KR20020042224A - Non-aqueous electrolyte solution for lithium battery - Google Patents

Non-aqueous electrolyte solution for lithium battery Download PDF

Info

Publication number
KR20020042224A
KR20020042224A KR1020000072029A KR20000072029A KR20020042224A KR 20020042224 A KR20020042224 A KR 20020042224A KR 1020000072029 A KR1020000072029 A KR 1020000072029A KR 20000072029 A KR20000072029 A KR 20000072029A KR 20020042224 A KR20020042224 A KR 20020042224A
Authority
KR
South Korea
Prior art keywords
carbonate
organic solvent
lithium
aqueous electrolyte
electrolyte solution
Prior art date
Application number
KR1020000072029A
Other languages
Korean (ko)
Other versions
KR100370387B1 (en
Inventor
김학수
김종섭
김영규
김제윤
Original Assignee
안복현
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안복현, 제일모직주식회사 filed Critical 안복현
Priority to KR10-2000-0072029A priority Critical patent/KR100370387B1/en
Publication of KR20020042224A publication Critical patent/KR20020042224A/en
Application granted granted Critical
Publication of KR100370387B1 publication Critical patent/KR100370387B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: Provided is a non-aqueous electrolyte for a lithium battery, which can prevent the battery from swelling, therefore, can improve a set mounting rate remarkably when preparing the lithium battery. CONSTITUTION: The non-aqueous electrolyte is produced by adding 0.1-10.0pts.wt. of a sulfoxide compound represented by the formula 1 to 100pts.wt. of a mixed organic solvent in which 0.8-2.0M of lithium salts are dissolved, wherein the mixed organic solvent comprises a cyclic carbonate-based organic solvent selected from ethylene carbonate, propylene carbonate, or a mixture thereof and a linear carbonate-based organic solvent selected from dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, or a mixture thereof. And the sulfoxide compound is perfluoro butane sulfonyl fluoride or perfluoro octane sulfonyl fluoride. In the formula, R is C1-C10 perfluoroalkyl and R' is C1-C10 fluoroalkyl or fluoro.

Description

리튬 전지용 비수전해액{Non-aqueous electrolyte solution for lithium battery}Non-aqueous electrolyte solution for lithium battery

본 발명은 리튬 전지용 비수 전해액에 관한 것으로, 보다 상세하게는 리튬염이 0.8 내지 2.0M로 용해된 환형 탄산염계 유기용매와 선형 탄산염계 유기용매의 혼합 유기용매 100 중량부에 하기 화학식(1)로 나타내어지는 술폭사이드 화합물을 0.1 내지 10.0 중량부 첨가하여 제조된 리튬 전지용 비수 전해액에 관한 것이다.The present invention relates to a non-aqueous electrolyte for lithium batteries, and more particularly, to 100 parts by weight of a mixed organic solvent of a cyclic carbonate organic solvent and a linear carbonate organic solvent in which lithium salt is dissolved at 0.8 to 2.0 M. The present invention relates to a nonaqueous electrolyte solution for a lithium battery prepared by adding 0.1 to 10.0 parts by weight of the sulfoxide compound.

[화학식 1][Formula 1]

상기에서, R은 탄소수가 1 내지 10인 과플루오로알킬기이고, R'는 탄소수가 1 내지 10인 플루오로알킬기 또는 플루오로기이다.In the above, R is a perfluoroalkyl group having 1 to 10 carbon atoms, and R 'is a fluoroalkyl group or fluoro group having 1 to 10 carbon atoms.

노트북 컴퓨터, 켐코더, 휴대폰 등에 사용되는 소형화 및 슬림화된 리튬 2차 전지는 리튬이온의 탈리 및 삽입(intercalation)이 가능한 리튬 금속 혼합 산화물로 된 양극 활물질, 탄소 재료 또는 금속 리튬 등으로 된 음극, 및 혼합 유기용매에 리튬염이 적당량 용해된 전해액으로 구성되어 있다. 이러한 리튬 전지의 형태로는 코인형, 18650 원통형, 및 063048 각형 등이 일반적으로 사용되고 있다.The miniaturized and slimmed lithium secondary battery used in notebook computers, camcorders, mobile phones, etc. is a positive electrode active material made of lithium metal mixed oxide capable of detaching and intercalating lithium ions, a negative electrode made of carbon material or metal lithium, and mixed It consists of electrolyte solution in which lithium salt was melt | dissolved in the organic solvent. Coins, 18650 cylinders, 063048 squares, and the like are generally used as the lithium battery.

리튬 전지의 3.6 내지 3.7V 정도의 평균 방전전압은 다른 알칼리 전지나 Ni-MH 또는 Ni-Cd 전지에 비하여 높은 전력을 얻을 수 있는 가장 큰 장점 중의 하나이다. 이러한 높은 구동전압을 내기 위해서는 충방전 전압영역인 0 내지 4.2V에서 전기 화학적으로 안정한 전해액 조성이 필요하며, 따라서 탄산에틸렌(ethylene carbonate, 이하 "EC"라 함), 탄산디메틸(dimethylcarbonate, 이하 "DMC"라 함), 탄산디에틸(diethylcarbonate, 이하 "DEC"라 함) 등의 탄산염계 유기용매를 적절히 혼합하여 전해액의 용매로 사용한다. 전해액의 용질로는 통상 LiPF6, LiBF4, LiClO4등의 리튬염을 사용하며, 이들은 전지 내에서 리튬 이온의 공급원으로 작용하여 리튬 전지의 기본적인 작동을 가능하게 한다. 그러나 이와 같이 제조된 비수(比水) 전해액은 Ni-MH 또는 Ni-Cd 전지에 사용되는 수계(水系) 전해액에 비하여 이온 전도도가 현저히 낮기 때문에 고율 충방전 등에서는 불리한 점으로 작용하기도 한다.The average discharge voltage of about 3.6 to 3.7 V of the lithium battery is one of the biggest advantages of obtaining high power compared to other alkaline batteries or Ni-MH or Ni-Cd batteries. In order to achieve such a high driving voltage, an electrochemically stable electrolyte composition is required in the charge / discharge voltage range of 0 to 4.2 V. Therefore, ethylene carbonate (hereinafter referred to as "EC") and dimethyl carbonate (hereinafter referred to as "DMC") are required. Carbonate organic solvents such as " diethylcarbonate " (hereinafter referred to as " DEC ") are suitably mixed and used as a solvent of the electrolyte solution. As the solute of the electrolyte, lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 are usually used, and these act as a source of lithium ions in the battery to enable basic operation of the lithium battery. However, the non-aqueous electrolyte prepared in this way may have disadvantages in high rate charge and discharge because the conductivity of the nonaqueous electrolyte is significantly lower than that of the aqueous electrolyte used in Ni-MH or Ni-Cd batteries.

리튬 전지의 초기 충전시 양극으로 사용되는 리튬 금속 산화물로부터 나온 리튬 이온은 음극으로 사용되는 흑연(결정질 또는 비결정질) 전극으로 이동하여, 흑연 전극의 층간에 삽입(intercalation)된다. 이때 리튬은 반응성이 강하므로 흑연 음극 표면에서 전해액과 음극을 구성하는 탄소가 반응하여 Li2CO3, Li2O, LiOH 등의 화합물을 생성한다. 이들 화합물은 흑연 음극의 표면에 일종의 부동태 피막(passivation layer)을 형성하게 되는데, 이러한 피막을 SEI(solid electrolyte interface) 필름이라고 한다. 상기 SEI 필름은 일단 형성되면 이온 터널의 역할을 수행하여 리튬 이온만을 통과시키게 된다.In the initial charging of a lithium battery, lithium ions from the lithium metal oxide used as the positive electrode move to the graphite (crystalline or amorphous) electrode used as the negative electrode and are intercalated between the layers of the graphite electrode. At this time, since lithium has a high reactivity, the electrolyte and the carbon constituting the cathode react on the surface of the graphite anode to generate compounds such as Li 2 CO 3 , Li 2 O, and LiOH. These compounds form a kind of passivation layer on the surface of the graphite cathode, which is called a solid electrolyte interface (SEI) film. Once formed, the SEI film functions as an ion tunnel to pass only lithium ions.

SEI 필름은 이러한 이온 터널의 효과로 리튬 이온을 용매화(solvation)시켜, 전해액 중에서 리튬 이온과 함께 이동하는 분자량이 큰 유기용매 분자, 예를 들면 EC, DMC 또는 DEC 등이 흑연 음극에 함께 삽입(cointercalation)되어 흑연 음극의 구조를 붕괴시키는 것을 막아준다. 일단 SEI 필름이 형성되고 나면, 리튬 이온은 다시는 흑연 음극 또는 다른 물질과 부반응을 하지 않게 되고, 상기 SEI 필름 형성에 소모된 전하량은 비가역 용량으로 방전시 가역적으로 반응하지 않는 특성을 갖는다. 따라서, 더 이상의 전해액의 분해가 발생하지 않고 전해액 중의 리튬 이온의 양이 가역적으로 유지되어 안정적인 충방전이 유지된다(참조:J. Power Sources(1994) 51:79~104).The SEI film solvates lithium ions by the effect of this ion tunnel, and organic solvent molecules having large molecular weight, such as EC, DMC, or DEC, which move together with lithium ions in the electrolyte are inserted together in the graphite anode ( cointercalation) prevents the structure of graphite cathodes from collapsing. Once the SEI film is formed, lithium ions again do not react sideways with the graphite cathode or other material, and the amount of charge consumed to form the SEI film has a property of not reversibly reacting upon discharge with an irreversible capacity. Accordingly, no further decomposition of the electrolyte occurs and the amount of lithium ions in the electrolyte is reversibly maintained to maintain stable charge and discharge (see J. Power Sources (1994) 51:79 to 104).

그러나, 박형의 각형 전지에서는 상술한 SEI 형성 반응 중에 탄산염계 유기 용매의 분해로부터 발생하는 CO, CO2, CH4, C2H6등의 기체 발생으로 인하여 충전시 전지의 두께가 팽창하는 문제가 발생한다(참조:J. Power Sources(1998) 72:66~70). 또한, 만충전 상태에서 고온 저장시(예: 4.2V까지 100% 충전 후 85℃에서 4일 동안 방치) 시간이 경과함에 따라 상기 SEI 필름이 증가된 전기화학적 에너지와 열에너지에 의해 서서히 붕괴되어, 노출된 음극 표면과 주위의 전해액이 반응하는 부반응이 지속적으로 일어나게 된다. 이때의 계속적인 기체 발생으로 인하여 전지 내부의 내압이 상승하게 되며, 그 결과 각형 전지와 PLI(polymer lithium ion) 전지의 경우, 전지의 두께가 증가하여 셋트 장착 자체를 어렵게 만드는 문제를 유발한다.However, in the thin rectangular battery, there is a problem that the thickness of the battery is expanded during charging due to the generation of gases such as CO, CO 2 , CH 4 , and C 2 H 6 generated from decomposition of the carbonate-based organic solvent during the above-described SEI formation reaction. (See J. Power Sources (1998) 72: 66-70). In addition, when stored at high temperature in a fully charged state (for example, left at 85 ° C. for 4 days after 100% charge to 4.2V), the SEI film gradually decays due to increased electrochemical energy and thermal energy, and is exposed. The side reaction where the negative electrode surface reacts with the surrounding electrolyte continuously occurs. In this case, the internal pressure of the battery increases due to the continuous gas generation. As a result, in the case of the square battery and the polymer lithium ion (PLI) battery, the thickness of the battery increases, which causes a problem in that the set mounting itself becomes difficult.

이와 같은 전지의 내압 상승을 억제하고자, 전해액에 첨가제를 넣어서 SEI형성 반응의 양상을 변화시키려는 연구가 진행되어 왔다. 예를 들면, 일본특허 제 95-176323호에서는 CO2를 전해액에 첨가하는 기술이 제시되었고, 일본특허 제 95-320779호에서는 전해액에 설파이드계 화합물을 첨가하여 전해액 분해를 억제하는 기술을 개시하고 있으며, 일본특허 제 97-73918호에서는 디페닐 피크릴히드라질(diphenyl picrylhydrazyl)을 첨가하여 전지의 고온 저장성을 향상시켰고, 일본특허 제 96-321313호에서는 전해액에 특정 화합물을 첨가하여 전지의 충방전 사이클 특성을 향상시켰다.In order to suppress such an increase in the internal pressure of the battery, studies have been conducted to change the aspect of the SEI formation reaction by adding an additive to the electrolyte. For example, Japanese Patent No. 95-176323 discloses a technique for adding CO 2 to an electrolyte, and Japanese Patent No. 95-320779 discloses a technique for suppressing decomposition of an electrolyte by adding a sulfide compound to the electrolyte. In Japanese Patent No. 97-73918, diphenyl picrylhydrazyl was added to improve the high temperature storage of the battery. In Japanese Patent No. 96-321313, a specific compound was added to the electrolyte to charge and discharge the battery. Improved properties.

그러나, 지금까지 알려진 바로는 전지 성능 향상을 위하여 특정 화합물을 전해액에 첨가할 경우, 일부 항목의 성능은 향상되는 반면, 다른 항목의 성능 감소를 수반하는 경우(예를 들면, 저온 성능은 향상되나 충방전 사이클은 성능은 오히려 감소하는 경우)가 많았다.However, it is known so far that when certain compounds are added to the electrolyte to improve battery performance, the performance of some items is improved, while the performance of other items is accompanied by a decrease in performance (eg, low temperature performance is improved, but Discharge cycles were often reduced).

따라서, 전지 내부에서 전해액의 분해 억제제 역할 및 흑연 음극 표면에서 일어나는 SEI 필름 형성 반응의 조절제 역할을 함으로써, 전지 내부의 기체 발생량을 감소시키고 충방전 사이클 특성을 향상시킬 수 있는 적절한 리튬 전지의 비수 전해액용 첨가제의 개발이 시급히 요구되고 있는 실정이다.Therefore, by acting as an inhibitor of decomposition of the electrolyte in the cell and as a regulator of the SEI film formation reaction occurring on the surface of the graphite anode, it is possible to reduce the amount of gas generated in the battery and improve the charge / discharge cycle characteristics. The development of additives is urgently needed.

본 발명의 목적은 상기와 같은 종래기술의 문제점들을 해결하기 위한 것으로, 종래의 리튬 전지용 비수 전해액에 술폭사이드 화합물을 첨가함으로써 전해액의 분해를 억제하여 상온 및 고온에서의 기체 발생량이 현저히 감소된 신규한 리튬 전지용 비수 전해액을 제공하는 것이다.An object of the present invention is to solve the problems of the prior art as described above, by suppressing the decomposition of the electrolyte by adding a sulfoxide compound to the conventional non-aqueous electrolyte for lithium batteries to reduce the amount of gas generated at room temperature and high temperature significantly It is providing a nonaqueous electrolyte solution for lithium batteries.

즉, 본 발명은 리튬염이 0.8 내지 2.0M로 용해된 환형 탄산염계 유기용매와 선형 탄산염계 유기용매의 혼합 유기용매 100 중량부에 하기 화학식(1)로 나타내어지는 술폭사이드 화합물을 0.1 내지 10.0 중량부 첨가하여 제조된 리튬 전지용 비수 전해액을 제공한다.That is, the present invention is 0.1 to 10.0 weight of the sulfoxide compound represented by the following formula (1) to 100 parts by weight of a mixed organic solvent of a cyclic carbonate organic solvent and a linear carbonate organic solvent in which lithium salt is dissolved at 0.8 to 2.0 M. It provides a nonaqueous electrolyte solution for lithium batteries prepared by addition.

[화학식 1][Formula 1]

상기에서, R은 탄소수가 1 내지 10인 과플루오로알킬기이고, R'는 탄소수가 1 내지 10인 플루오로알킬기 또는 플루오로기이다.In the above, R is a perfluoroalkyl group having 1 to 10 carbon atoms, and R 'is a fluoroalkyl group or fluoro group having 1 to 10 carbon atoms.

이하, 본 발명의 리튬 전지용 비수 전해액의 구성 성분을 더욱 상세히 설명한다.Hereinafter, the component of the nonaqueous electrolyte solution for lithium batteries of this invention is demonstrated in detail.

본 발명의 리튬 전지용 비수 전해액 제조에 사용되는 유기용매로는 환형 탄산염계 유기용매와 선형 탄산염계 유기용매를 혼합하여 사용하고, 바람직하게는 탄산에틸렌 및 탄산프로필렌으로 구성되는 환형 탄산염계 유기용매군으로부터 선택되는 하나 또는 그 이상, 및 탄산디메틸, 탄산디에틸, 탄산에틸메틸, 탄산메틸프로필 및 탄산에틸프로필로 구성되는 선형 탄산염계 유기용매군으로부터 선택되는 둘 또는 그 이상을 혼합하여 사용하고, 보다 바람직하게는 탄산에틸렌, 탄산디메틸 및 탄산디에틸을 혼합하여 사용한다. 이외에도, 필요에 따라 아세트산프로필, 아세트산메틸, 아세트산에틸, 아세트산부틸, 프로피온산메틸 및 프로피온산에틸로 구성되는 군으로부터 선택되는 하나 또는 그 이상을 추가로 혼합하여 사용할 수도 있다. 각 군으로부터 선택된 유기용매의 혼합비는 본 발명의 목적을 저해하지 않는 한 특별히 제한받는 것은 아니며, 통상의 리튬 전지용 비수 전해액 제조시의 혼합비를 따른다.The organic solvent used in the preparation of the non-aqueous electrolyte lithium battery of the present invention is used by mixing a cyclic carbonate organic solvent and a linear carbonate organic solvent, preferably from a cyclic carbonate organic solvent group composed of ethylene carbonate and propylene carbonate. One or more selected, and a mixture of two or more selected from the group of linear carbonate organic solvents consisting of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate and ethyl propyl, more preferably Preferably, ethylene carbonate, dimethyl carbonate and diethyl carbonate are mixed and used. In addition, one or more selected from the group consisting of propyl acetate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate may be further mixed and used as necessary. The mixing ratio of the organic solvent selected from each group is not particularly limited as long as the object of the present invention is not impaired, and the mixing ratio in the production of a nonaqueous electrolyte solution for a lithium battery is followed.

한편, 본 발명의 비수 전해액에 포함된 리튬염으로는 LiPF6, LiClO4, LiAsF6및LiBF4로 구성되는 군으로부터 선택되는 하나 또는 그 이상을 사용하는 것이 바람직하며, 보다 바람직하게는 LiPF6를 사용한다.On the other hand, as the lithium salt contained in the nonaqueous electrolyte of the present invention, it is preferable to use one or more selected from the group consisting of LiPF 6 , LiClO 4 , LiAsF 6, and LiBF 4 , and more preferably LiPF 6 . use.

본 발명의 비수 전해액은 리튬염이 용해된 상기 혼합 유기용매에 하기 화학식 (1)로 나타내어지는 술폭사이드 화합물, 바람직하게는 과플루오로부탄설포닐플루오라이드 또는 과플루오로옥탄설포닐플루오라이드를 0.1 내지 10.0 중량부, 바람직하게는 0.5 내지 2.0 중량부 첨가하여 제조된다.The non-aqueous electrolyte solution of the present invention is a sulfoxide compound represented by the following formula (1), preferably perfluorobutanesulfonyl fluoride or perfluorooctanesulfonyl fluoride, in the mixed organic solvent in which lithium salt is dissolved. To 10.0 parts by weight, preferably 0.5 to 2.0 parts by weight.

[화학식 1][Formula 1]

상기에서, R은 탄소수가 1 내지 10인 과플루오로알킬기이고, R'는 탄소수가 1 내지 10인 플루오로알킬기 또는 플루오로기이다.In the above, R is a perfluoroalkyl group having 1 to 10 carbon atoms, and R 'is a fluoroalkyl group or fluoro group having 1 to 10 carbon atoms.

본 발명의 리튬 전지용 비수 전해액을 사용하여 통상의 방법에 따라 리튬 전지를 제조할 수 있으며, 이와 같이 제조된 리튬 전지는 상온 충전시 및 고온(85℃) 방치시 전지 내부의 기체 발생이 억제되기 때문에, 전지의 두께가 팽창하는 부풀림 현상이 방지된다.The lithium battery can be manufactured according to a conventional method using the nonaqueous electrolyte solution for lithium batteries of the present invention, and the lithium battery thus produced can suppress gas generation inside the battery during normal charge and at high temperature (85 ° C.). The swelling phenomenon in which the thickness of the battery is expanded is prevented.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로 본 발명을 제한하는 것으로 해석되어서는 안된다.Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.

실시예 1Example 1

LiPF6가1.0M로 용해된 탄산에틸렌:탄산디메틸:탄산디에틸 = 1:1:1인 혼합 유기용매(이하, "기본 비수 전해액"이라 함) 100 중량부에 과플루오로-1-부탄설포닐플루오라이드(perfluoro-1-butanesulfonylfluoride)를 0.5 중량부 첨가하여, 리튬전지용 비수 전해액을 제조하였다. 이와 같이 제조된 비수 전해액을 사용하여, 통상의 방법에 따라 18650 원통형 전지 및 063048 각형 전지를 제조하였다. 전지 제조시, 음극 활물질과 양극 활물질로는 각각 흑연과 LiCoO2를 사용하고, 결착제로는 폴리비닐리덴플루오라이드를 사용하였으며, 도전제로는 아세틸렌블랙을 사용하였다.Perfluoro-1-butanesulfur in 100 parts by weight of a mixed organic solvent (hereinafter referred to as "basic nonaqueous electrolyte") in which ethylene carbonate: dimethyl carbonate: diethyl carbonate = 1: 1: 1 dissolved in LiPF 6 is 1.0 M 0.5 parts by weight of perfluoro-1-butanesulfonylfluoride was added to prepare a nonaqueous electrolyte solution for a lithium battery. Using the nonaqueous electrolyte thus prepared, an 18650 cylindrical battery and a 063048 square battery were manufactured according to a conventional method. In manufacturing the battery, graphite and LiCoO 2 were used as the negative electrode active material and the positive electrode active material, polyvinylidene fluoride was used as the binder, and acetylene black was used as the conductive agent.

실시예 2Example 2

과플루오로-1-부탄설포닐플루오라이드를 1.0 중량부 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 전지용 비수 전해액을 제조하고, 이를 사용하여 18650 원통형 전지 및 063048 각형 전지를 제조하였다.A nonaqueous electrolyte solution for a lithium battery was prepared in the same manner as in Example 1, except that 1.0 part by weight of perfluoro-1-butanesulfonylfluoride was added, thereby preparing an 18650 cylindrical battery and a 063048 square battery. .

실시예 3Example 3

과플루오로-1-부탄설포닐플루오라이드를 2.0 중량부 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 전지용 비수 전해액을 제조하고, 이를 사용하여 18650 원통형 전지 및 063048 각형 전지를 제조하였다.A nonaqueous electrolyte solution for a lithium battery was prepared in the same manner as in Example 1, except that 2.0 parts by weight of perfluoro-1-butanesulfonylfluoride was added, thereby preparing an 18650 cylindrical battery and a 063048 square battery. .

실시예 4Example 4

과플루오로-1-부탄설포닐플루오라이드 대신에 과플루오로-1-옥탄설포닐플루오라이드를 2.0 중량부 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 전지용 비수 전해액을 제조하고, 이를 사용하여 18650 원통형 전지 및 063048각형 전지를 제조하였다.A non-aqueous electrolyte solution for lithium batteries was prepared in the same manner as in Example 1, except that 2.0 parts by weight of perfluoro-1-octanesulfonylfluoride was added instead of perfluoro-1-butanesulfonyl fluoride. This was used to prepare 18650 cylindrical cells and 063048 square cells.

비교예 1Comparative Example 1

과플루오로-1-부탄설포닐플루오라이드가 첨가되지 않은 기본 비수 전해액을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 18650 원통형 전지 및 063048 각형 전지를 제조하였다.An 18650 cylindrical battery and a 063048 square battery were manufactured in the same manner as in Example 1, except that a basic nonaqueous electrolyte solution without added perfluoro-1-butanesulfonylfluoride was used.

상기 실시예 1 내지 4 및 비교예 1로부터 수득한 18650 원통형 전지 각각의 물성을 하기와 같은 방법으로 측정하고, 그 결과를 하기 표 1에 요약하여 나타내었다.The physical properties of each of the 18650 cylindrical batteries obtained from Examples 1 to 4 and Comparative Example 1 were measured by the following method, and the results are summarized in Table 1 below.

기체 발생량(25℃, 1회 충방전 후)Gas generation amount (25 ℃, after 1 time charge and discharge) 고온 성능(85℃, 4시간 방치 후)High temperature performance (85 ° C, left for 4 hours) 실시예 1Example 1 0.650.65 0.640.64 실시예 2Example 2 0.680.68 0.850.85 실시예 3Example 3 0.540.54 0.860.86 실시예 4Example 4 0.780.78 0.910.91 비교예 1Comparative Example 1 1One 1One

[물성 측정 방법][Measurement Method]

1) 기체 발생량: 25℃의 항온 조건하에서 0.2C에서 4.2V까지 만충전한 후, 0.2C에서 2.75V까지 방전시키면서 이때 발생하는 기체의 부피를 측정하였다. 기체 발생량은 비교예 1의 발생량을 기준으로 하여 상대값으로 나타내었다.1) Gas generation amount: After the full charge from 0.2C to 4.2V at 25 ℃ constant temperature conditions, the volume of the gas generated at this time was measured while discharging from 0.2C to 2.75V. The amount of gas generated is shown as a relative value based on the amount of generated in Comparative Example 1.

2) 고온 성능: 25℃의 항온 조건하에서 0.2C에서 4.2V까지 만충전한 후, 85℃에서 4시간 동안 방치하면서 이때 발생하는 기체의 부피를 측정하였다. 기체 발생량은 비교예 1의 발생량을 기준으로 하여 상대값으로 나타내었다.2) High temperature performance: After the full charge to 0.2V at 0.2C under a constant temperature of 25 ℃, it was left for 4 hours at 85 ℃ to measure the volume of the gas generated at this time. The amount of gas generated is shown as a relative value based on the amount of generated in Comparative Example 1.

상기 표 1로부터 알 수 있듯이, 본 발명의 비수 전해액을 사용한 경우 상온(25℃) 또는 고온(85℃)에서의 기체 발생량이 현저히 감소하였다.As can be seen from Table 1, when the nonaqueous electrolyte of the present invention was used, the amount of gas generated at room temperature (25 ° C) or high temperature (85 ° C) was significantly reduced.

한편, 상기 실시예 1 내지 4 및 비교예 1로부터 수득한 063048 각형 전지 각각을 25℃의 항온 조건하에서 0.2C에서 4.2V까지 만충전한 후, 동일한 온도에서 0.2C에서 2.75V까지 방전시키거나 또는 85℃에서 4시간 동안 방치한 후, 전지의 두께 증가율을 측정하였다. 그 결과를 하기 표 2에 요약하여 나타내었다.Meanwhile, each of the 063048 square cells obtained from Examples 1 to 4 and Comparative Example 1 was fully charged from 0.2C to 4.2V at a constant temperature of 25 ° C., and then discharged from 0.2C to 2.75V at the same temperature, or 85 After standing for 4 hours at ℃, the thickness increase rate of the battery was measured. The results are summarized in Table 2 below.

만충전 후 두께 증가율(25℃, 1회 충방전 후)Thickness increase rate after full charge (25 ℃, after 1 time charge and discharge) 만충전 후 두께 증가율(85℃, 4시간 방치 후)Thickness increase rate after full charge (85 ℃, left for 4 hours) 실시예 1Example 1 2.4%2.4% 4.8%4.8% 실시예 2Example 2 2.5%2.5% 6.4%6.4% 실시예 3Example 3 2.0%2.0% 6.6%6.6% 실시예 4Example 4 2.9%2.9% 6.9%6.9% 비교예 1Comparative Example 1 3.7%3.7% 7.5%7.5%

상기 표 2로부터 알 수 있듯이, 본 발명의 비수 전해액을 사용한 경우 종래의 기본 비수 전해액을 사용한 경우에 비하여 각형 전지의 만충전 후 상온(25℃)및 고온(85℃)에서의 두께 팽창 정도가 뚜렷하게 감소하였다.As can be seen from Table 2, when the nonaqueous electrolyte of the present invention is used, the degree of thickness expansion at room temperature (25 ° C.) and high temperature (85 ° C.) after the full charge of the square battery is significantly higher than that of the conventional basic nonaqueous electrolyte. Decreased.

이상에서 상세히 설명한 바와 같이, 본 발명의 리튬 전지용 비수 전해액을 사용하면 리튬 전지의 충방전 및 고온 방치시 전해액 분해에 따른 기체 발생량이 크게 감소되어 전지의 부풀림 현상이 방지되므로, 리튬 전지 제조시 셋트 장착율을 크게 향상시킬 수 있다.As described in detail above, the use of the nonaqueous electrolyte for lithium batteries of the present invention greatly reduces the amount of gas generated due to decomposition of the electrolyte during charging and discharging of the lithium battery and at high temperature, thereby preventing swelling of the battery. The rate can be greatly improved.

Claims (5)

리튬염이 0.8 내지 2.0M로 용해된 환형 탄산염계 유기용매와 선형 탄산염계 유기용매의 혼합 유기용매 100 중량부에 하기 화학식(1)로 나타내어지는 술폭사이드 화합물을 0.1 내지 10.0 중량부 첨가하여 제조된 리튬 전지용 비수 전해액.It was prepared by adding 0.1 to 10.0 parts by weight of a sulfoxide compound represented by the following formula (1) to 100 parts by weight of a mixed organic solvent of a cyclic carbonate organic solvent and a linear carbonate organic solvent in which a lithium salt was dissolved at 0.8 to 2.0 M. Non-aqueous electrolyte solution for lithium batteries. [화학식 1][Formula 1] 상기에서, R은 탄소수가 1 내지 10인 과플루오로알킬기이고, R'는 탄소수가 1 내지 10인 플루오로알킬기 또는 플루오로기이다.In the above, R is a perfluoroalkyl group having 1 to 10 carbon atoms, and R 'is a fluoroalkyl group or fluoro group having 1 to 10 carbon atoms. 제 1항에 있어서,The method of claim 1, 상기 환형 탄산염계 유기용매는 탄산에틸렌, 탄산프로필렌, 또는 그들의 혼합물이고, 상기 선형 탄산염계 유기용매는 탄산디메틸, 탄산디에틸, 탄산에틸메틸, 탄산메틸프로필, 탄산에틸프로필, 또는 그들의 혼합물인 것을 특징으로 하는 리튬 전지용 비수 전해액.The cyclic carbonate organic solvent is ethylene carbonate, propylene carbonate, or a mixture thereof, and the linear carbonate organic solvent is dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, or a mixture thereof. A nonaqueous electrolyte solution for lithium batteries. 제 1항에 있어서,The method of claim 1, 상기 혼합 유기용매가 아세트산프로필, 아세트산메틸, 아세트산에틸, 아세트산부틸, 프로피온산메틸 및 프로피온산에틸로 구성되는 군으로부터 선택되는 하나또는 그 이상을 추가로 포함하는 것을 특징으로 하는 리튬 전지용 비수 전해액.The non-aqueous electrolyte solution for lithium batteries, characterized in that the mixed organic solvent further comprises one or more selected from the group consisting of propyl acetate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate. 제 1항에 있어서,The method of claim 1, 상기 리튬염이 LiPF6, LiClO4, LiAsF6및 LiBF4로 구성되는 군으로부터 선택되는 하나 또는 그 이상인 것을 특징으로 하는 리튬 전지용 비수 전해액.The lithium salt is at least one selected from the group consisting of LiPF 6 , LiClO 4 , LiAsF 6 and LiBF 4 Non- aqueous electrolyte solution for lithium batteries. 제 1항에 있어서,The method of claim 1, 상기 술폭사이드 화합물은 과플루오로부탄설포닐플루오라이드 또는 과플루오로옥탄설포닐플루오라이드인 것을 특징으로 하는 리튬 전지용 비수 전해액.The sulfoxide compound is a perfluorobutanesulfonyl fluoride or a perfluorooctane sulfonyl fluoride, characterized in that the non-aqueous electrolyte for lithium batteries.
KR10-2000-0072029A 2000-11-30 2000-11-30 Non-aqueous electrolyte solution for lithium battery KR100370387B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0072029A KR100370387B1 (en) 2000-11-30 2000-11-30 Non-aqueous electrolyte solution for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0072029A KR100370387B1 (en) 2000-11-30 2000-11-30 Non-aqueous electrolyte solution for lithium battery

Publications (2)

Publication Number Publication Date
KR20020042224A true KR20020042224A (en) 2002-06-05
KR100370387B1 KR100370387B1 (en) 2003-01-30

Family

ID=27678720

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0072029A KR100370387B1 (en) 2000-11-30 2000-11-30 Non-aqueous electrolyte solution for lithium battery

Country Status (1)

Country Link
KR (1) KR100370387B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120244426A1 (en) * 2004-04-20 2012-09-27 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and lithium secondary battery using same
WO2013051634A1 (en) * 2011-10-04 2013-04-11 ダイキン工業株式会社 Non-aqueous electrolyte and battery
WO2013051635A1 (en) * 2011-10-03 2013-04-11 ダイキン工業株式会社 Battery and non-aqueous electrolyte
WO2014088009A1 (en) * 2012-12-06 2014-06-12 宇部興産株式会社 Nonaqueous electrolyte solution and electrical storage device employing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104659414B (en) 2005-10-20 2019-04-12 三菱化学株式会社 Lithium secondary battery and nonaqueous electrolytic solution used in it

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291528B2 (en) * 1994-02-18 2002-06-10 日本電池株式会社 Non-aqueous electrolyte battery
JP2734978B2 (en) * 1994-02-18 1998-04-02 日本電池株式会社 Non-aqueous electrolyte battery
JP4389282B2 (en) * 1998-12-28 2009-12-24 日本ゼオン株式会社 Binder composition for lithium ion secondary battery electrode and use thereof
KR100357415B1 (en) * 2000-07-13 2002-10-18 새한에너테크 주식회사 Electrolyte for lithium ion polymer battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120244426A1 (en) * 2004-04-20 2012-09-27 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and lithium secondary battery using same
US9136560B2 (en) * 2004-04-20 2015-09-15 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and lithium secondary battery using same
WO2013051635A1 (en) * 2011-10-03 2013-04-11 ダイキン工業株式会社 Battery and non-aqueous electrolyte
JP2013093322A (en) * 2011-10-03 2013-05-16 Daikin Ind Ltd Battery and non-aqueous electrolyte
US20140242475A1 (en) * 2011-10-03 2014-08-28 Daikin Industries, Ltd. Battery and non-aqueous electrolyte
US9509016B2 (en) 2011-10-03 2016-11-29 Daikin Industries, Ltd. Battery and non-aqueous electrolyte
WO2013051634A1 (en) * 2011-10-04 2013-04-11 ダイキン工業株式会社 Non-aqueous electrolyte and battery
JP2013093321A (en) * 2011-10-04 2013-05-16 Daikin Ind Ltd Non-aqueous electrolyte and battery
US9627714B2 (en) 2011-10-04 2017-04-18 Daikin Industries, Ltd. Non-aqueous electrolyte and battery
WO2014088009A1 (en) * 2012-12-06 2014-06-12 宇部興産株式会社 Nonaqueous electrolyte solution and electrical storage device employing same

Also Published As

Publication number Publication date
KR100370387B1 (en) 2003-01-30

Similar Documents

Publication Publication Date Title
KR100370387B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370384B1 (en) Non-aqueous electrolyte solution for lithium battery
KR20220124870A (en) Electrolyte Solution for Secondary Battery and Secondary Battery Comprising the Same
KR100510869B1 (en) Nonaqueous Electrolyte Battery and secondary battery comprising the electrolyte
KR100328153B1 (en) Nonaqueous Battery Electrolyte
KR100370385B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100328152B1 (en) Nonaqueous Battery Electrolyte
KR100642435B1 (en) Nonaqueous Electrolyte for Battery
KR100370388B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100534011B1 (en) Nonaqueous Electrolyte for Battery and Secondary Battery comprising the Electrolyte
KR100412527B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100611462B1 (en) Nonaqueous Electrolyte for Battery
KR100370386B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100860441B1 (en) Nonaqueous battery electrolyte
KR100510865B1 (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR100370389B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100510863B1 (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR100370383B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100511519B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte
US20090226820A1 (en) Nonaqueous Electrolyte for Battery
KR20050066166A (en) Non-aqueous electrolyte for lithium battery
KR20020085969A (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR20010055830A (en) Nonaqueous battery electrolyte
KR100534010B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte
KR100572284B1 (en) Non-aqueous electrolyte for lithium battery

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121120

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131205

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150116

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151127

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20161222

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20180109

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20190104

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20191213

Year of fee payment: 18