KR20020053398A - A microalloyed steel with high strength bainitic structure - Google Patents

A microalloyed steel with high strength bainitic structure Download PDF

Info

Publication number
KR20020053398A
KR20020053398A KR1020000083028A KR20000083028A KR20020053398A KR 20020053398 A KR20020053398 A KR 20020053398A KR 1020000083028 A KR1020000083028 A KR 1020000083028A KR 20000083028 A KR20000083028 A KR 20000083028A KR 20020053398 A KR20020053398 A KR 20020053398A
Authority
KR
South Korea
Prior art keywords
weight
less
bainite
alloy composition
strength
Prior art date
Application number
KR1020000083028A
Other languages
Korean (ko)
Inventor
원용철
Original Assignee
이계안
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이계안, 현대자동차주식회사 filed Critical 이계안
Priority to KR1020000083028A priority Critical patent/KR20020053398A/en
Publication of KR20020053398A publication Critical patent/KR20020053398A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A microalloyed steel for automobile components is provided, which is able to have high strength bainitic structure without quenching-tempering treatment. CONSTITUTION: Automobile components of the present invention are manufactured by heating a bainite microalloyed steel comprising C 0.25 to 0.30 wt%, Si 0.15 to 0.35 wt%, Mn 1.6 to 2.0 wt%, P less than 0.014 wt%, S less than 0.03 wt%, Cr 0.2-0.3 wt%, V 0.15-0.2 wt%, Ni less than 0.015 wt%, Ti less than 0.015 wt% and a balance of Fe at 1250°C; and cooling at a rate of higher than 30°C/min right after hot working.

Description

고강도 베이나이트계 비조질강{A microalloyed steel with high strength bainitic structure}A microalloyed steel with high strength bainitic structure

본 발명은 고강도 베이나이트계 조직을 갖는 비조질강, 제조방법 및 이를 이용하여 제조된 부품에 관한 것으로, 구체적으로 철을 주성분으로 하고, 여기에 탄소, 규소, 망간, 인, 황, 크롬, 바나듐, 니켈, 티타늄이 포함된 비조질강을 연속주조를 통하여 제조한 후, 제조된 강재를 이용시 열간가공후 열처리를 생략하고 냉각과 동시에 최종제품을 제조할 수 있는 비조질강, 제조방법 및 이를 이용하여 제조된 부품에 관한 것이다.The present invention relates to an amorphous steel having a high-strength bainite-based structure, a manufacturing method, and a component manufactured using the same. Specifically, the main component is iron, and carbon, silicon, manganese, phosphorus, sulfur, chromium, vanadium, After manufacturing non-coated steel containing nickel and titanium through continuous casting, using non-coated steel, which can omit the heat treatment after hot processing and manufacture the final product at the same time with cooling, manufacturing method and manufactured by using the same It is about parts.

종래 자동차의 샤시부품은 탄소강을 소재로 하여 제조된다. 상기 탄소강은 C : 0.42~0.48 중량%, Si : 0.15~0.35 중량%, Mn : 0.60~0.90 중량%, P : 0.030 중량% 이하, S : 0.03 중량% 이하이고 나머지는 Fe로 구성된 합금 조성물로 이루어져 있다.Background Art [0002] The chassis parts of a conventional automobile are made of carbon steel as a material. The carbon steel is 0.42 to 0.48% by weight, Si: 0.15 to 0.35% by weight, Mn: 0.60 to 0.90% by weight, P: 0.030% by weight or less, S: 0.03% by weight or less, and the rest is composed of an alloy composition composed of Fe. have.

탄소강을 이용하여 샤시부품을 제작하는 경우에는 상기 합금 조성물을 1250℃ 근처까지 가열후 해머 혹은 프레스를 사용하여 성형한 다음, 강도 및 인성증대를 위해 퀸칭 및 템퍼링 열처리를 수행한다. 이러한 열처리는 일단 성형된 샤시부품을 800℃~900℃로 가열한 후 급냉하고, 다시 400℃~600℃에서 템퍼링하여 제조한다(도 1).In the case of manufacturing a chassis part using carbon steel, the alloy composition is heated to about 1250 ° C. and then molded using a hammer or a press, and then quenched and tempered to increase strength and toughness. This heat treatment is prepared by heating the chassis parts once molded to 800 ℃ ~ 900 ℃ and then quenched, tempering again at 400 ℃ ~ 600 ℃ ( Figure 1 ).

그 결과 제품의 제조공정이 복잡하고, 열처리 후 급냉과정에서 냉각제의 사용으로 환경오염을 일으킬 수 있으며, 전체적인 원가 상승을 가져온다. 또한, 자동차의 성능이 점차 고기능화 및 고출력되는 추세에 있어 보다 고강도 및 고인성을 지닌 새로운 합금 조성의 부품개발이 요구된다.As a result, the manufacturing process of the product is complicated, environmental pollution can be caused by the use of coolant in the quenching process after heat treatment, and the overall cost is increased. In addition, as the performance of automobiles is gradually becoming higher in functionality and higher output, it is required to develop components of a new alloy composition having higher strength and toughness.

이에 본 발명자들은, 상기의 문제를 해결하고자 노력한 결과 C : 0.25~0.30 중량%, Si : 0.15~0.35 중량%, Mn : 1.6~2.0 중량%, P : 0.014 중량% 이하, S : 0.03 중량% 이하, Cr : 0.2~0.3 중량% , V : 0.15~0.2 중량%, Ni : 0.015 중량% 이하, Ti : 0.015 중량% 이하이고 나머지는 Fe로 구성된 합금 조성물을 연속주조공정을 통해 제조하였고, 상기 합금 조성물이 베이나이트계 비조질강 조직으로 제시되어 기계적 강도가 우수하고 제품공정이 단순화됨을 알게됨으로서, 본 발명을 완성하게 되었다.The present inventors, as a result of trying to solve the above problems, C: 0.25 ~ 0.30% by weight, Si: 0.15 ~ 0.35% by weight, Mn: 1.6 ~ 2.0% by weight, P: 0.014% by weight or less, S: 0.03% by weight or less , Cr: 0.2 to 0.3% by weight, V: 0.15 to 0.2% by weight, Ni: 0.015% by weight or less, Ti: 0.015% by weight or less, and the remainder was prepared by the continuous casting process alloy composition consisting of Fe, the alloy composition The present invention was completed by presenting the bainite-based non-coarse steel structure in terms of excellent mechanical strength and simplification of the product process.

본 발명의 목적은 제조공정 과정이 간단하면서 기계적 강도가 향상된 고강도 베이나이트계 비조질강, 제조방법 및 이를 이용하여 제조된 자동차용 부품을 제공하는 것이다.An object of the present invention is to provide a high-strength bainite-based non-alloyed steel, a manufacturing method and an automotive part manufactured by using the same, the manufacturing process is simple and the mechanical strength is improved.

도 1은 종래의 탄소강 열간단조품 제조시 이용되는 열처리 및 냉각 과정을 나타낸 것이고, 1 illustrates a heat treatment and cooling process used in manufacturing a conventional carbon steel hot forging,

도 2는 본 발명의 고강도 베이나이트계 비조질강 단조품 제조시 이용되는 열처리 및 냉각과정을 나타낸 것이다. Figure 2 shows the heat treatment and cooling process used in the manufacture of high strength bainite-based non-steel forgings of the present invention.

상기 목적을 달성하기 위하여, 본 발명은 C : 0.25~0.30 중량%, Si : 0.15~0.35 중량%, Mn : 1.6~2.0 중량%, P : 0.014중량% 미만, S : 0.03 중량% 미만, Cr : 0.2~0.3 중량% , V : 0.15~0.2 중량%, Ni : 0.015중량% 미만, Ti : 0.015 중량% 미만이고 나머지는 Fe로 구성된 베이나이트계 비조질강 합금 조성물을 제공한다.In order to achieve the above object, the present invention is C: 0.25-0.30 wt%, Si: 0.15-0.35 wt%, Mn: 1.6-2.0 wt%, P: less than 0.014 wt%, S: less than 0.03 wt%, Cr: It provides 0.2 to 0.3% by weight, V: 0.15 to 0.2% by weight, Ni: less than 0.015% by weight, Ti: less than 0.015% by weight, and the remainder is composed of Fe.

또한, 본 발명은 상기와 동일하게 구성된 베이나이트계 비조질강 합금 조성물을 연속주조하여 환봉의 소재로 제조한 후, 이 소재를 이용하여 자동차용 부품제조시 고온에서 열간가공 후 열처리하지 않고 냉각과 동시에 최종부품을 제조하는방법을 제공한다.In addition, the present invention is produced by continuously casting the bainite-based non-alloy steel alloy composition configured in the same manner as the above, and then made of a round bar material, and at the same time cooling without heat treatment after hot processing at high temperature when manufacturing automotive parts using this material It provides a method for manufacturing the final part.

마지막으로, 본 발명은 상기와 동일하게 구성된 베이나이트계 비조질강 합금 조성물의 원소재를 1250℃로 가열한 후 열간가공과 동시에 30℃/min 이상의 속도로 냉각하는 제어 냉각과정을 통해 제조된 부품을 제공한다.Finally, the present invention is a component manufactured through a controlled cooling process of heating the raw material of the bainite-based non-alloy steel alloy composition configured in the same manner as above to 1250 ° C and then cooling at a rate of 30 ° C / min or more at the same time as the hot working to provide.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 C : 0.25~0.30 중량%, Si : 0.15~0.35 중량%, Mn : 1.6~2.0 중량%, P : 0.014중량% 미만, S : 0.03 중량% 미만, Cr : 0.2~0.3 중량% , V : 0.15~0.2 중량%, Ni : 0.015 중량% 미만, Ti : 0.015 중량% 미만이고 나머지는 Fe로 구성된 베이나이트계 비조질강 합금 조성물을 제공한다.The present invention is C: 0.25-0.30 wt%, Si: 0.15-0.35 wt%, Mn: 1.6-2.0 wt%, P: less than 0.014 wt%, S: less than 0.03 wt%, Cr: 0.2-0.3 wt%, V : 0.15 to 0.2% by weight, Ni: less than 0.015% by weight, Ti: less than 0.015% by weight, and the remainder is provided a bainite-based non-alloyed steel alloy composition.

베이나이트 조직은 페라이트와 시멘타이트의 2상으로 구성된 미세조직으로, 일반적으로 오스레나이트 강을 펄라이트 영역 아래의 온도와 마르텐사이트 변태 개시온도 이상의 온도 사이로 급냉하게 되면 형성된다. 이러한 베이나이트 조직은 켄칭 및 템퍼링한 조직에 비해 높은 인성을 나타낸다.The bainite structure is a microstructure composed of two phases of ferrite and cementite, and is generally formed when the austenite steel is quenched between a temperature below the pearlite region and a temperature above the martensite transformation start temperature. These bainite tissues exhibit high toughness compared to quenched and tempered tissues.

본 발명의 합금조성물은 베이나이트 조직을 갖도록 화학 조성을 제어한다. 먼저, 탄소는 강도를 결정하는 기본원소로, 베이나이트 조직을 생성 및 적정 인성확보를 위해 탄소 농도를 0.25~0.30 중량%로 조정한다. 본 발명의 합금 조성물에 포함된 탄소는 그 함량이 종래 탄소강에 비하여 적은 함량으로 제어하며, 만약 탄소의 농도가 높게 되면 용융 후 냉각시 표면에 탈탄이 발생하여 물성이 저하되어바람직하지 못하게 된다.The alloy composition of the present invention controls the chemical composition to have a bainite structure. First, carbon is a basic element for determining the strength, and the carbon concentration is adjusted to 0.25-0.30 wt% to generate bainite structure and to secure proper toughness. The carbon contained in the alloy composition of the present invention is controlled to a less content than the conventional carbon steel, if the concentration of carbon is high, the decarburization occurs on the surface during cooling after melting, so that the physical properties are not desirable.

규소는 탈산제로 제강시 첨가되는 기본적인 함량으로 농도를 0.15~0.35 중량%로 조정한다.Silicon is the basic content added during steelmaking as a deoxidizer and the concentration is adjusted to 0.15 to 0.35% by weight.

망간은 베이나이트 조직의 생성을 촉진하고 적정한 강도를 확보하기 위하여 1.6~2.0 중량%로 조정한다. 망간은 열처리 능력을 향상시키는 원소로서 탄소량이 낮기 때문에 강도를 보완하기 위해 첨가하는 바, 그 함량이 1.0 중량% 미만이면 충분한 소입경도를 얻을 수 없기때문이다.Manganese is adjusted to 1.6-2.0 wt% to promote the formation of bainite tissue and to ensure adequate strength. Manganese is added as an element to improve the heat treatment ability, so that the amount of carbon is low to supplement the strength, and if the content is less than 1.0 wt%, sufficient hardening hardness cannot be obtained.

인 및 황은 불순물로 존재하며, 인의 경우는 그 함량이 0.03 중량%를 초과하면 결정입계에 편석하여 강도를 저하시키므로 0.03 중량% 미만으로 조정하였고, 황의 경우는 0.03 중량%를 초과하면 H2S를 생성하므로 역시 0.03 중량% 미만으로 조정하였다.Phosphorus and sulfur when is present as impurities, in the case of phosphorus is its content exceeds 0.03 wt.% Lowers the strength by segregation on the grain boundaries of 0.03 was adjusted to less than% by weight, in the case sulfur is when it exceeds 0.03 wt%, the H 2 S As a result it was also adjusted to less than 0.03% by weight.

크롬은 베이나이트 생성 온도범위를 확장하기 위하여 0.2-0.3 중량%로 조정하며, 상기 범위를 벗어나게 되면 안정한 베이나이트조직 형성구간 확보가 어렵게 된다.Chromium is adjusted to 0.2-0.3 wt% to extend the bainite formation temperature range, and if it is out of the range, it is difficult to secure a stable bainite structure formation section.

특히, 본 발명의 합금 조성물에 있어 바나듐은 비조질강에서 베이나이트 조직을 생성하기 위하여 가장 중요한 페라이트 강화 원소로서 0.05~0.25 중량%로 조정한다. 바나듐은 비조질강에 첨가되는 석출강화 원소로서 본 발명의 합금 조성물의 물성을 제어하며, 그 중 경도를 373(HV)까지 최대화 할 수 있다.In particular, in the alloy composition of the present invention, vanadium is adjusted to 0.05 to 0.25% by weight as the most important ferrite reinforcing element in order to produce bainite structure in non-coated steel. Vanadium is a precipitation strengthening element added to non-coarse steel to control the physical properties of the alloy composition of the present invention, the hardness of which can be maximized to 373 (HV).

티타늄은 결정입자를 미세화시키는 원소로 첨가되며 특히 고온에서 결정성장을 억제시켜준다. 만일, 그 함량이 0.01 중량% 미만이면 미세화 효과가 미약하고, 0.03 중량%를 초과하면 미세화 효과가 포화되는 문제가 있어 결정립 미세화를 달성하기 위하여 농도를 0.015 중량% 이하로 조정한다.Titanium is added as an element to refine the crystal grains and inhibits crystal growth, especially at high temperatures. If the content is less than 0.01% by weight, the micronization effect is weak, and if it exceeds 0.03% by weight, there is a problem that the micronization effect is saturated, so that the concentration is adjusted to 0.015% by weight or less to achieve grain refinement.

또한, 본 발명은 또한, 본 발명은 C : 0.25~0.30 중량%, Si : 0.15~0.35 중량%, Mn : 1.6~2.0 중량%, P : 0.014 중량% 미만, S : 0.03 중량% 미만, Cr : 0.2~0.3 중량% , V : 0.15~0.2 중량%, Ni : 0.015 중량% 미만, Ti : 0.015 중량% 미만이고 나머지는 Fe로 구성된 베이나이트계 비조질강 합금 조성물의 제조방법을 제공한다.In addition, the present invention, the present invention is C: 0.25-0.30 wt%, Si: 0.15-0.35 wt%, Mn: 1.6-2.0 wt%, P: less than 0.014 wt%, S: less than 0.03 wt%, Cr: It provides 0.2 to 0.3% by weight, V: 0.15 to 0.2% by weight, Ni: less than 0.015% by weight, Ti: less than 0.015% by weight and the remainder is made of Fe bainite-based non-alloy steel alloy composition.

본 발명의 베이나이트계 비조질강 합금 조성물은 1200℃의 용융로에서 용융한 다음, 몰드에 주입하여 성형 후 냉각속도를 30℃/min 이상으로 조절함과 동시에 열간가공하여 제조하게 된다(도 2).The bainite-based non-alloyed steel alloy composition of the present invention is prepared by melting in a melting furnace at 1200 ° C. and then injecting it into a mold to adjust the cooling rate after molding to at least 30 ° C./min and hot working ( FIG. 2 ).

열간 가공 후 냉각속도에 의해 비조질강 합금 조성물의 금속조직이 결정된다. 본 발명은 냉각 속도를 냉각 속도를 30℃/min이상 으로 조절하고, 상온까지 방냉함으로써, 베이나이트계 조직을 갖는 비조질강 합금 조성물을 제조하게 된다.The metallization of the non-coated steel alloy composition is determined by the cooling rate after hot working. The present invention is to control the cooling rate to 30 ℃ / min or more, and to cool to room temperature, thereby producing an amorphous steel alloy composition having a bainite-based structure.

본 발명의 조성으로 이루어진 합금으로 켄칭-템퍼링 열처리를 생략하고도 기계적 강도가 향상된 베이나이트계 비조질강을 얻을 수 있을 뿐만 아니라 제조공정을 단축함으로써 생산 원가 절감 및 환경오염 방지의 효과를 얻을 수 있다.The alloy made of the composition of the present invention can not only obtain the bainite-based non-alloyed steel with improved mechanical strength without omitting the quenching-tempering heat treatment, but also shorten the manufacturing process, thereby reducing production costs and preventing environmental pollution.

본 발명의 실시예에 따르면, 종래 켄칭-템퍼링 열처리가 수행된 탄소강 합금 조성물에 비하여 인장강도를 비롯한 기계적 강도 및 경도가 훨씬 우수함을 알 수 있다.According to the embodiment of the present invention, it can be seen that the mechanical strength and hardness, including tensile strength, are much superior to that of the carbon steel alloy composition subjected to the conventional quenching-tempering heat treatment.

마지막으로, 본 발명은 C : 0.25~0.30 중량%, Si : 0.15~0.35 중량%, Mn : 1.6~2.0 중량%, P : 0.014 중량% 미만, S : 0.03 중량% 미만, Cr : 0.2-0.3 중량% , V : 0.15-0.2 중량%, Ni : 0.015 중량% 미만, Ti : 0.015 중량% 미만이고 나머지는 Fe로 구성된 베이나이트계 비조질강 원소재를 1250℃로 가열한 후 열간가공과 동시에 30℃/min 이상의 속도로 냉각하는 제어 냉각과정을 통해 제조된 부품을 제공한다.Finally, the present invention is C: 0.25-0.30 wt%, Si: 0.15-0.35 wt%, Mn: 1.6-2.0 wt%, P: less than 0.014 wt%, S: less than 0.03 wt%, Cr: 0.2-0.3 wt% %, V: 0.15-0.2% by weight, Ni: less than 0.015% by weight, Ti: less than 0.015% by weight, and the remainder is heated to 1250 ° C after heating the bainite based crude steel raw material to 1250 ° C and 30 ° C / It provides a manufactured part through a controlled cooling process that cools at a speed of min or more.

상기와 동일한 베이나이트계 비조질강 합금 조성물을 본 발명의 제조방법에 따라 제조함으로써 승용차용 부품인 로암커넥터를 제조하였다. 본 발명에 따라 제조된 로암커넥터는 기존의 탄소강으로 제조된 부품에 비하여 인장강도, 항복강도, 피로강도, 연신율 및 경도가 향상되었다.By producing the same bainite-based non-alloyed steel alloy composition as described above according to the production method of the present invention, a low-arm connector as a component for a passenger car was manufactured. Loam connector manufactured according to the present invention is improved in tensile strength, yield strength, fatigue strength, elongation and hardness compared to the components made of conventional carbon steel.

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.

<실시예 1><Example 1>

본 발명의 열처리 공정에 따라 화학 성분이표 1의 성분으로 구성된 고강도 베이나이트계 비조질강 합금 조성물로도 2의 열처리 공정에 따라 시편을 제조하였다.The present invention according to the chemical composition of the test piece heat-treating step of the Table 1, high-strength bay Fig nitro-based non-adjustable vaginal cavity alloy composition consisting of a component according to the heat treatment step to prepare a.

우선, 베이나이트계 비조질강 합금조성물을 1250℃로 가열한 후 열간가공하는 단계로 가열된 소재를 프레스로 성형하였다. First, the heated raw material was molded into a press by heating the bainite-based non-alloyed steel alloy composition to 1250 ° C. and then hot working.

마지막으로, 상기 열간가공된 합금 조성물을 30℃/min이상의 속도로 냉각하였다.Finally, the hot worked alloy composition was cooled at a rate of 30 ° C./min or more.

<비교예 1>Comparative Example 1

종래의 열처리 공정에 따라 화학 성분이표 1의 성분으로 구성된 탄소강 합금 조성물로도 1의 열처리 공정에 따라 시편을 제조하였다.A specimen was prepared in accordance with the thermal process of Figure 1 as a chemical component is carbon steel alloy composition consisting of components shown in Table 1 according to a conventional heat treatment process.

탄소강(S45C)을 구입하여 하기 조성을 가진 탄소강 합금 조성물을 1250℃로 가열한 후 프레스로 성형하여 공기중에 방냉하였다.Carbon steel (S45C) was purchased, and the carbon steel alloy composition having the following composition was heated to 1250 ° C., and then molded in a press and allowed to cool in air.

다음으로, 상기 용융된 금속을 850℃로 가열한 후 급냉하였고 다시 500℃로 가열한 후 급냉하는 추가공정을 시행하였다.Next, the molten metal was heated to 850 ° C. and then quenched, and further heated to 500 ° C. and then quenched.

중량%weight% CC SiSi MnMn PP SS CrCr VV NN TiTi FeFe 실시예1Example 1 0.250.25 0.150.15 1.61.6 0.014미만Less than 0.014 0.03미만Less than 0.03 0.20.2 0.150.15 0.015 미만Less than 0.015 0.015미만Less than 0.015 나머지Remainder 비교예 1Comparative Example 1 0.420.42 0.150.15 0.600.60 0.03미만Less than 0.03 0.03미만Less than 0.03 -- -- -- -- 나머지Remainder

<실험예 1> 기계적 강도 비교Experimental Example 1 Mechanical Strength Comparison

상기 실시예 1과 비교예 1에서 제조된 시편으로 다음과 같은 기계적 강도를 비교하였다.The mechanical strengths of the specimens prepared in Example 1 and Comparative Example 1 were compared as follows.

(1)인장강도(tensile strenth, kgf/mm2)(1) tensile strength (kgf / mm 2 )

인장강도는 시제작품-자동차 서스펜션용 로암커넥터에서 KS 4호 인장시험편을 가공한 후 범용 인장시험기를 사용하여 측정하였고 그 결과를표 2에 나타냈다.Tensile strength was measured using a universal tensile tester after processing the KS No. 4 tensile test specimen in the prototype-vehicle connector low-arm connector and the results are shown in Table 2 .

(2)항복강도(yield strenth, kgf/mm2)(2) yield strength (yield strenth, kgf / mm 2 )

항복강도는 상기 인장시험편 테스트후 측정된 0.2% PROOF STRESS를 항복강도로 표시하였고 그 결과를표 2에 나타냈다.Yield strength was expressed as the yield strength of 0.2% PROOF STRESS measured after the tensile test specimen and the results are shown in Table 2 .

(3)피로강도(fatigue strenth, kgf/mm2)(3) fatigue strength (kgf / mm 2 )

피로강도는 회전굽힘피로시험기를 사용하여 측정하였고 그 결과를표 2에 나타냈다.Fatigue strength was measured using a rotary bending fatigue tester and the results are shown in Table 2 .

(4)연신율(elongation, %)(4) elongation (%)

연신율은 상기 인장시험편 시험시 시편중앙에 익스텐서미터-extensometer-를 부착하여 측정하였고 그 결과를표 2에 나타냈다.Elongation was measured by attaching an extender-extensionometer to the center of the specimen during the tensile test. The results are shown in Table 2 .

(5)경도(hardness, HV)(5) Hardness (HV)

경도는 비커스경도 측정기를 사용(하중: 300 gf)하여 측정하였고 그 결과를표 2에 나타냈다.Hardness was measured using a Vickers hardness tester (load: 300 gf) and the results are shown in Table 2 .

인장강도(kgf/mm2)Tensile strength (kgf / mm 2 ) 항복강도(kgf/mm2)Yield strength (kgf / mm 2 ) 피로강도(kgf/mm2)Fatigue Strength (kgf / mm 2 ) 연신율(%)Elongation (%) 경도(HV)Hardness (HV) 실시예 1Example 1 121121 8181 4444 1616 373373 비교예 1Comparative Example 1 8282 5555 3838 2323 210210

상기표 2에 나타낸 바와 같이, 실시예 1의 본 발명의 제조방법에 의해 제조된 시편은 비교예 1의 종래기술에 의해 제조된 시편에 비교할 때, 추가의 열처리공정과정을 생략했음에도 탄소의 농도를 0.25-0.30 중량%로 조정하여 베이나이트 조직을 생성 및 적정 인성을 확보할 수 있었고, 망간의 농도를 1.6-2.0 중량%로 조정하여 베이나이트 조직의 생성을 촉진 및 적정강도를 확보할 수 있었으며, 티타늄을 0.015 중량%로 조정하여 결정립 미세화를 달성할 수 있었다.As shown in Table 2 , the specimen prepared by the manufacturing method of the present invention of Example 1 compared to the specimen prepared by the prior art of Comparative Example 1, even if the additional heat treatment step omitted the concentration of carbon By adjusting to 0.25-0.30% by weight, it was possible to produce bainite tissue and ensure proper toughness, and by adjusting the concentration of manganese to 1.6-2.0% by weight, it was possible to promote the production of bainite tissue and to secure proper strength. Grain refinement could be achieved by adjusting the titanium to 0.015% by weight.

상기에서 살펴본 바와 같이, 본 발명에 따라 제조된 고강도 베이나이트계 비조질강의 제조방법은 기존의 탄소강에 비하여 제조공정 과정 중 열처리 공정을 단축시킴으로써 제품 리드타임을 단축시키면서 생산원가를 절감시킬 뿐만 아니라 환경폐수 및 대기오염을 감소시킨다. 또한, 본 발명의 제조방법에 따라 제조된 자동차용 부품 로암커넥터는 기존의 탄소강으로 제조된 부품에 비하여 인장강도, 항복강도, 피로강도, 연신율 및 경도가 크게 향상되었다. 아울러, 탄소 농도를 0.25-0.30 중량%로 조정한 합금을 사용함으로써 인장강도, 항복강도, 경도 및 연신율을 향상시켜 기계적 강도를 전반적으로 10% 이상 상승시키면서 제품을 경량화 시킨다.As described above, the manufacturing method of the high strength bainite-based non-manufactured steel manufactured according to the present invention shortens the heat treatment process during the manufacturing process as compared to the existing carbon steel, thereby reducing the production lead time and reducing the production cost. Reduces wastewater and air pollution In addition, the loam connector for automobile parts manufactured according to the manufacturing method of the present invention has significantly improved tensile strength, yield strength, fatigue strength, elongation and hardness, compared to parts manufactured with conventional carbon steel. In addition, by using the alloy adjusted to the carbon concentration of 0.25-0.30% by weight to improve the tensile strength, yield strength, hardness and elongation to increase the mechanical strength overall by 10% or more to lighten the product.

Claims (3)

비조질강 합금 조성물에 있어서, C : 0.25~0.30 중량%, Si : 0.15~0.35 중량%, Mn : 1.6~2.0 중량%, P : 0.014 중량% 미만, S : 0.03 중량% 미만, Cr : 0.2~0.3 중량% , V : 0.15~0.2 중량%, Ni : 0.015 중량% 미만, Ti : 0.015 중량% 미만이고 나머지는 Fe로 구성된 것을 특징으로 하는 베이나이트계 비조질강 합금 조성물.In the non-coated steel alloy composition, C: 0.25-0.30 wt%, Si: 0.15-0.35 wt%, Mn: 1.6-2.0 wt%, P: less than 0.014 wt%, S: less than 0.03 wt%, Cr: 0.2-0.3 A bainite-based non-alloyed steel alloy composition, comprising:% by weight, V: 0.15 to 0.2% by weight, Ni: less than 0.015% by weight, Ti: less than 0.015% by weight. 비조질강 합금 조성물의 제조방법에 있어서, C : 0.25~0.30 중량%, Si : 0.15~0.35 중량%, Mn : 1.6~2.0 중량%, P : 0.014중량% 미만, S : 0.03 중량% 미만, Cr : 0.2-0.3 중량% , V : 0.15-0.2 중량%, Ni : 0.015 중량% 미만, Ti : 0.015 중량% 미만이고 나머지는 Fe로 구성된 베이나이트계 비조질강 합금 조성물을, 용융한 후 열간가공과 동시에 냉각하는 단계로 이루어진 것을 특징으로 하는 고강도 베이나이트계 비조질강 합금 조성물의 제조방법.In the method for producing an amorphous steel alloy composition, C: 0.25 to 0.30% by weight, Si: 0.15 to 0.35% by weight, Mn: 1.6 to 2.0% by weight, P: less than 0.014% by weight, S: less than 0.03% by weight, Cr: 0.2-0.3% by weight, V: 0.15-0.2% by weight, Ni: less than 0.015% by weight, Ti: less than 0.015% by weight, and the remainder of the bainite-based non-alloyed steel alloy composition composed of Fe is melted and cooled simultaneously with hot working Method for producing a high strength bainite-based non-alloy steel alloy composition, characterized in that consisting of a step. C : 0.25~0.30 중량%, Si : 0.15~0.35 중량%, Mn : 1.6~2.0 중량%, P : 0.014 중량% 미만, S : 0.03 중량% 미만, Cr : 0.2-0.3 중량% , V : 0.15-0.2중량%, Ni : 0.015 중량% 미만, Ti : 0.015 중량% 미만이고 나머지는 Fe로 구성된 베이나이트계 비조질강 합금 조성물의 원소재를 1250℃로 가열한 후 열간가공과 동시에 30℃/min 이상의 속도로 냉각하는 제어 냉각과정을 통해 제조되는 것을 특징으로 하는 자동차용 부품.C: 0.25-0.30 wt%, Si: 0.15-0.35 wt%, Mn: 1.6-2.0 wt%, P: less than 0.014 wt%, S: less than 0.03 wt%, Cr: 0.2-0.3 wt%, V: 0.15- The raw material of the bainite-based non-alloyed steel alloy composition composed of 0.2 wt%, less than 0.015 wt% of Ni, and less than 0.015 wt% of Ti, and the remainder was heated at 1250 ° C and at the same time hot-worked at 30 ° C / min or more Automotive parts, which are manufactured through a controlled cooling process to cool by.
KR1020000083028A 2000-12-27 2000-12-27 A microalloyed steel with high strength bainitic structure KR20020053398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000083028A KR20020053398A (en) 2000-12-27 2000-12-27 A microalloyed steel with high strength bainitic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000083028A KR20020053398A (en) 2000-12-27 2000-12-27 A microalloyed steel with high strength bainitic structure

Publications (1)

Publication Number Publication Date
KR20020053398A true KR20020053398A (en) 2002-07-05

Family

ID=27686774

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000083028A KR20020053398A (en) 2000-12-27 2000-12-27 A microalloyed steel with high strength bainitic structure

Country Status (1)

Country Link
KR (1) KR20020053398A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030008852A (en) * 2001-07-20 2003-01-29 현대자동차주식회사 High strength bainitic microalloyed steel for automotive chassy component
KR20040037738A (en) * 2002-10-30 2004-05-07 현대자동차주식회사 Method for manufacturing lower arm connector with high strength and high toughness
CN100404700C (en) * 2005-08-30 2008-07-23 Bpw(梅州)车轴有限公司 Heat treatment process for raising comprehensive performace of low alloy structure steel
KR101721587B1 (en) * 2015-12-11 2017-03-30 주식회사 세아베스틸 Bainitic Steel For Automotive Hub With High Strength And High Toughness And Method For Manufacturing the Same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64222A (en) * 1987-03-26 1989-01-05 Nippon Steel Corp Production of non-tempered and forged parts
JPH01129953A (en) * 1987-11-16 1989-05-23 Kobe Steel Ltd High strength non-heat treated steel and its manufacture
JPH04210449A (en) * 1990-12-12 1992-07-31 Toa Steel Co Ltd High toughness non-heat treated steel for hot forging
JPH10330836A (en) * 1997-05-30 1998-12-15 Toa Steel Co Ltd Production of hot forged parts excellent in machinability and fatigue characteristic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64222A (en) * 1987-03-26 1989-01-05 Nippon Steel Corp Production of non-tempered and forged parts
JPH01129953A (en) * 1987-11-16 1989-05-23 Kobe Steel Ltd High strength non-heat treated steel and its manufacture
JPH04210449A (en) * 1990-12-12 1992-07-31 Toa Steel Co Ltd High toughness non-heat treated steel for hot forging
JPH10330836A (en) * 1997-05-30 1998-12-15 Toa Steel Co Ltd Production of hot forged parts excellent in machinability and fatigue characteristic

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030008852A (en) * 2001-07-20 2003-01-29 현대자동차주식회사 High strength bainitic microalloyed steel for automotive chassy component
KR20040037738A (en) * 2002-10-30 2004-05-07 현대자동차주식회사 Method for manufacturing lower arm connector with high strength and high toughness
CN100404700C (en) * 2005-08-30 2008-07-23 Bpw(梅州)车轴有限公司 Heat treatment process for raising comprehensive performace of low alloy structure steel
KR101721587B1 (en) * 2015-12-11 2017-03-30 주식회사 세아베스틸 Bainitic Steel For Automotive Hub With High Strength And High Toughness And Method For Manufacturing the Same

Similar Documents

Publication Publication Date Title
CN102925812B (en) Hot rolling diaphragm spring steel for automobile and production method of hot rolling diaphragm spring
CN110306123A (en) A kind of tensile strength &gt;=1800MPa grades of high-toughness hot forming steel and its production method
CN107974636A (en) A kind of high rigidity high-hardenability pre-hardening plastic die steel and preparation method thereof
KR20150061516A (en) Mold Steel and Manufacturing Method Thereof
CN107254635B (en) It is a kind of to exempt from annealed alloy steel wire rod and its production method with excellent drawing property
CN108660390A (en) A kind of high impact toughness cold work die steel and preparation method thereof
CN110343960A (en) A kind of high cold-bending property automobile steel and its manufacturing method
CN102021493A (en) Hot rolled steel plate for precision stamping and manufacturing method thereof
KR20010060772A (en) A non qt steel having superior strength and toughness and a method for manufacturing wire rod by using it
KR101883290B1 (en) Method for manufacturing for austempered ductile cast iron
JP3554506B2 (en) Manufacturing method of hot-rolled wire and bar for machine structure
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JPH11217649A (en) Steel for induction hardening having both cold workability and high strength and its production
KR20020053398A (en) A microalloyed steel with high strength bainitic structure
KR20030096892A (en) The Manufacturing method for high strength connecting rod of large commercial vehicle
KR20090030544A (en) Non quenched and tempered steel for hot forging with excellent impact toughness and a method for manufacturing the same and the chassis parts for automobile using the same
KR100957306B1 (en) Forging steel using high frequency heat treatment and method for manufacturing the same
JPH0425343B2 (en)
CN114293098A (en) High-strength and high-toughness bainite non-quenched and tempered steel suitable for large-specification forge piece
KR101140911B1 (en) Method for producing of V-Free microalloyed steel having equality quality of quenching and tempered alloy steel
CN114438401A (en) High-strength and high-toughness non-quenched and tempered steel for die carrier and production method thereof
KR101149249B1 (en) Method for producing of V-Free microalloyed steel having equality quality of quenching and tempered carbon steel
KR100368552B1 (en) Hot forged steel with low material deviation and its manufacturing method
KR20030008852A (en) High strength bainitic microalloyed steel for automotive chassy component
KR100206354B1 (en) Manufacturing method of forging die and tool steel and the same product

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application