KR20020052465A - Method for chemical vapor deposition - Google Patents

Method for chemical vapor deposition Download PDF

Info

Publication number
KR20020052465A
KR20020052465A KR1020000081754A KR20000081754A KR20020052465A KR 20020052465 A KR20020052465 A KR 20020052465A KR 1020000081754 A KR1020000081754 A KR 1020000081754A KR 20000081754 A KR20000081754 A KR 20000081754A KR 20020052465 A KR20020052465 A KR 20020052465A
Authority
KR
South Korea
Prior art keywords
chemical vapor
vapor deposition
reactor
thin film
silylation agent
Prior art date
Application number
KR1020000081754A
Other languages
Korean (ko)
Inventor
류현규
조윤석
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1020000081754A priority Critical patent/KR20020052465A/en
Publication of KR20020052465A publication Critical patent/KR20020052465A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: A method for chemical vapor deposition is provided to increase a vapor pressure and improve a carrying characteristic of raw material by implanting a silylation agent into a halogen gas. CONSTITUTION: An organic metal compound as a reaction material is vaporized in a vaporizer. The vaporized organic metal compound is implanted into a reactor by using a carrier gas. A high dielectric layer is formed on a semiconductor substrate loaded in the reactor. A silylation agent is implanted into the carrier gas. Main metals of the organic metal compound are selected from groups which are formed by Ba, Sr, Ti, Pb, Zr, Bi, Cu, and their combination. The organic metal compound is selected from groups which are formed by β-diketinate, acetylacetonate, alkoxide, and their combination. The silylation agent is selected from groups which are formed by hexametyldisilazane, trimethylchlorosilane, N-methyl-N-trimethysilutrifluoroaceamaide, t-butyldimethylchlorosilane, and their combination.

Description

화학기상증착방법{Method for chemical vapor deposition}Chemical vapor deposition method

본 발명은 화학 기상증착방법에 관한 것으로, 보다 상세하게 고유전체 박막을 반도체 기판에 균일하게 형성하기 위한 유기 금속 화학 기상 증착(Metal Organic Chemical Vapor Deposition; 이하 MOCVD 라 함) 방법에 관한 것이다.The present invention relates to a chemical vapor deposition method, and more particularly to a method of metal organic chemical vapor deposition (hereinafter referred to as MOCVD) for uniformly forming a high dielectric thin film on a semiconductor substrate.

1 기가(Giga) 급 이상의 차세대 디램(DRAM) 에서는 기존의 박막(Thin Film)을 이용하여 충분한 정전용량(Capacitance)을 얻을 수 없으며, 반도체 소자가 고집적화(Scale-down) 될 수록 셀 면적이 감소하여 기존의 핀(Fin), 실린더 구조와 같은 3차원적인 캐패시터(Capacitor) 구조를 형성하기가 어렵다.In the next generation DRAM (Giga) of 1 Giga level or more, sufficient capacitance cannot be obtained using the existing thin film, and the cell area decreases as the semiconductor device becomes highly down-scaled. It is difficult to form a three-dimensional capacitor structure such as a conventional fin, cylinder structure.

또한 박막의 두께가 감소하게 되면 반도체 기판의 불순물 영역인 소오스(Source) 및 드레인(Drain)에서 접합 누설전류(Leakage Current)가 증가하게 되며, 알파 입자(α-Particle)에 의하여 캐패시터에 저장된 정보를 변화 또는 유실시키는 소프트 에러(Soft Error)가 발생되기 때문에 신뢰성있는 캐패시터를 구현하기가 어렵고, 캐패시터의 복잡한 입체구조에 따른 후속공정이 어렵게 된다.In addition, as the thickness of the thin film decreases, the junction leakage current increases in the source and the drain, which are impurity regions of the semiconductor substrate, and the information stored in the capacitor by the alpha particles Since soft error occurs that changes or is lost, it is difficult to implement a reliable capacitor and a subsequent process due to the complex three-dimensional structure of the capacitor is difficult.

따라서, 최근에는 고유전율 재료인 BST(BaSrTiO3), SrTiO3등을 캐패시터의박막으로 응용하기 위한 고유전체 박막 증착 장치에 대한 연구가 활발히 전개되고 있다.Therefore, in recent years, has been actively developed a study of the high-dielectric thin film deposition apparatus for the application of such a high-k material, BST (BaSrTiO 3), SrTiO 3 with a thin film of a capacitor.

고유전체 물질을 제조하는 방법으로는 스퍼터링(Sputtering) 방법, 졸-겔(Sol-Gel) 방법, 레이져 어브레이션(Laser Ablation) 방법, 유기금속 화학기상증착(MOCVD) 방법등이 있다. 이 중 상기 MOCVD 방법은 균일한 박막을 얻을 수 있을 뿐만 아니라, 박막의 조성을 쉽게 조절할 수 있어 최근 MOCVD 법을 이용한 고유전체 박막 증착 장치 개발이 활발히 진행되고 있다.Methods of preparing the high dielectric material include a sputtering method, a sol-gel method, a laser ablation method, and an organometallic chemical vapor deposition (MOCVD) method. Among these, the MOCVD method can not only obtain a uniform thin film but also easily control the composition of the thin film, and thus, the development of a high-k thin film deposition apparatus using the MOCVD method has been actively conducted.

일반적으로 MOCVD 장치는 도1과 같이 반응원료 소오스 앰퓰(10), 반응원료를 전달하는 액체 마이크로 펌프(20), 기화기(30), 반응기(70), 트랩(60) 및 진공펌프등을 포함한다.In general, the MOCVD apparatus includes a reaction source source ampule 10, a liquid micropump 20, a vaporizer 30, a reactor 70, a trap 60, and a vacuum pump as shown in FIG. .

이하, 종래기술에 따른 MOCVD 방법에 대하여 설명하기로 한다.Hereinafter, the MOCVD method according to the prior art will be described.

먼저, 소오스 앰플에 적재된 반응원료를 유기용제로 용해하여 액체상태로 만든 다음, 액체 마이크로 펌프와 같은 반응원료 전달장치를 통해 상기 유기 화합물이 포함된 반응원료를 기화기로 이동시켜 가열하거나 다른 에너지원을 사용하여 기화시키고, 아르곤, 질소 등의 할로겐 가스를 운반가스(Carrier Gas)로 이용하여 반응기 내에 로딩(Loading) 되어 있는 반도체 기판 상부에 박막을 증착하는 과정으로 이루어진다.First, the reaction material loaded in the source ampoule is dissolved in an organic solvent to form a liquid state, and then the reaction material containing the organic compound is transferred to a vaporizer through a reaction material delivery device such as a liquid micropump, and heated or other energy source. Vaporization is carried out using a gas, and a thin film is deposited on the semiconductor substrate loaded in the reactor using a halogen gas such as argon and nitrogen as a carrier gas.

그러나, 유기용제에 용해된 반응원료를 상기 반응기로 이동시키는 과정에서, 운반가스로 사용되는 할로겐 가스는 온도가 높고 분압이 낮은 특성을 갖기 때문에 상기 기화기에 열을 가하지 않아도 유기용제의 기화온도가 반응원료의 기화온도보다 매우 낮아 유기용제가 반응원료보다 먼저 분리된다. 이에 따라 반응원료가 응축(Recondensation)되는 현상이 발생한다.However, in the process of moving the reaction material dissolved in the organic solvent to the reactor, since the halogen gas used as a carrier gas has a high temperature and low partial pressure characteristics, the vaporization temperature of the organic solvent is reacted even if no heat is applied to the vaporizer. Lower than the vaporization temperature of the raw material, the organic solvent is separated before the reaction raw material. As a result, the reaction material is condensed.

상기와 같이 응축된 반응원료가 상기 기화기와 반응기 사이의 박막 전송라인을 막아 반응원료가 반응기로 균일하게 전달되지 않으며, 증착된 박막의 특성을 저하시키게 된다.The condensed reaction raw material blocks the thin film transmission line between the vaporizer and the reactor so that the reaction raw material is not uniformly transferred to the reactor, thereby degrading the deposited thin film.

또한, 박막 증착에 필요한 반응원료의 증기압을 일정하게 유지하기 위하여 기화기에 열을 가하는 경우에도 반응원료보다 유기용제가 먼저 기화됨에 따라 상기 반응원료가 분해(Decomposition)되는 현상이 발생한다.In addition, even when heat is applied to the vaporizer to maintain a constant vapor pressure of the reaction material required for thin film deposition, the reaction material is decomposed as the organic solvent is vaporized before the reaction material.

이때 분해된 반응원료 또한 기화기와 반응기 사이의 박막 전송라인을 막아 상기 반응기로 반응원료가 균일하게 전달되지 않아 전기적 특성이 우수한 신뢰성 있는 박막을 형성하기가 어려운 문제점이 있다.In this case, the decomposed reaction material also blocks the thin film transmission line between the vaporizer and the reactor, so that the reaction material is not uniformly transferred to the reactor, thereby making it difficult to form a reliable thin film having excellent electrical characteristics.

상기와 같은 문제점을 해결하기 위하여 종래에는 테트라하이드로퓨란 (tetrahydrofuran ; THF) 등의 유기용매를 녹여 분해된 반응원료의 운반 특성을 향상시키려고 했지만, 금속 원소의 분압이 상대적으로 낮기 때문에 증착속도, 박막의 특성 및 장비의 운정성이 저하되는 문제점이 있다.In order to solve the above problems, conventionally, an organic solvent such as tetrahydrofuran (THF) was dissolved to improve the transport characteristics of a decomposed reaction raw material.However, since the partial pressure of the metal element is relatively low, the deposition rate, thin film There is a problem that the characteristics and the mobility of the equipment is lowered.

상기의 문제점을 해결하기 위하여, 본 발명은 고유전체, 즉 다성분계 유기금속을 증착하는 공정에서 운반가스로 사용되는 할로겐 가스에 실릴레이션 에이젼트(silylation agent)를 주입시켜 MOCVD공정에서 증기압을 증가시키고, 원료물질의 운반특성을 향상시키는 화학기상증착방법을 제공함에 그 목적이 있다.In order to solve the above problems, the present invention is to increase the vapor pressure in the MOCVD process by injecting a silylation agent (silylation agent) in the halogen gas used as a carrier gas in the process of depositing a high-dielectric, multi-component organic metal, It is an object of the present invention to provide a chemical vapor deposition method for improving the transport characteristics of raw materials.

상기 목적을 달성하기 위한 본 발명에 따른 상기 목적을 달성하기 위한 화학기상증착방법은,Chemical vapor deposition method for achieving the above object according to the present invention for achieving the above object,

유기 금속 화학증착방법에 있어서,In organometallic chemical vapor deposition method,

반응원료인 다성분계 유기 금속 화합물을 기화기에서 기화시키는 단계와,Vaporizing a multi-component organometallic compound, which is a reaction raw material, in a vaporizer;

상기 기화된 유기금속화합물을 운반가스를 이용하여 반응기로 주입시켜 반응기 내에 로딩된 반도체 기판 상에 고유전체 박막을 형성하는 방법에 있어서,In the method of injecting the vaporized organometallic compound into the reactor using a carrier gas to form a high-k dielectric thin film on a semiconductor substrate loaded in the reactor,

상기 운반가스에 실릴레이션 에이젼트를 주입하는 것을 특징으로 한다.Injecting a silylation agent into the carrier gas.

이하, 본 발명에 대하여 상세한 설명을 하기로 한다.Hereinafter, the present invention will be described in detail.

먼저, 소스 앰퓰(Source Ampule)에 각각 저장되어 있는 반응원료 예컨데, 유기금속화합물을 유기용제와 함께 반응원료 전달수단인 액체 마이크로 펌프를 통해 기화기로 전달시킨다. 이때, 상기 유기금속화합물은 Ba, Sr, Ti, Pb, Zr, Bi 또는 Cu를 중심금속으로 하고, β-디케토네이트(β-diketonate), 아세틸아세토네이트(acetylacetonate), 알콕사이드(alkoxide)계열의 물질이 포함된다.First, a reaction raw material stored in each of the source ampules, for example, the organic metal compound is transferred to the vaporizer through a liquid micro pump which is a reaction raw material delivery means together with the organic solvent. At this time, the organometallic compound is Ba, Sr, Ti, Pb, Zr, Bi or Cu as the central metal, β-diketonate (β-diketonate), acetylacetonate (acetylacetonate), alkoxide (alkoxide) series Substances are included.

이어서 아르곤, 질소 등의 운반가스를 이용하여 기체 상태의 반응원료를 노즐을 통해 반응기로 주입시킨다. 이때, 상기 운반가스에 실릴레이션 에이젼트를 주입한다. 상기 원료물질을 운반하고 있는 운반관의 중간에 히팅 박스와 믹싱 챔버가 있으며, 상기 실릴레이션 에이젼트는 상기 히팅 박스 또는 믹싱 챔버 어느 곳에도 주입할 수 있다. 상기 실릴레이션 에이젼트는 HMDS (hexametyldisilazane), TMCS(trimethylchlorosilane), MSRFA (N-methyl-N-trimethylsilutrifluoroaceamaide) 또는 t-BuDMCS (t-butyldimethylchlorosilane)이 사용된다.Subsequently, a gaseous reaction raw material is injected into the reactor through a nozzle using a carrier gas such as argon or nitrogen. At this time, the silylation agent is injected into the carrier gas. There is a heating box and a mixing chamber in the middle of the conveying pipe for conveying the raw material, the silylation agent can be injected in any of the heating box or mixing chamber. The silylation agent may be used as hexametyldisilazane (HMDS), trimethylchlorosilane (TMCS), N-methyl-N-trimethylsilutrifluoroaceamaide (MSRFA) or t-butyldimethylchlorosilane (t-BuDMCS).

상기 실릴레이션 에이젼트에 의해 반응원료의 증기압을 증가시켜 운반특성을 향상시킬 수 있다.The silylation agent can increase the vapor pressure of the reaction raw material to improve the transport characteristics.

그 후, 반응기내에 로딩되어 있는 반도체 기판 상부에 박막을 증착시킨다.Thereafter, a thin film is deposited on the semiconductor substrate loaded in the reactor.

이상 상술한 바와 같이, 본 발명에 따른 화학 기상증착 장치로 고유전체 박막을 형성하면, 유기금속화합물의 증기압을 증가시켜 운반특성을 향상시킬 수 있어 조성비가 균일한 박막을 형성할 수 있고, 반응원료를 안정하게 반응기로 전달함에 따라 박막의 재현성을 확보할 수 있다.As described above, when the high-k dielectric thin film is formed by the chemical vapor deposition apparatus according to the present invention, the transport characteristics can be improved by increasing the vapor pressure of the organometallic compound, thereby forming a thin film having a uniform composition ratio, and the reaction raw material. By stably delivering to the reactor can ensure the reproducibility of the thin film.

Claims (4)

유기 금속 화학증착방법에 있어서,In organometallic chemical vapor deposition method, 반응원료인 다성분계 유기 금속 화합물을 기화기에서 기화시키는 단계와,Vaporizing a multi-component organometallic compound, which is a reaction raw material, in a vaporizer; 상기 기화된 유기금속화합물을 운반가스를 이용하여 반응기로 주입시켜 반응기 내에 로딩된 반도체 기판 상에 고유전체 박막을 형성하는 방법에 있어서,In the method of injecting the vaporized organometallic compound into the reactor using a carrier gas to form a high-k dielectric thin film on a semiconductor substrate loaded in the reactor, 상기 운반가스에 실릴레이션 에이젼트를 주입하는 것을 특징으로 하는 화학기상증착방법Chemical vapor deposition method characterized by injecting a silylation agent into the carrier gas 제 1 항에 있어서,The method of claim 1, 상기 유기금속화합물을 구성하는 중심금속은 Ba, Sr, Ti, Pb, Zr, Bi, Cu 및 이들의 조합으로 이루어지는 군에서 선택되는 것을 특징으로 하는 화학 기상증착 장치.The core metal constituting the organometallic compound is selected from the group consisting of Ba, Sr, Ti, Pb, Zr, Bi, Cu and combinations thereof. 제 1 항에 있어서,The method of claim 1, 상기 유기금속화합물은 β-디케토네이트(β-diketonate), 아세틸아세토네이트(acetylacetonate), 알콕사이드(alkoxide)계열 및 이들의 조합으로 이루어지는 군에서 선택되는 물질을 포함하는 것을 특징으로 하는 화학기상증착방법.The organometallic compound is a chemical vapor deposition method characterized in that it comprises a material selected from the group consisting of β-diketonate (β-diketonate), acetylacetonate, alkoxide (alkoxide) series and combinations thereof . 제 1 항에 있어서,The method of claim 1, 상기 실릴레이션 에이젼트는 HMDS (hexametyldisilazane), TMCS (trimethylchlorosilane), MSRFA (N-methyl-N-trimethylsilutrifluoroaceamaide), t-BuDMCS (t-butyldimethylchlorosilane) 및 이들의 조합으로 이루어지는 군에서 선택되는 것을 특징으로 하는 화학 기상 증착 방법.The silylation agent is selected from the group consisting of hexametyldisilazane (HMDS), trimethylchlorosilane (TMCS), N-methyl-N-trimethylsilutrifluoroaceamaide (MSRFA), t-butyldimethylchlorosilane (t-BuDMCS), and a combination thereof. Deposition method.
KR1020000081754A 2000-12-26 2000-12-26 Method for chemical vapor deposition KR20020052465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000081754A KR20020052465A (en) 2000-12-26 2000-12-26 Method for chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000081754A KR20020052465A (en) 2000-12-26 2000-12-26 Method for chemical vapor deposition

Publications (1)

Publication Number Publication Date
KR20020052465A true KR20020052465A (en) 2002-07-04

Family

ID=27685773

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000081754A KR20020052465A (en) 2000-12-26 2000-12-26 Method for chemical vapor deposition

Country Status (1)

Country Link
KR (1) KR20020052465A (en)

Similar Documents

Publication Publication Date Title
US6008143A (en) Metal organic chemical vapor deposition apparatus and deposition method
US7332032B2 (en) Precursor mixtures for use in preparing layers on substrates
US6506666B2 (en) Method of fabricating an SrRuO3 film
US6340769B1 (en) Method of fabricating iridium-based materials and structures on substrates, and iridium source reagents therefor
US5866205A (en) Process for titanium nitride deposition using five- and six-coordinate titanium complexes
US6350686B1 (en) Organometallic compound mixtures in chemical vapor deposition
US6511718B1 (en) Method and apparatus for fabrication of thin films by chemical vapor deposition
JPH0927602A (en) Manufacture of capacitor and large capacitance capacitor
US5372850A (en) Method of manufacturing an oxide-system dielectric thin film using CVD method
US6444264B2 (en) Method for liquid delivery CVD utilizing alkane and polyamine solvent compositions
US6214105B1 (en) Alkane and polyamine solvent compositions for liquid delivery chemical vapor deposition
KR20210041843A (en) Novel precursor for metal containing thin film, deposition method of film and semiconductor device of the same
KR101684660B1 (en) Precursor composition for forming zirconium-containing thin film and method for preparing zirconium-containing thin film using the same
JP2002211924A (en) Multiphase lead germanate film and method for depositing the same
US6344079B1 (en) Alkane and polyamine solvent compositions for liquid delivery chemical vapor deposition
US20020192376A1 (en) High efficiency method for performing a chemical vapordeposition utilizing a nonvolatile precursor
KR20020042228A (en) Formation system and method for Sr-Ta-O thin films
KR100398495B1 (en) DEPOSITION AND ANNEALING OF MULTICOMPONENT ZrSnTi AND HfSnTi OXIDE THIN FILMS USING SOLVENTLESS LIQUID MIXTURE OF PRECURSORS
US6448191B2 (en) Method of forming high dielectric constant thin film and method of manufacturing semiconductor device
KR20020052465A (en) Method for chemical vapor deposition
JP3034263B2 (en) Thin film forming equipment
KR100291203B1 (en) METHOD FOR MANUFACTURING PLATINUM(Pt) THIN FILM FOR LOWER ELECTRODE OF DIELECTRICS
KR100428877B1 (en) Method of manufacturing insulating layer of semiconductor device using en solution
KR20030020643A (en) Lanthanum complex and method for the preparation of a blt thin layer using same
EP1961755A1 (en) Strontium silylamides, adducts thereof with Lewis bases, preparation thereof and deposition of strontium thin films

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination