가 600℃∼1000℃의 온도범위와 N2O, NO 및 O2분위기중 어느 하나의 분위기에서 10∼300초 동안 급속 열처리하여 5~20Å 정도의 두께로 형성된다.In addition, a silicate containing a metal such as SiO 2 , Al, Ta, Hf, Zr, La, Y, Ce, Ti, etc., before the gate insulating film 2 is formed on the semiconductor substrate 1 has a temperature of 600 ° C to 1000 ° C. Rapid heat treatment for 10 to 300 seconds in any one of the range and the atmosphere of N 2 O, NO and O 2 is formed to a thickness of about 5 ~ 20Å.

게이트절연막(2)은 Al2O3, Ta2O5, HfO2, ZrO2, La2O3, Y2O3, CeO2및 TiO2중 어느 하나와 Al, Ta, Hf, Zr, La, Y, Ce, Ti 등의 금속을 포함한 실리케이트가 단원자층 증착법(atomic layer deposition : ALD)에 의해 20∼100Å 정도로 형성된다.The gate insulating film 2 may be formed of any one of Al 2 O 3 , Ta 2 O 5 , HfO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 , CeO 2 and TiO 2 , and Al, Ta, Hf, Zr, La Silicates containing metals such as, Y, Ce, Ti, and the like are formed in an amount of about 20 to 100 Pa by atomic layer deposition (ALD).

도 1(b)를 참조하면, 이후, 게이트절연막(2)은 500∼1000℃의 온도범위와 O2, N2, N2O, NO, UV-O3및 Ar 중 어느 하나의 분위기 또는 진공분위기에서 5∼60분동안 열처리되거나, 600∼1000℃의 온도범위와 O2, N2, N2O, NO, UV-O3및 Ar 중 어느 하나의 분위기 또는 진공분위기에서 10∼300초동안 급속 열처리되거나, 700℃∼1100℃와 열처리에 의해 H2와 O2분위기에서 10∼300초동안 ISSG(in-situ stream generator) 급속 열처리된다.Referring to FIG. 1 (b), the gate insulating film 2 is then subjected to a temperature range of 500 to 1000 ° C. and an atmosphere or vacuum in any one of O 2 , N 2 , N 2 O, NO, UV-O 3, and Ar. Heat-treated for 5 to 60 minutes in an atmosphere, or for 10 to 300 seconds in a temperature range of 600 to 1000 ° C. and any one of O 2 , N 2 , N 2 O, NO, UV-O 3 and Ar or in a vacuum atmosphere. Rapid heat treatment or in-situ stream generator (ISSG) rapid heat treatment for 10 to 300 seconds in H 2 and O 2 atmosphere by heat treatment at 700 ° C. to 1100 ° C.

여기서, UV-O3에 의해 게이트절연막(2)이 열처리될 경우, UV를 이용하여 100℃∼600℃의 온도범위와 O2또는 O3를 여기 시켜 1∼60분동안 열처리된다.In this case, when the gate insulating film 2 is heat-treated by UV-O 3 , the temperature range of 100 ° C. to 600 ° C. and O 2 or O 3 are excited by UV to be heat-treated for 1 to 60 minutes.

도 1(c)를 참조하면, 우선, 게이트절연막(2) 상부에 상부전극(3)이 형성된다.Referring to FIG. 1C, first, an upper electrode 3 is formed on the gate insulating film 2.

상부전극(3)은 TiN, Ta, TaN, WN, MoN, HfN 및 ZrN와 같은 금속물질로 형성되거나, n+ 또는 p+로 도핑된 다결정 실리콘으로 형성된다.The upper electrode 3 is formed of a metal material such as TiN, Ta, TaN, WN, MoN, HfN, and ZrN, or polycrystalline silicon doped with n + or p +.

도 1(d)를 참조하면, 이후, 상부전극(3)은 500∼900℃의 온도범위와 주입량이 5sccm∼10slm정도인 N2또는 Ar분위기 또는 진공분위기에서 10분∼1시간동안 열처리되거나, 500∼1100℃의 온도범위와 주입량이 5sccm∼10slm정도인 N2또는 Ar분위기 또는 진공분위기에서 10초∼10분동안 급속 열처리 된다.Referring to FIG. 1 (d), the upper electrode 3 is heat-treated for 10 minutes to 1 hour in an N 2 or Ar atmosphere or a vacuum atmosphere having a temperature range of 500 to 900 ° C. and an injection amount of about 5 sccm to 10 slm, or Rapid heat treatment for 10 seconds to 10 minutes in a N 2 or Ar atmosphere or a vacuum atmosphere in the temperature range of 500 ~ 1100 ℃ and injection amount of 5sccm ~ 10slm.

여기서, 진공분위기의 진공도는 5 ×10-2∼5 ×10-9Torr로 설정된다.Here, the vacuum degree of the vacuum atmosphere is set to 5 x 10 -2 to 5 x 10 -9 Torr.

도 1(e)를 참조하면, 이후, 상부전극(3)의 상부에 감광막이 코팅된 후, 노광 및 현상공정에 의해 소정의 감광막패턴이 형성된다.Referring to FIG. 1E, after the photoresist film is coated on the upper electrode 3, a predetermined photoresist pattern is formed by an exposure and development process.

이후, 감광막패턴을 이용한 식각공정에 의해 상부전극(3) 및 게이트절연막(2)이 순차적으로 식각되어 캐패시터 패턴이 형성된다.Subsequently, the upper electrode 3 and the gate insulating film 2 are sequentially etched by an etching process using a photosensitive film pattern to form a capacitor pattern.

전술한 바와 같이, 고유전체막을 이용한 MOS 소자에서 발생되는 C-V 히스테리시스를 제어하기 위해, 본 발명은 상부전극이 형성되기 전에 유전체막을 퍼니스열처리 또는 급속 열처리하거나, UV-O3로 열처리한다. 또한, C-V 히스테리시스를 제어하기 위해, 반도체 기판과 유전체막의 계면간에 SiO2를 형성하거나, Al2O3두께를 조절하거나, 상부전극에 인가되는 최대 게이트전압(Gate Voltage)을 낮추어 준다.As described above, in order to control the CV hysteresis generated in the MOS device using the high dielectric film, the present invention heats or rapidly heats the dielectric film or heat-treats it with UV-O 3 before the upper electrode is formed. In addition, in order to control CV hysteresis, SiO 2 is formed between the interface between the semiconductor substrate and the dielectric film, the Al 2 O 3 thickness is adjusted, or the maximum gate voltage applied to the upper electrode is lowered.

상세히 하면, 우선, C-V 히스테리시스의 크기는 상부전극의 형성전 열처리 유무에 따라 많이 달라지게 된다.In detail, first, the size of the C-V hysteresis will vary depending on the presence or absence of heat treatment before forming the upper electrode.

즉, 도 2에 도시된 바와 같이, 상부전극이 형성되기전에 열처리를 하지 않은 샘플의 3V →-3V →3V 스위프(sweep)에서 나타나는 C-V 히스테리시스트의 크기는 상당히 큰데 반해, 도 3에 도시된 바와 같이, O2로 30분동안 열처리를 할 경우, 온도가 높을수록 C-V 히스테리시스의 크기가 감소하는 것을 알 수 있다.That is, as shown in FIG. 2, the magnitude of the CV hysteresis in the 3V → -3V → 3V sweep of the sample that is not heat-treated before the upper electrode is formed is quite large. Likewise, when the heat treatment for 30 minutes with O 2 , it can be seen that the magnitude of the CV hysteresis decreases as the temperature increases.

또한, UV-O3를 이용하여 10분동안 열처리를 할 경우에는 C-V 히스테리시스의 크기가 거의 줄지 않는 것을 알 수 있었고, N2로 30분동안 열처리하거나 급속열처리 할 경우에는 온도가 퍼니스의 O2의 온도보다 높음에도 불구하고 C-V 히스테리시스의 크기가 조금 밖에 감소하지 않은 것을 볼 수 있다.Further, by using a UV-O 3 When the heat treatment for 10 minutes, the CV, the size of hysteresis was found that hardly give, if the heat treatment or rapid thermal annealing for 30 minutes with N 2, the temperature of the furnace O 2 It can be seen that the magnitude of CV hysteresis is only slightly reduced despite being higher than the temperature.

그러나, UV-O3로 열처리를 한 후, N2분위기에서 30분동안 열처리를 할 경우에는 C-V 히스테리시스의 크기가 상당히 줄어드는 것을 알 수 있다. 이와 같이, 여러 가지 열처리 방법에 따른 C-V 히스테리시스의 크기 변화는 도 4에 도시된 바와 같다.However, when the heat treatment with UV-O 3 , the heat treatment for 30 minutes in the N 2 atmosphere it can be seen that the size of the CV hysteresis significantly reduced. As such, the size change of CV hysteresis according to various heat treatment methods is as shown in FIG. 4.

이와 아울러, 도 5에 도시된 바와 같이, 반도체 기판과 유전체막의 계면간에 SiO2층을 형성할 경우, C-V 히스테리시스의 크기가 변화하는 것을알 수 있다. 즉, 상부에 급속 열처리를 이용하여 7∼12Å 정도의 SiO2층을 형성시킨 후, 그 상부에 Al2O3의 유전체막를 증착하고 N2분위기에서 30분동안 열처리할 경우 C-V 히스테리시스의 크기가 감소하는 것을 알 수 있다.In addition, as shown in FIG. 5, when the SiO 2 layer is formed between the interface between the semiconductor substrate and the dielectric film, it can be seen that the magnitude of the CV hysteresis changes. In other words, after forming a SiO 2 layer of about 7 to 12 Å by rapid heat treatment on the top, and depositing an Al 2 O 3 dielectric film on the top and heat treatment for 30 minutes in N 2 atmosphere, the size of CV hysteresis is reduced I can see that.

또한, 도 6에 도시된 바와 같이, 반도체 기판 상부에 형성되는 Al2O3의 두께에 따라 C-V 히스테리시스의 크기가 변화하는 것을 알 수 있다. 즉, Al2O3의 두께가 얇을수록 C-V 히스테리시스의 크기가 감소하는 것을 알 수 있다.In addition, as shown in FIG. 6, it can be seen that the magnitude of the CV hysteresis changes according to the thickness of Al 2 O 3 formed on the semiconductor substrate. That is, it can be seen that as the thickness of Al 2 O 3 decreases, the magnitude of CV hysteresis decreases.

결론적으로 C-V 히스테리시스를 없애기 위해서는 고온에서 O2로 열처리하거나, UV-O3를 이용하여 열처리를 한 후, 고온에서 N2로 열처리 또는 반도체 기판의 상부에 얇은 SiO2층을 형성시키고 고온 열처리를 하거나, 반도체 기판 상부에 형성되는 유전체막의 두께를 얇게 형성하거나, C-V 히스테리시스측정을 위해 걸어주는 최대 게이트전압(Gate Voltage)의 크기를 낮추는 방법이 효과적이다.In conclusion, in order to eliminate CV hysteresis, heat treatment with O 2 at high temperature, UV-O 3 heat treatment, heat treatment with N 2 at high temperature, or a thin SiO 2 layer on top of the semiconductor substrate, For example, a method of reducing the thickness of the dielectric film formed on the semiconductor substrate or reducing the maximum gate voltage applied for the CV hysteresis measurement is effective.

상술한 바와 같이, 본 발명은 반도체 기판 상부에 SiO2층을 형성하고 그 상부에 얇은 유전체막을 형성한 후, 고온에서 O2로 열처리하거나, UV-O3를 이용하여 열처리를 한 후, 고온에서 N2로 열처리하고 그 상부에 상부전극을 형성하여 캐패시터를 형성함으로써, C-V 히스테리시스의 크기를 감소시킬 수 있다.As described above, the present invention forms a SiO 2 layer on the semiconductor substrate and a thin dielectric film formed thereon, followed by heat treatment with O 2 at high temperature, or heat treatment with UV-O 3 , followed by high temperature. By heat-treating with N 2 and forming a capacitor by forming an upper electrode thereon, the magnitude of CV hysteresis can be reduced.

Claims (11)

소정의 반도체 기판 상부에 고유전체 산화막으로 게이트절연막을 형성한 후, 열처리하는 단계와;Forming a gate insulating film on a predetermined semiconductor substrate with a high dielectric oxide film, and then performing heat treatment; 상기 게이트절연막 상부에 전극을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.And forming an electrode on the gate insulating layer. 제 1 항에 있어서,The method of claim 1, 상기 반도체 기판은 자신의 상부에 SiO2, Al, Ta, Hf, Zr, La, Y, Ce, Ti등의 금속을 포함한 실리케이트가 600℃∼1000℃의 온도범위와 N2O, NO 및 O2분위기중 어느 하나의 분위기에서 10∼300초 동안 급속 열처리되어 5~20Å 정도의 두께로 형성되는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.The semiconductor substrate has a silicate containing a metal such as SiO 2 , Al, Ta, Hf, Zr, La, Y, Ce, Ti on the upper portion of the temperature range of 600 ℃ to 1000 ℃ and N 2 O, NO and O 2 A method of manufacturing a capacitor for a semiconductor device, characterized in that the rapid heat treatment for 10 to 300 seconds in any one of the atmosphere is formed to a thickness of about 5 ~ 20Å. 제 1 항에 있어서,The method of claim 1, 상기 게이트절연막은 Al2O3, Ta2O5, HfO2, ZrO2, La2O3, Y2O3, CeO2및 TiO2중 어느 하나와 Al, Ta, Hf, Zr, La, Y, Ce, Ti 등의 금속을 포함한 실리케이트가 단원자층 증착법에 의해 20∼100Å 정도로 형성되는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.The gate insulating layer may be formed of any one of Al 2 O 3 , Ta 2 O 5 , HfO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 , CeO 2, and TiO 2 , and Al, Ta, Hf, Zr, La, Y And a silicate containing a metal such as Ce, Ti, or the like is formed by a monoatomic layer deposition method in a range of about 20 to 100 GPa. 제 1 항에 있어서,The method of claim 1, 상기 열처리단계는 500∼1000℃의 온도범위와 O2, N2, N2O, NO, UV-O3및 Ar 중 어느 하나의 분위기 또는 진공분위기에서 5∼60분동안 열처리되는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.The heat treatment step is characterized in that the heat treatment for 5 to 60 minutes in a temperature range of 500 ~ 1000 ℃ and any one of O 2 , N 2 , N 2 O, NO, UV-O 3 and Ar or vacuum atmosphere Method for manufacturing a capacitor of a semiconductor device. 제 1 항에 있어서,The method of claim 1, 상기 열처리단계는 600∼1000℃의 온도범위와 O2, N2, N2O, NO, UV-O3및 Ar 중 어느 하나의 분위기 또는 진공분위기에서 10∼300초동안 급속 열처리되는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.The heat treatment step is characterized in that the rapid heat treatment for 10 to 300 seconds in the temperature range of 600 ~ 1000 ℃ and any one of O 2 , N 2 , N 2 O, NO, UV-O 3 and Ar or vacuum atmosphere. A method for producing a capacitor of a semiconductor device. 제 4 항 및 5 항중 어느 하나에 있어서,The method according to any one of claims 4 and 5, 상기 UV-O3를 이용하여 열처리할 경우에는 UV를 이용하여 100℃∼600℃의 온도범위와 O2또는 O3를 여기 시켜 1∼60분동안 열처리되는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.In the case of heat treatment using the UV-O 3 , a method of manufacturing a capacitor of a semiconductor device, characterized in that the heat treatment for 1 to 60 minutes by exciting the temperature range of 100 ℃ to 600 ℃ and O 2 or O 3 using UV. . 제 1 항에 있어서,The method of claim 1, 상기 열처리단계는 700℃∼1100℃와 열처리에 의해 H2와 O2분위기에서 10∼300초동안 ISSG 급속 열처리되는 것을 특징으로 하는 반도체 소자의 캐패시터제조 방법.The heat treatment step is a capacitor manufacturing method of the semiconductor device, characterized in that the ISSG rapid heat treatment for 10 to 300 seconds in H 2 and O 2 atmosphere by 700 ℃ to 1100 ℃ and heat treatment. 제 1 항에 있어서,The method of claim 1, 상기 상부전극은 TiN, Ta, TaN, WN, MoN, HfN 및 ZrN와 같은 금속물질로 형성되거나, n+ 또는 p+로 도핑된 다결정 실리콘으로 형성되는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.The upper electrode is formed of a metal material such as TiN, Ta, TaN, WN, MoN, HfN and ZrN, or a capacitor manufacturing method of a semiconductor device, characterized in that formed of polycrystalline silicon doped with n + or p +. 제 1 항에 있어서,The method of claim 1, 상기 상부전극은 500∼900℃의 온도범위와 주입량이 5sccm∼10slm정도인 N2또는 Ar분위기 또는 진공분위기에서 10분∼1시간동안 열처리되는 것을 특징으로 하는 반도체 소자의 제조 방법.Wherein the upper electrode is heat-treated for 10 minutes to 1 hour in an N 2 or Ar atmosphere or a vacuum atmosphere having a temperature range of 500 to 900 ° C. and an injection amount of about 5 sccm to about 10 slm. 제 1 항에 있어서,The method of claim 1, 상기 상부전극은 500∼1100℃의 온도범위와 주입량이 5sccm∼10slm정도인 N2또는 Ar분위기 또는 진공분위기에서 10초∼10분동안 급속 열처리되는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.And the upper electrode is rapidly heat treated in an N 2 or Ar atmosphere or a vacuum atmosphere having a temperature range of 500 to 1100 ° C. and an injection amount of about 5 sccm to about 10 slm for 10 seconds to 10 minutes. 제 9 항 및 10항중 어느 하나에 있어서,The method according to any one of claims 9 and 10, 상기 진공분위기의 진공도는 5 ×10-2∼5 ×10-9Torr로 설정되는 것을 특징으로 하는 반도체 소자의 캐패시터 제조 방법.The vacuum degree of the vacuum atmosphere is a capacitor manufacturing method of a semiconductor device, characterized in that set to 5 × 10 -2 ~ 5 × 10 -9 Torr.
KR1020000083207A 2000-12-27 2000-12-27 Method of manufacturing MOS structure KR100705175B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000083207A KR100705175B1 (en) 2000-12-27 2000-12-27 Method of manufacturing MOS structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000083207A KR100705175B1 (en) 2000-12-27 2000-12-27 Method of manufacturing MOS structure

Publications (2)

Publication Number Publication Date
KR20020053547A true KR20020053547A (en) 2002-07-05
KR100705175B1 KR100705175B1 (en) 2007-04-06

Family

ID=27686919

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000083207A KR100705175B1 (en) 2000-12-27 2000-12-27 Method of manufacturing MOS structure

Country Status (1)

Country Link
KR (1) KR100705175B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446933B1 (en) * 2001-02-19 2004-09-01 가부시키가이샤 히타치세이사쿠쇼 Semiconductor device
KR20190064297A (en) * 2017-11-30 2019-06-10 롯데케미칼 주식회사 A gamma-resistant polycarbonate resin composition having improved color recovery performance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101666403B1 (en) 2010-06-09 2016-10-17 삼성전자 주식회사 Fabricating method of semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319372A (en) * 1989-06-16 1991-01-28 Seiko Epson Corp Semiconductor device
KR100238170B1 (en) * 1997-07-28 2000-01-15 윤종용 Manufacturing process of capacitor
KR100258979B1 (en) * 1997-08-14 2000-06-15 윤종용 Method for manufacturing capacitor of semiconductor by heat treatment of dieledtric layer under hydrogen ambitent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446933B1 (en) * 2001-02-19 2004-09-01 가부시키가이샤 히타치세이사쿠쇼 Semiconductor device
KR20190064297A (en) * 2017-11-30 2019-06-10 롯데케미칼 주식회사 A gamma-resistant polycarbonate resin composition having improved color recovery performance

Also Published As

Publication number Publication date
KR100705175B1 (en) 2007-04-06

Similar Documents

Publication Publication Date Title
US6444592B1 (en) Interfacial oxidation process for high-k gate dielectric process integration
US6303481B2 (en) Method for forming a gate insulating film for semiconductor devices
JP3584129B2 (en) Method for manufacturing capacitor of semiconductor device
US20070049043A1 (en) Nitrogen profile engineering in HI-K nitridation for device performance enhancement and reliability improvement
JP2003059926A (en) Semiconductor device
JP2004134753A (en) Process for forming gate insulator layer having multiple dielectric constant and multiple thickness
KR20050106091A (en) Two-step post nitridation annealing for lower eot plasma nitrided gate dielectrics
WO2007001709A2 (en) Improved manufacturing method for two-step post nitridation annealing of plasma nitrided gate dielectric
JP2000188400A (en) Method for forming semiconductor device
US6573197B2 (en) Thermally stable poly-Si/high dielectric constant material interfaces
US6866890B2 (en) Method of forming a dielectric film
JP3746478B2 (en) Manufacturing method of semiconductor device
JPWO2005074037A1 (en) Manufacturing method of semiconductor device
KR100705175B1 (en) Method of manufacturing MOS structure
JP3696196B2 (en) Semiconductor device
JP4261276B2 (en) Manufacturing method of semiconductor device
KR100621542B1 (en) Dielectric multilayer of microelectronic device and fabricating method the same
TW200304184A (en) Semiconductor device and production method therefor
KR100359489B1 (en) Method of fabricating gate dielectric for use in semiconductor device
KR100349363B1 (en) Method for manufacturing pmos device with high-dielectric constant gate dielectric
US8748260B2 (en) Method for manufacturing nano-crystalline silicon material for semiconductor integrated circuits
JP2005079563A (en) Manufacturing method for electronic device
KR100680970B1 (en) Method for forming gate of semiconductor device
KR20040086495A (en) Method of manufacturing semiconductor device, semiconductor device and apparatus for manufacturing semiconductor device
JP2002343965A (en) Mis semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110222

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee