KR20020050011A - A method for manufacturing far infrared radiating body using spent bricks - Google Patents

A method for manufacturing far infrared radiating body using spent bricks Download PDF

Info

Publication number
KR20020050011A
KR20020050011A KR1020000079340A KR20000079340A KR20020050011A KR 20020050011 A KR20020050011 A KR 20020050011A KR 1020000079340 A KR1020000079340 A KR 1020000079340A KR 20000079340 A KR20000079340 A KR 20000079340A KR 20020050011 A KR20020050011 A KR 20020050011A
Authority
KR
South Korea
Prior art keywords
far
mgo
waste
infrared
metal
Prior art date
Application number
KR1020000079340A
Other languages
Korean (ko)
Other versions
KR100490992B1 (en
Inventor
이재영
손진군
Original Assignee
이구택
주식회사 포스코
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 주식회사 포스코, 신현준, 재단법인 포항산업과학연구원 filed Critical 이구택
Priority to KR10-2000-0079340A priority Critical patent/KR100490992B1/en
Publication of KR20020050011A publication Critical patent/KR20020050011A/en
Application granted granted Critical
Publication of KR100490992B1 publication Critical patent/KR100490992B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/003Separation of articles by differences in their geometrical form or by difference in their physical properties, e.g. elasticity, compressibility, hardness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0097Anion- and far-infrared-emitting materials

Abstract

PURPOSE: Provided is a method for producing a far-infrared emitter by removing undesired components from a basic waste brick by a series of treatment to granulate the brick. CONSTITUTION: The method comprises the steps of (i) roughly crushing a MgO waste brick into particles having diameter of 1-5 mm, (ii) sieving the crushed MgO waste brick using 1 mm or less, 1-3 mm, 3-5 mm, 5 mm or more sieves, (ii) magnetically the sieved MgO waste brick having diameter of 1-5 mm to remove metal Fe component, and (iii) grinding the MgO waste brick. The grinding is performed so that size of the particles is below 100 mesh and at least 17 micrometer.

Description

폐연와를 이용한 원적외선 방사체 제조방법{A METHOD FOR MANUFACTURING FAR INFRARED RADIATING BODY USING SPENT BRICKS}Method for manufacturing far-infrared radiator using waste smoke {A METHOD FOR MANUFACTURING FAR INFRARED RADIATING BODY USING SPENT BRICKS}

본 발명은 원적외선 방사 분말의 제조에 관한 것으로, 보다 상세하게는 MgO 폐연와를 가공하여 원적외선 방사효율이 우수한 원적외선 방사체를 제조하는 방법에 관한 것이다.The present invention relates to the production of far-infrared radiation powder, and more particularly, to a method for producing a far-infrared radiator having excellent far-infrared radiation efficiency by processing MgO waste lead.

원적외선이란 적외선 중 파장이 다소 긴 2.5 ~ 20 마이크로미터 범위의 광에너지로서 일종의 전자파라 할 수 있다. 이와 같은 원적외선은 모든 재료에서 0 K 이상의 온도에서 방사되지만, 특정 세라믹의 경우 방사량이 매우 높아지는데 이를 원적외선 방사체라 불리운다. 원적외선은 방사에 의해 에너지가 전달되므로 에너지 효율이 높아 이를 이용한 많은 응용이 되고 있다(대한민국 특허공고 제95-8584호). 또한, 인체 대한 효능이 알려지면서 원적외선 사우나로부터 가전제품 및 일반 건축소재에 이르기까지 다양한 용도로 활용되고 있다.Far infrared rays are a kind of electromagnetic energy in the range of 2.5 to 20 micrometers with a longer wavelength among infrared rays. Such far infrared rays are radiated at temperatures above 0 K in all materials, but for certain ceramics the radiation rate is very high, which is called far infrared radiator. Far-infrared rays have high energy efficiency because energy is transmitted by radiation, and many applications have been made using them (Korean Patent Publication No. 95-8584). In addition, as the efficacy on the human body is known, it is being used for various purposes from far-infrared saunas to home appliances and general building materials.

이와같은 원적외선 방사체로는 옥, 맥반석(대한민국 특허출원 제88-1616호, 제95-26761호) 등이 대표적인 재료로 잘 알려져 있으며, 그 외에도 천이금속계 산화물(대한민국 특허공고 제95-8584호)에서 원적외선 방사효율이 높은 것으로 알려져 있다. 그러나, 이와같은 재료들은 원적외선의 특성이 알려지면서 가치가 올라 가격이 고가인 단점이 있어 범용성에 한계가 있었다. 이에 따라 최근에는 폐기물을 사용한 원적외선 방사체 개발이 시도되고 있다.Such far-infrared emitters are well known as jade and ganban stone (Korean Patent Application Nos. 88-1616, 95-26761), and other transition metal-based oxides (Korean Patent Publication No. 95-8584). It is known that the far infrared radiation efficiency is high. However, these materials have a disadvantage in that the far-infrared rays are expensive due to the known characteristics of far-infrared rays. Accordingly, in recent years, development of far-infrared radiators using wastes has been attempted.

그 대표적인 기술에는 SiO2, CaO가 주성분이며 미량성분으로 Al2O3, FeO, MgO, MnO가 포함된 금속 제련과정에서 발생하는 폐기물인 전기로 큐폴라 슬라그를 이용한 방사체(일본 특허공개 제97-32445호) 등이 있다. 그러나, 이와같은 제련공정에서 발생하는 슬라그는 상기 여러 가지 성분이 포함되어 있는 광물상으로 존재하며 부피가 커서 가공이 용이하지 않아 미립 분말화가 어렵다는 단점이 있다. 또한, 원적외선 방사 특성상 원하지 않는 물질, 예를 들면 FeO 성분의 분리를 하고자 할 때에는 결정구조내에 포함된 FeO 성분의 경제적 분리가 불가능하다는 단점이 있었다.The representative technique is a radiator using an electric cupola slag, which is a waste generated from a metal smelting process containing SiO 2 and CaO as a main component and Al 2 O 3 , FeO, MgO and MnO as trace components (Japanese Patent Publication No. 97-32445 Ho). However, the slag generated in the smelting process is present in the mineral phase containing the various components and has a disadvantage that it is difficult to be fine powdered because the volume is not easy to process. In addition, there is a disadvantage that economic separation of the FeO component contained in the crystal structure is impossible when the separation of unwanted substances, for example, FeO component due to the far infrared radiation characteristics.

본 발명은 이와같은 종래의 문제점을 해결하고자 제안된 것으로서 그 목적은 제철소 제강공장에서 발생하는 염기성 폐연와를 일련의 처리 거쳐 원하지 않은 성분을 간단히 제거하여 미립화를 도모하므로써, 고효율 원적외선 방사체를 제공하는데 있다.The present invention has been proposed to solve such a conventional problem, and an object thereof is to provide a highly efficient far-infrared emitter by facilitating atomization by simply removing unwanted components through a series of basic waste smoke generated in a steel mill. .

상기 목적달성을 위한 본 발명은 원적외선 방사체의 제조방법에 있어서,In the present invention for achieving the above object in the manufacturing method of the far infrared radiator,

MgO 폐연와를 1-5mm의 입도가 되도록 분쇄 가공하는 단계;Grinding the MgO waste lead to a particle size of 1-5 mm;

분쇄된 1-5mm 입도의 MgO 폐연와를 자기적으로 분리하여 금속 Fe 성분을 제거하는 단계 및Magnetically separating the pulverized MgO waste smoke of 1-5mm particle size to remove the metal Fe component and

상기 불순물이 제거된 MgO 폐연와를 미분쇄하는 단계를 포함하는, 폐연와를 이용한 원적외선 방사체 제조 방법에 관한 것이다.The present invention relates to a far-infrared radiator manufacturing method using waste smoke, comprising pulverizing MgO waste smoke obtained by removing the impurities.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

순수한 MgO 연와를 제강공정에서 사용하면 침식 등에 의하여 더 이상 사용하지 못할 때 MgO 폐연와가 발생된다. 이러한 마그네시아 폐연와는 발생 원리상 철이라는 불순물을 함유한다. 폐연와 중에 함유된 철 성분은 대부분 금속 Fe로서 3.5% 정도 존재하는데, 금속 계통의 물질은 원적외선 방사효율을 급격히 저하시키는 것으로 알려져 있다. 따라서 폐연와를 원적외선 방사체로 사용하기 위해서는 폐연와내에 포함되어 있는 금속 Fe의 분리가 반드시 수반되어야 원적외선 방사체화가 가능하다.When pure MgO lead is used in the steelmaking process, MgO spent lead is generated when it is no longer used by erosion. This magnesia waste smoke contains an impurity called iron in principle of generation. Most of the iron contained in the waste smoke and the metal Fe is present about 3.5%, the metal-based material is known to drastically reduce the far infrared radiation efficiency. Therefore, in order to use the spent smoke as a far infrared emitter, the separation of the metal Fe contained in the closed smoke must be accompanied to enable the far infrared emitter.

본 발명은 MgO 성분이 주성분인 폐연와를 일련의 불순물 제거 처리를 거치고 미립화를 하여 높은 원적외선 방사효율을 갖도록 함에 특징이 있다.The present invention is characterized in that it has a high far-infrared radiation efficiency by performing atomization of a series of waste lead with MgO component as a main component.

폐연와 중에 함유된 금속 Fe는 육안으로도 식별이 가능하지만 폐연와와 물리적으로 용착되어 있는 상태이므로 이를 분리하기는 쉽지 않다. 그러나, 본 발명자들의 실험 결과, 폐연와 중에 함유된 철 불순물은 광물학적으로 다른 주성분과 결합되어 있지 않아 분리가 가능함을 알았다.The metal Fe contained in the waste lead can be identified by the naked eye, but since it is physically deposited with the waste lead, it is not easy to separate it. However, as a result of the experiments of the present inventors, it was found that the iron impurity contained in the waste lead and the mineral can be separated because it is not mineralogically combined with other main components.

이하, 본 발명의 핵심 내용인 폐연와에서 원하지 않는 성분, 즉 철 불순물의 분리방법을 설명하면, 먼저 MgO 폐연와를 1-5mm의 입도가 되도록 분쇄함이 필요하다. 폐연와를 jaw crusher 등의 분쇄기를 통하여 1- 5mm 정도의 크기로 조분쇄를하면 조분쇄 과정에서 융착된 대부분의 금속 Fe는 떨어져 폐연와 기본 조성 분말과 독립된 형태로 존재한다.Hereinafter, the separation method of the unwanted components, that is, iron impurities from the waste lead that is the core of the present invention, first, it is necessary to grind the MgO waste lead to a particle size of 1-5mm. When the waste smoke is coarsely crushed to a size of 1-5 mm through a crusher such as jaw crusher, most of the metal Fe fused in the coarse grinding process falls apart and exists in a form independent of the waste smoke and the basic composition powder.

그 후 자장을 걸어주면서 유동을 시키면 독립된 금속 Fe는 자장을 내는 쪽으로 움직이게 되어 폐연와 기본 조성과 금속 Fe는 매우 쉽게 분리 가능하다. 따라서, 본 발명에서는 특별한 자기분리 장치를 이용하지 않고 1mm크기의 알갱이를 흔들어 주면서 자석으로 분리하면 충분하므로 기존의 분리방법에 비하여 매우 간편한 잇점이 있다.Then, when flowing while applying a magnetic field, the independent metal Fe moves toward the magnetic field, so the waste smoke and the basic composition and the metal Fe can be easily separated. Therefore, in the present invention, it is enough to separate the magnet of shaking 1mm size without using a special magnetic separation device, so it is very easy compared to the conventional separation method.

이와같은 Fe 성분 분리를 통하면 분말의 미립화도 용이하게 이루어져 고효율을 갖는 원적외선 방사체를 얻을 수 있다. 즉, 상기 Fe 불순물이 제거된 MgO 폐연와 분말을 미분쇄하면 적어도 방사효율이 0.9 이상인 원적외선 방사 분말이 제공된다. 이때, 최종 미분쇄는 Fe 불순물이 제거된 MgO 폐연와 분말을 100mesh 이하 17마이크로 이상의 입도가 되도록 하는 것이 바람직하다.Through such separation of the Fe component it is also possible to easily atomize the powder to obtain a far-infrared emitter having high efficiency. That is, when finely pulverizing the MgO waste smoke and the powder from which the Fe impurities are removed, a far-infrared radiation powder having a radiation efficiency of at least 0.9 is provided. At this time, the final pulverization is preferably made so that the MgO waste smoke and powder from which Fe impurities are removed to have a particle size of less than 100 mesh or more than 17 microns.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예1]Example 1

폐연와를 jaw crusher로 조분쇄 한 후, 1mm 이하, 1-3mm, 3-5mm , 5mm 이상의 채를 이용하여 분급을 하였다. 그 후, 분급된 입자를 회전 가능한 용기에 100g 씩 담고, 이 용기 위에 자석을 설치하여 3분 회전 후 자석에 붙는 물질의 양과 상태를 조사하였다. 표 1에 입자크기에 따른 분리 효과를 나타내었다.After pulverizing the spent wort with a jaw crusher, it was classified using less than 1mm, 1-3mm, 3-5mm, 5mm or more. Thereafter, 100 g of each of the classified particles was placed in a rotatable container, and a magnet was placed on the container, and the amount and state of the substance adhered to the magnet after 3 minutes of rotation were examined. Table 1 shows the separation effect according to the particle size.

구분division 조분쇄 입도Coarse particle size 자석 부착량(g)Magnet Attachment Weight (g) 자석부착물질 검사결과Magnetic Attachment Test Results 잔류물질 검사결과Residual Material Test Results 비교예1Comparative Example 1 5mm 이상5mm or more 2.32.3 금속 FeMetal Fe 금속 Fe+폐연와Metal Fe + Waste Smoke 발명예1Inventive Example 1 3~5mm3 ~ 5mm 3.33.3 금속 FeMetal Fe 폐연와Closed smoke 발명예2Inventive Example 2 1~3mm1 ~ 3mm 3.63.6 금속 FeMetal Fe 폐연와Closed smoke 비교예2Comparative Example 2 1mm 이하1mm or less 5.85.8 금속 Fe +폐연와Metal Fe + Waste Smoke 폐연와Closed smoke

5mm 이상의 입도로 분쇄한 시료인 비교예(1)의 경우 자석 부착량이 2.3%로서 폐연와내의 금속 Fe 평균 혼입율 3.5%에 크게 미달함을 알 수 있다. 이와같은 이유는 조분쇄된 입자는 폐연와로부터 융착된 금속 Fe의 분리가 완전하지 않기 때문에 물리적 분리가 곤란한 상태로 되기 때문이다.In Comparative Example (1), which is a sample ground to a particle size of 5 mm or more, it can be seen that the magnet adhesion amount is 2.3%, which is far below the 3.5% average content of metal Fe in the closed lead. The reason for this is that the coarsely pulverized particles are in a difficult state of physical separation because the separation of the fused metal Fe from the waste lead is not complete.

또한, 비교예(2)와 같이, 1 mm 이하로 분쇄하면 폐연와내의 금속 Fe 평균 혼입율 3.5%를 크게 초과하게된다. 이는 분쇄과정에서 금속 Fe의 분쇄도 진행되어 자기분리 시 폐연와 성분이 미립의 금속 Fe에 붙어 원료 손실이 발생하기 때문이다.In addition, as in Comparative Example (2), when pulverized to 1 mm or less, the average amount of metal Fe incorporation in the spent lead significantly exceeds 3.5%. This is because the metal Fe is also crushed during the crushing process, and waste loss and components are attached to the fine metal Fe during magnetic separation, resulting in loss of raw materials.

반면, 본 발명에 따라 1-5 mm 범위의 입도로 자기분리한 발명예(1)(2)의 경우 거의 전량의 금속 Fe를 제거할 수 있음을 알 수 있다.On the other hand, it can be seen that in the case of Inventive Example (1) (2) magnetically separated by a particle size in the range of 1-5 mm according to the present invention, almost all metal Fe can be removed.

[실시예 2]Example 2

상기 실시예 1의 자기 분리가 된 발명예(2)의 시료와 자기분리하지 않은 폐연와를 조분쇄한 시료를 볼밀(ball mill)을 통하여 1시간 동안 미 분쇄하였다. 그 다음 두가지 종류의 분쇄 시료를 각각 1000g씩 sieve shaker를 사용하여 분급하였다.The sample obtained by coarsely pulverizing the sample of Inventive Example (2), which was subjected to the magnetic separation of Example 1, and the non-magnetic separation, was pulverized for one hour through a ball mill. Two kinds of ground samples were then classified using a sieve shaker at 1000 g each.

이렇게 얻어진 각 시료들을 원적외선 방사능 측정기로 입도에 따른 원적외선 방사율을 평가하였다. 이때, 원적외선 방사율은 이상흑체(ideal black body)의 원적외선 방사량 대비 상기 시료의 원적외선 방사량의 비로 구하였다. 이와같이 시료들의 가공조건별(입자크기별)로 원적외선 방사효율을 분석한 결과를 표 2에 나타내었다.The samples thus obtained were evaluated for far-infrared emissivity according to particle size with a far-infrared radiometer. In this case, the far-infrared emissivity was determined by the ratio of the far-infrared radiation of the sample to the far-infrared radiation of the ideal black body. Thus, the results of analyzing the far-infrared radiation efficiency by processing conditions (particle size) of the samples are shown in Table 2.

구분division 분급입도Classification 자기분리 수행여부Whether magnetic separation is performed 원적외선 방사율Far Infrared Emissivity 분급량(g)Classification (g) 비교예3Comparative Example 3 100메쉬 이상100 mesh or more radish 0.8480.848 114114 비교예4Comparative Example 4 100~ 200메쉬100 ~ 200 mesh radish 0.8370.837 163163 비교예5Comparative Example 5 200~325메쉬200 ~ 325 mesh radish 0.8440.844 486486 비교예6Comparative Example 6 325메쉬 이하325 mesh or less radish 0.8670.867 237237 발명예3Inventive Example 3 100메쉬 이상100 mesh or more 자기분리Magnetic separation 0.9010.901 9595 발명예4Inventive Example 4 100~200메쉬100-200 mesh 자기분리Magnetic separation 0.9040.904 155155 발명예5Inventive Example 5 200~325메쉬200 ~ 325 mesh 자기분리Magnetic separation 0.9110.911 362362 발명예6Inventive Example 6 325메쉬 이하325 mesh or less 자기분리Magnetic separation 0.9160.916 388388

표2에 나타난 바와 같이, 자기 분리를 하여 금속 Fe가 제거된 발명예(3~6)의 시료의 경우는 그렇지 않은 비교예(3~6)의 시료에 비하여 원적외선 방사효율이 급격히 증가함을 알 수 있다. 따라서, 본 발명에 의하면 원적외선 방사효율 0.90 이상인 시료의 합성이 가능하다.As shown in Table 2, the samples of Inventive Examples (3-6) in which the metal Fe was removed by magnetic separation showed a far increase in far-infrared radiation efficiency compared to the samples of Comparative Examples (3-6) that did not. Can be. Therefore, according to this invention, the synthesis | combination of the sample of 0.90 or more of far-infrared radiation efficiency is possible.

참고적으로, 자기 분리된 발명예(3~6)의 시료의 경우는 입도가 감소하면 원적외선 방사율이 증가함을 알 수 있다. 이는 원적외선 파장 범위 (2.5-25마이크로)로 접근하면서 공명 흡수능이 커지기 때문으로 판단된다. 그러나, 금속 Fe가 포함된 비교예(3~6)의 시료의 경우 이와같은 입도와의 상관 관계를 볼 수 없는데, 이는 금속 Fe의 시료별 분포의 불균일성 때문으로 판단된다.For reference, in the case of the samples of Inventive Examples 3 to 6, it can be seen that the far-infrared emissivity increases as the particle size decreases. This is believed to be due to the increased resonance absorption as approaching the far infrared wavelength range (2.5-25 microns). However, in the case of the samples of Comparative Examples (3 to 6) containing the metal Fe, such a correlation with the particle size cannot be seen, which is considered to be due to the nonuniformity of the sample distribution of the metal Fe.

한편, 자기분리가 되면 표 2에서 알 수 있는 바와 같이, 미세입도의 분급량이 증대되는데, 이는 금속 Fe 제거로 동일 시간의 분쇄능이 커지기 때문으로 판단된다. 즉, 자기분리는 분쇄능 향상이라는 부수적 이익도 가져올 수 있다.On the other hand, when the magnetic separation, as can be seen in Table 2, the classification of the fine particle size is increased, it is determined that the grinding ability of the same time is increased by removing the metal Fe. In other words, magnetic separation can also bring a side benefit of improved grinding performance.

[실시예 3]Example 3

한편, 보다 높은 원적외선 방사체를 얻고자 자기분리가 된 시료 중 325 메쉬 이하 시료를 어트리터(attritor)를 사용하여 극미분쇄하여 평균 입도 17마크로미터와 12마이크로 미터까지 입자크기를 줄였다.On the other hand, in order to obtain a higher far-infrared radiator, samples 325 mesh or less that were magnetically separated were extremely ground using an attritor to reduce the particle size to an average particle size of 17 micrometers and 12 micrometers.

이를 원적외선 분석기로 분석한 결과 원적외선 방사효율은 0.927(17마이크로입자)과 0.926(12마이크로입자)으로 거의 동일한 값을 나타내었다. 따라서, MgO의 입도 감소에 따른 원적외선 방사율 증가 한계는 약 17마이크로미터로 예상된다.The far-infrared radiation efficiency was almost the same as 0.927 (17 microparticles) and 0.926 (12 microparticles). Therefore, the limit of far-infrared emissivity increase due to the decrease in the particle size of MgO is expected to be about 17 micrometers.

상술한 바와 같이, 본 발명에 의하면, 폐 MgO연와를 분쇄하여 자기분리를 통해 금속 Fe가 제거하므로써, 방사효율이 높은 방사체 분말이 제공되며, 이러한 방사체 분말은 색상이 더욱 흰색을 띄므로 다른 유색 안료와 섞어서 색상이 있는 원적외선 방사체화가 가능하다는 잇점이 있다. 또한, 본 발명은 폐자원을 재활용한다는 환경적 이익 외에 폐기물로부터 고효율 원적외선 방사체를 낮은 가격에 제조할 수 있다는 경제적인 장점이 있다.As described above, according to the present invention, by pulverizing the waste MgO lead to remove the metal Fe through magnetic separation, a high-efficiency emitter powder is provided, and the emitter powder is more white in color, so other colored pigments It has the advantage of being capable of being colored far-infrared radiation by mixing with. In addition, the present invention has an economical advantage that the high efficiency far-infrared radiator can be manufactured from waste at low price in addition to the environmental benefits of recycling waste resources.

Claims (2)

원적외선 방사체의 제조방법에 있어서,In the manufacturing method of the far infrared radiator, MgO 폐연와를 1-5mm의 입도가 되도록 분쇄 가공하는 단계;Grinding the MgO waste lead to a particle size of 1-5 mm; 분쇄된 1-5mm 입도의 MgO 폐연와를 자기적으로 분리하여 금속 Fe 성분을 제거하는 단계 및Magnetically separating the pulverized MgO waste smoke of 1-5mm particle size to remove the metal Fe component and 상기 불순물이 제거된 MgO 폐연와를 미분쇄하는 단계를 포함하는 것을 특징으로 하는 폐연와를 이용한 원적외선 방사체 제조 방법.A method of manufacturing a far-infrared radiator using waste smoke, characterized in that it comprises the step of pulverizing the MgO waste smoke with the impurities removed. 제1항에 있어서,The method of claim 1, 상기 미분쇄는 100mesh 이하 17마이크로 미터이상의 입도가 되도록 하는 것을 특징으로 하는 폐연와를 이용한 원적외선 방사체 제조 방법.The fine grinding is a far-infrared radiator manufacturing method using a waste smoke, characterized in that the particle size of less than 100 mesh 17 micrometers or more.
KR10-2000-0079340A 2000-12-20 2000-12-20 A method for manufacturing far infrared radiating body using spent bricks KR100490992B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0079340A KR100490992B1 (en) 2000-12-20 2000-12-20 A method for manufacturing far infrared radiating body using spent bricks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0079340A KR100490992B1 (en) 2000-12-20 2000-12-20 A method for manufacturing far infrared radiating body using spent bricks

Publications (2)

Publication Number Publication Date
KR20020050011A true KR20020050011A (en) 2002-06-26
KR100490992B1 KR100490992B1 (en) 2005-05-24

Family

ID=27683953

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0079340A KR100490992B1 (en) 2000-12-20 2000-12-20 A method for manufacturing far infrared radiating body using spent bricks

Country Status (1)

Country Link
KR (1) KR100490992B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155512A (en) * 2022-06-21 2022-10-11 上海应用技术大学 Preparation and degradation method of tetracycline adsorbent

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410438A (en) * 1977-06-24 1979-01-26 Hitachi Heating Appliance Co Ltd Remote infrared ray emissive material
JPH046143A (en) * 1990-04-24 1992-01-10 Rinkou Seitetsu Kk Far infrared ray radiating ceramics and production thereof
KR970043196A (en) * 1995-12-26 1997-07-26 김종진 Method for manufacturing iron ore sintered ore using MgO-C waste lead
JPH10226565A (en) * 1997-02-17 1998-08-25 Tetsuken Kogyo Kk Far infrared ray radiating material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155512A (en) * 2022-06-21 2022-10-11 上海应用技术大学 Preparation and degradation method of tetracycline adsorbent

Also Published As

Publication number Publication date
KR100490992B1 (en) 2005-05-24

Similar Documents

Publication Publication Date Title
JPH0411496B2 (en)
KR101113024B1 (en) Production Method of Slag Powder Having Super Small Grain
CN103771882A (en) Permanent magnetic ferrite and preparation method and ultrathin permanent magnetic ferrite magnetic shoe thereof
KR100490992B1 (en) A method for manufacturing far infrared radiating body using spent bricks
CN108865062A (en) A kind of radio-radar absorber and preparation method thereof
US5707541A (en) Preparation of ferrite from used dry cells
KR101215412B1 (en) METHOD FOR CONCENTRATING AND SEPARATING β-2CaO·SiO2 FROM STEELMAKING SLAG
KR19980016204U (en) Far Infrared Radiation Ceramic
JPH09253517A (en) Pulverizing method of powder particle and modifying method of particle
KR100386832B1 (en) The manufacturing method of ceramic crystal phase containing electric stone
KR100548871B1 (en) Method for recovering iron from slag
KR20190078596A (en) Treatment and Activation of Steelmaking Slag
CN1245093A (en) Strong-magnetic dry ore-dressing technology for non-metal ores
JPS61270240A (en) Manufacture of hydraulic material
KR100440678B1 (en) Fabrication method of hard ferrite using mill scale added oxidant
KR100262241B1 (en) A mullite abrasive and the method thereof
JPS57205324A (en) Manufacture of powder of hard oxide-base magnetic material
KR20020051631A (en) Method for separating iron powder from slag
JP3122895B2 (en) Granulated slag fine powder composition, its production method and cement
JP2004210574A (en) Heavyweight concrete
JPH04293708A (en) Rare earth-iron-boron-based alloy powder for press-formed and sintered magnet and its production
CN110739112A (en) Preparation method of magnetic materials
CN116921036A (en) Goethite, preparation method and application
CN112309675A (en) Method for producing an inductive component and inductive component
JPS6372805A (en) Method for pulverizing porous prereduced metallic particles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120503

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130502

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee