KR20020040210A - High strength Steel plate to be precipitating TiN and complex oxide of Mg-Ti for welded structure, method for manufacturing the same - Google Patents

High strength Steel plate to be precipitating TiN and complex oxide of Mg-Ti for welded structure, method for manufacturing the same Download PDF

Info

Publication number
KR20020040210A
KR20020040210A KR1020000070185A KR20000070185A KR20020040210A KR 20020040210 A KR20020040210 A KR 20020040210A KR 1020000070185 A KR1020000070185 A KR 1020000070185A KR 20000070185 A KR20000070185 A KR 20000070185A KR 20020040210 A KR20020040210 A KR 20020040210A
Authority
KR
South Korea
Prior art keywords
steel
less
high strength
tin
tin precipitate
Prior art date
Application number
KR1020000070185A
Other languages
Korean (ko)
Other versions
KR100470054B1 (en
Inventor
정홍철
최해창
Original Assignee
이구택
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 주식회사 포스코 filed Critical 이구택
Priority to KR10-2000-0070185A priority Critical patent/KR100470054B1/en
Publication of KR20020040210A publication Critical patent/KR20020040210A/en
Application granted granted Critical
Publication of KR100470054B1 publication Critical patent/KR100470054B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Abstract

PURPOSE: A method for manufacturing a steel plate for welded structure is provided which not only minimizes a toughness difference between a base metal and a weld heat-affected zone in the welding heat input ranging from medium heat input to ultra high heat input, but also accomplishes high strength of the base metal using TiN precipitate and Mg-Ti complex oxide. CONSTITUTION: The high strength steel plate for welded structure having TiN precipitate and Mg-Ti complex oxide comprises 0.03 to 0.17 wt.% of C, 0.01 to 0.5 wt.% of Si, 0.4 to 2.0 wt.% of Mn, 0.005 to 0.2 wt.% of Ti, 0.0005 to 0.1 wt.% of Al, 0.008 to 0.030 wt.% of N, 0.0003 to 0.01 wt.% of B, 0.001 to 0.2 wt.% of W, 0.03 wt.% or less of P, 0.03 wt.% or less of S, 0.002 to 0.03 wt.% of O and 0.001 to 0.005 wt.% of Mg satisfying 1.2<=Ti/N<=2.5, 10<=N/B<=40, 2.5<=Al/N<=7, 6.5<=(Ti+2Al+4B)/N<=14, 4<=Ti/O<= 10, 0.2<=Mg/O<=3 and 3<=(Ti+Mg)/O<=12, 30 to 80 wt.% of bainite, and a balance of ferrite which is 20 microns or less. The method for manufacturing the high strength steel plate for welded structure having TiN precipitate and Mg-Ti complex oxide comprises the processes of heating a steel slab comprising 0.03 to 0.17 wt.% of C, 0.01 to 0.5 wt.% of Si, 0.4 to 2.0 wt.% of Mn, 0.005 to 0.2 wt.% of Ti, 0.0005 to 0.1 wt.% of Al, 0.008 to 0.030 wt.% of N, 0.0003 to 0.01 wt.% of B, 0.001 to 0.2 wt.% of W, 0.03 wt.% or less of P, 0.03 wt.% or less of S, 0.002 to 0.03 wt.% of O and 0.001 to 0.005 wt.% of Mg satisfying 1.2<=Ti/N<=2.5, 10<=N/B<=40, 2.5<=Al/N<=7, 6.5<=(Ti+2Al+4B)/N<= 14, 4<=Ti/O<=10, 0.2<=Mg/O<=3 and 3<=(Ti+Mg)/O<=12 to the temperature range of 1100 to 1250 deg.C for 60 to 180 minutes; hot rolling the heated steel slab to a rolling ratio of 40% or more in the Austenite recrystallization zone; and cooling the hot rolled steel slab to the bainite transformation finishing temperature±10 deg.C in a cooling rate of 5 to 20 deg.C/sec.

Description

TiN석출물과 Mg-Ti의 복합산화물을 갖는 고강도 용접구조용 강재와 그 제조방법{High strength Steel plate to be precipitating TiN and complex oxide of Mg-Ti for welded structure, method for manufacturing the same}High strength steel plate to be precipitating TiN and complex oxide of Mg-Ti for welded structure, method for manufacturing the same

본 발명은 건축, 교량, 조선, 해양구조물, 강관, 라인파이프 등의 용접구조물에 사용되는 구조용 강재에 관한 것이다. 보다 상세하게는, 미세한 TiN의 석출물과 Ti-Mg복합산화물을 이용하여 용접열영향부의 인성을 개선하면서 모재는 베이나이트+페라이트로 하여 모재강도를 증진시킨 용접구조용 강재의 제조방법에 관한 것이다.The present invention relates to structural steel used in welded structures, such as construction, bridges, shipbuilding, offshore structures, steel pipes, line pipes. More specifically, the present invention relates to a method for producing a welded structural steel material in which the base material is bainite + ferrite and the base material strength is improved by improving the toughness of the weld heat affected zone by using fine TiN precipitate and Ti-Mg composite oxide.

최근, 건축물, 구조물의 고층화 추세에 따라 사용되는 강재가 대형화되면서 후물강재로 대체되고 있다. 이러한 후물강재를 용접하기 위해서는 고능률 용접이 불가피한데, 후육화된 강재를 용접하는 기술로는, 1패스 용접이 가능한 대입열 서어브머지드 용접법 및 일렉트로 용접법이 광범위하게 사용되고 있는 실정이다. 또한, 조선 및 교량 분야에 있어서 판 두께 25mm이상의 강판을 용접하는 경우에도 상기와 같은 1패스 용접이 가능한 대입열 용접법을 적용하고 있다.Recently, the steel used in accordance with the trend of high-rise building, structure has been replaced by thick steel. In order to weld such thick steels, high-efficiency welding is inevitable. As a technique for welding thickened steels, a high-pass heat submerged welding method and an electro-welding method capable of one-pass welding are widely used. In addition, in the field of shipbuilding and bridges, even when welding a steel plate having a plate thickness of 25 mm or more, the above-described high heat input welding method capable of one-pass welding is applied.

일반적으로 용접에서는 입열량이 클수록 용착량이 커서 용접패스수가 감소하기 때문에, 용접생산성을 고려하면 대입열 용접이 가능하도록 하는 것이 유리하다. 즉, 용접에서 입열량을 증가시키면 그 사용범위를 넓힐 수 있게 되는 것이다. 현재 사용되고 있는 대입열의 범위는 대략 100-200kJ/cm에 해당되는데 좀더 후육화 된 판두께 50mm이상의 강재를 용접하기 위해서는 200-500kJ/cm의 초대입열 범위가 되어야 가능하다.In general, in welding, the larger the amount of heat input, the larger the amount of welding, so that the number of welding passes decreases. Therefore, it is advantageous to enable high heat input welding in consideration of welding productivity. In other words, increasing the amount of heat input in the welding will be able to widen the range of use. The range of high heat input currently in use is about 100-200kJ / cm, but in order to weld steel materials with a thicker plate thickness of 50mm or more, it is possible to have a super heat input range of 200-500kJ / cm.

강재에 대입열이 적용되면, 용접시 형성되는 용접열영향부(Heat Affected Zone) 특히 용융선(fusion boundary) 근처의 용접열영향부는 용접입열량에 의해 융점에 가까운 온도까지 가열된다. 이에 따라, 용접열영향부의 결정립이 성장하여 조대화되고 냉각과정에서 상부 베이나이트 및 마르텐사이트 등 인성에 취약한 미세조직이 형성되기 때문에, 용접열영향부가 용접부중 인성이 가장 열화되는 부위이다.When the heat input is applied to the steel, the heat affected zone formed during welding, particularly the heat affected zone near the fusion boundary, is heated to a temperature close to the melting point by the amount of heat input. Accordingly, since the grains of the weld heat affected zone grow and coarse, and microstructures that are vulnerable to toughness such as upper bainite and martensite are formed during the cooling process, the weld heat affected zone is the site where the toughness of the weld deteriorates most.

따라서, 용접구조물의 안정성을 확보하기 위해서는, 용접열영향부의 오스테나이트 결정립의 성장을 억제하여 미세하게 유지시킬 필요가 있다. 이를 해결하는 수단으로는, 고온에서 안정한 산화물 또는 Ti계 탄질화물 등을 강재에 적절히 분포시켜 용접시 용접열영향부의 결정립 성장을 지연시키고자 하는 기술 등이 개시되어 있다. 예를 들어, 일본 특허공개공보 (평)11-140582, (평)10-298708, (평)10-298706, (평)9-194990, (평)9-324238, (평)8-60292, (소)60-245768, (평)5-186848호, (소)58-31065호, (소)61-79745호, 일본용접학회지 제 52권 2호, 49페이지 및일본특허공개공보 (소)64-15320호 등이 있다.Therefore, in order to secure the stability of the welded structure, it is necessary to suppress the growth of the austenite grains in the weld heat affected zone and to keep it fine. As a means to solve this problem, there is disclosed a technique for delaying grain growth of the weld heat affected zone during welding by appropriately distributing an oxide or Ti-based carbonitride, which is stable at a high temperature, to steel materials. For example, Japanese Patent Application Laid-Open No. 11-140582, No. 10-298708, No. 10-298706, No. 9-194990, No. 9-324238, No. 8-60292, (S) 60-245768, (Pyeong) 5-186848, (S) 58-31065, (S) 61-79745, Journal of the Japan Welding Society, Vol. 52, No. 2, 49 and Japanese Patent Laid-Open And 64-15320.

이중에서 일본 특허공개공보 (평)11-140582호는, TiN의 석출물을 이용하는 대표적인 기술로, 100J/cm의 입열량(최고가열온도 1400℃)이 적용될 때에 0℃에서 충격인성이 200J정도(모재는 300J 정도)인 구조용강재가 개시되어 있다. 이 선행기술에서는 Ti/N을 실질적으로 4-12로 관리하여 0.05㎛이하인 TiN 석출물은 5.8×103개/㎟∼8.1×104개/㎟, 이와 함께 0.03∼0.2㎛인 TiN석출물은 3.9×103개/㎟∼6.2×104개/㎟로 석출시켜서 페라이트를 미세화하여 용접부의 인성을 확보하고 있다. 이 강재는 미세조직이 페라이트와 펄라이트의 복합조직으로 인장강도가 최고 581MPa, 항복강도가 최고 405MPa로 기계적성질을 갖고 있다.Japanese Patent Laid-Open No. 11-140582 is a representative technique using TiN precipitates, and has a toughness of about 200J at 0 ° C when 100 J / cm of heat input (maximum heating temperature of 1400 ° C) is applied. Is about 300J). In this prior art, Ti / N is substantially managed at 4-12 so that TiN precipitates of 0.05 µm or less are 5.8 × 10 3 pieces / mm 2 to 8.1 × 10 4 pieces / mm 2, and TiN precipitates of 0.03 to 0.2 μm are 3.9 ×. The toughness of the welded portion is secured by making the ferrite fine by depositing 10 3 pieces / mm 2 to 6.2 × 10 4 pieces / mm 2. This steel is a microstructure of ferrite and pearlite, which has a mechanical property of 581 MPa in tensile strength and 405 MPa in yield strength.

그러나, 이 선행기술에 의하면 100kJ/cm의 대입열용접이 적용될 때, 모재와 열영향부의 인성이 대체적으로 낮고(0℃의 충격인성의 최고치로 모재:320J, 열영향부:220J) 또한, 모재와 열영향부의 인성차가 100J 정도로 커서 후육화 강재의 초대입열 용접에 따른 강구조물의 신뢰성확보에 한계가 있다. 이 뿐만 아니라, 원하는 TiN의 석출물을 확보하기 위한 방법으로, 슬라브를 1050℃이상의 온도에서 가열하여 급냉한 다음에, 열간압연을 위해 재가열하는 공정을 채택하기 때문에 2회의 열처리로 인한 제조비용 상승이 문제가 된다. 또한, 강재의 미세조직은 페라이트와 펄라이트의 복합조직으로 인장강도가 최고 581MPa, 항복강도가 최고 405MPa의 기계적성질을 갖는다.However, according to this prior art, when the 100 kJ / cm high heat input welding is applied, the toughness of the base material and the heat affected zone is generally low (the base material: 320J, the heat affected zone: 220J at the highest impact toughness of 0 ° C), and also the base material. Since the toughness difference between the and the heat affected zone is about 100J, there is a limit in securing the reliability of the steel structure due to superheated welding of the thickened steel. In addition, as a method for securing the desired TiN precipitate, the slab is heated at a temperature of 1050 ° C. or higher and quenched, followed by a reheating process for hot rolling. Becomes In addition, the microstructure of the steel is a composite structure of ferrite and pearlite has a mechanical property of tensile strength up to 581MPa, yield strength up to 405MPa.

상기 일본 공개특허공보 (평)9-194990호는 저질소강(N≤0.005%)에서 Al과 O의 비를 0.3≤Al/O≤1.5로 관리하여, Al, Mn, Si으로 되는 복합산화물을 이용하는 기술이나, 약 100kJ/cm의 대입열용접이 적용될 때 용접열영향부 천이온도가 -50수준으로 인성이 좋은 편이 아니다.Japanese Patent Laid-Open No. 9-194990 manages the ratio of Al and O to 0.3 ≦ Al / O ≦ 1.5 in low nitrogen steel (N ≦ 0.005%), and uses a composite oxide of Al, Mn, and Si. However, when the high heat input welding of about 100 kJ / cm is applied, the weld heat affected zone transition temperature is -50, which is not good at toughness.

또한, 상기 일본 공개특허공보 (평)10-298708호는 입자경이 0.005-0.1㎛의 MgO를 핵으로 하고 그 주변에 TiN을 갖으며 크기가 0.05-0.5㎛의 MgO-TiN복합석출물을 1평방mm당 1.0×105∼1.0×107개 함유하는 강이 제안되어 있다. 이 선행기술에서는 MgO-TiN 복합석출물을 얻기 위하여 0.002-0.0008%의 N을 함유하는 강에 Ti를 0.005-0.025%, Mg을 0.0002- 0.005%, O을 0.0005-0.008%로 강성분계를 관리하고 있다. 이 선행기술로부터 제공되는 강은 MgO-TiN의 복합석출물을 이용하여 강의 용접열영향부의 인성을 어느 정도는 개선하고 있으나, 약 200kJ/cm의 대입열용접이 적용될 때 용접열영향부 0℃의 충격인성이 130J의 수준으로 인성이 그다지 좋은 편이 아니다. 또한, 제어압연과 제어냉각한 열연강판(모재)의 인장강도가 500MPa, 항복강도가 400MPa 수준으로 모재의 기계적성질도 그다지 우수한 편은 아니다.In addition, Japanese Patent Application Laid-Open No. 10-298708 uses MgO having a particle size of 0.005-0.1 μm as a nucleus, and has TiN around it, and has a size of 0.05-0.5 μm of MgO-TiN composite precipitate of 1 square mm. Steels containing 1.0 × 10 5 to 1.0 × 10 7 sugars have been proposed. In this prior art, a steel component system is managed with 0.005-0.025% of Ti, 0.0002-0.005% of Mg, and 0.0005-0.008% of O in steel containing 0.002-0.0008% of N to obtain MgO-TiN composite precipitates. . The steel provided from this prior art improves to some extent the toughness of the weld heat affected zone of the steel by using a composite precipitate of MgO-TiN, but the impact of the weld heat affected zone 0 ° C. when a high heat input welding of about 200 kJ / cm is applied. Toughness is 130J, toughness is not very good. In addition, the tensile strength of the controlled rolled and controlled cooled hot rolled steel sheet (base material) 500MPa, yield strength of 400MPa level of the mechanical properties of the base material is not very good.

현재까지, TiN석출물과 Al계 또는 MgO 산화물을 이용하여 대입열 용접시 용접열영향부의 인성을 개선한 기술은 많이 알려저 있지만, 1350℃이상에서 장시간유지되는 초대입열 용접시 용접열영향부의 인성을 획기적으로 개선시키면서 모재의 고강도화를 동시에 달성한 사례는 아직 발표된 바 없다. 특히, 용접열영향부의 인성이 모재 대비 동등한 수준을 보인 기술은 거의 없는 실정이다. 따라서, 상기의 문제점을 해결할 수 있다면, 후육화 강재의 초대입열 용접이 가능하여 용접작업 고능률화는 물론 강구조물의 고층화 및 강구조물의 신뢰성 확보를 동시에 달성할 수 있는 것이다.Until now, many techniques have been known to improve the toughness of the weld heat affected zone during high heat input welding using TiN precipitates and Al-based or MgO oxides. There have been no reports of achieving a high strength of the base metal at the same time with significant improvements. In particular, there are few technologies in which the toughness of the weld heat affected zone shows an equivalent level to that of the base metal. Therefore, if the above problems can be solved, super heat input welding of the thickened steel is possible, so that it is possible to achieve high efficiency of the welding operation as well as to secure the high-rise of the steel structure and the reliability of the steel structure.

본 발명은, TiN과 Ti-Mg복합산화물을 이용하여 중입열에서 초대입열에 이르는 용접 입열량 범위에서 모재와 열영향부의 인성이 차이가 최소가 되도록 함과 동시에 모재의 고강도화를 달성할 수 있는 용접구조용 강재의 제조방법을 제공하는데, 그 목적이 있다.The present invention, using the TiN and Ti-Mg composite oxide in the welding heat input range from the middle heat input to super heat input to minimize the difference in the toughness of the base material and the heat affected zone, and at the same time welding can achieve high strength of the base material It is an object of the present invention to provide a method for manufacturing structural steel.

상기 목적을 달성하기 위한 본 발명의 용접 구조용 강재는, 중량%로 C:0.03-0.17%, Si:0.01-0.5%, Mn:0.4-2.0%, Ti:0.005-0.2%, Al: 0.0005-0.1%, N:0.008-0.030%, B:0.0003-0.01%, W:0.001-0.2%, P:0.03%이하, S:0.03%이하, O:0.002-0.03%, Mg:0.001-0.005%, 1.2≤Ti/N≤2.5, 10≤N/B≤40, 2.5≤Al/N≤7, 6.5≤(Ti+2Al+4B)/N≤14, 4≤Ti/O≤10, 0.2≤Mg/O≤3, 3≤(Ti+Mg)/O≤12을 만족하고, 30∼80%의 베이나이트와 나머지 20㎛이하의 페라이트로 구성된다.Welded structural steel materials of the present invention for achieving the above object, by weight% C: 0.03-0.17%, Si: 0.01-0.5%, Mn: 0.4-2.0%, Ti: 0.005-0.2%, Al: 0.0005-0.1 %, N: 0.008-0.030%, B: 0.0003-0.01%, W: 0.001-0.2%, P: 0.03% or less, S: 0.03% or less, O: 0.002-0.03%, Mg: 0.001-0.005%, 1.2 ≤Ti / N≤2.5, 10≤N / B≤40, 2.5≤Al / N≤7, 6.5≤ (Ti + 2Al + 4B) / N≤14, 4≤Ti / O≤10, 0.2≤Mg / O It satisfies <3, 3 <(Ti + Mg) / O <= 12, and consists of 30-80% of bainite and the remainder of 20 micrometers or less of ferrite.

또한, 본 발명의 용접구조용 강재의 제조방법은, 중량%로 C:0.03-0.17%, Si:0.01-0.5%, Mn:0.4-2.0%, Ti:0.005-0.2%, Al: 0.0005-0.1%, N:0.008-0.030%, B:0.0003-0.01%, W:0.001-0.2%, P:0.03%이하, S:0.03%이하, O:0.002-0.03%, Mg:0.001-0.005%, 1.2≤Ti/N≤2.5, 10≤N/B≤40, 2.5≤Al/N≤7, 6.5≤(Ti+2Al+4B)/N≤14, 4≤Ti/O≤10, 0.2≤Mg/O≤3, 3≤(Ti+Mg)/O≤12을 만족하는 슬라브를 1100-1250℃범위에서 60-180분간 가열한 후에 오스테나이트 재결정역에서 40%이상의 압연비로 열간압연한 다음, 베이나이트변태 종료온도±10℃까지는 5∼20℃/sec의 속도로 냉각하는 것을 포함하여 구성된다.In addition, the manufacturing method of the welded structural steel material of this invention is C: 0.03-0.17%, Si: 0.01-0.5%, Mn: 0.4-2.0%, Ti: 0.005-0.2%, Al: 0.0005-0.1% by weight. , N: 0.008-0.030%, B: 0.0003-0.01%, W: 0.001-0.2%, P: 0.03% or less, S: 0.03% or less, O: 0.002-0.03%, Mg: 0.001-0.005%, 1.2≤ Ti / N≤2.5, 10≤N / B≤40, 2.5≤Al / N≤7, 6.5≤ (Ti + 2Al + 4B) / N≤14, 4≤Ti / O≤10, 0.2≤Mg / O≤ After slab satisfying 3, 3≤ (Ti + Mg) / O≤12 was heated in the range of 1100-1250 ℃ for 60-180 minutes, hot-rolled in the austenitic recrystallization zone with a rolling ratio of 40% or more, and then the bainite transformation was completed. It is comprised including cooling by the speed | rate of 5-20 degreeC / sec to temperature +/- 10 degreeC.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서 "구오스테나이트(prior austenite)"란 용어는 강재에 대입열용접이 적용될 때 용접열영향부에 형성되는 오스테나이트를 칭하는 것으로, 강재의 제조과정(열간압연공정)에서 형성되는 오스테나이트와 구별하기 위해 편의상 사용한다.In the present invention, the term "prior austenite" refers to austenite formed in the weld heat affected zone when the heat input welding is applied to the steel, and the austenite formed in the manufacturing process of the steel (hot rolling process). Use for convenience to distinguish from.

본 발명자들은 강재(모재)의 강도를 증진시키는 것과 함께 용접열영향부의 인성을 동시에 개선할 수 있는 방안을 연구한 결과, 모재의 미세조직을 베이나이트와 페라이트의 복합조직으로 할 경우 모재강도 개선에 매우 효과적이라는 사실과, 이러한 미세조직을 갖는 모재에 TiN의 석출물과 Mg-Ti의 복합산화물을 함께 이용하면 TiN의 주작용으로 용접열영향부의 구오스테나이트의 결정립도가 약 80㎛이하로미세화되고, Mg-Ti의 복합산화물의 주작용으로 미세한 구오스테나이트로부터 침상페라이트의 핵생성을 촉진하여 용접열영향부의 인성이 획기적으로 개선되는 사실을 밝혀낼 수 있었다.The present inventors have studied ways to improve the strength of the steel (base material) and at the same time improve the toughness of the weld heat affected zone, and as a result, when the microstructure of the base material is a composite structure of bainite and ferrite, When the TiN precipitate and Mg-Ti composite oxide are used together with the substrate having such a microstructure, the grain size of the austenite of the weld heat affected zone is reduced to about 80 µm or less. The main action of the composite oxide of Mg-Ti promotes the nucleation of needle-like ferrite from fine austenite, and it has been found that the toughness of the weld heat affected zone is remarkably improved.

이러한 관점에서 출발한 본 발명자들은 베이나이트+페라이트의 복합조직에서 구오스테나이트 결정립의 크기를 임계치 이하로 관리하여 용접열영향부의 인성을 개선할 수 있는 다음의 방안을 도출할 수 있었다.Starting from this point of view, the inventors of the present invention have been able to derive the following method of improving the toughness of the weld heat affected zone by managing the size of the austenite grains below the critical value in the composite structure of bainite + ferrite.

[1] TiN석출물과 Ti-Mg복합산화물을 함께 이용하면서,[1] using TiN precipitate and Ti-Mg composite oxide together,

[2] 강재의 초기 페라이트 결정립 크기를 임계수준 이하로 하여 용접열영향부의 구오스테나이트를 80㎛이하로 미세화하는 것이다. 또한,[2] The initial ferrite grain size of the steel is less than the critical level, and the prior austenite of the weld heat affected zone is refined to 80 µm or less. Also,

[3] Ti-Mg복합산화물과 BN, AlN 석출물을 효과적으로 이용하여 용접열영향부에 페라이트 분율을 높이고, 특히 구오스테나이트에서 다각형(polygonal)이나 침상형 페라이트의 변태를 촉진하여 인성개선 효과를 높인다. 그리고,[3] Effective use of Ti-Mg complex oxides, BN and AlN precipitates to increase ferrite fraction in weld heat affected zones, and especially to improve the toughness improvement effect by promoting the transformation of polygonal or needle-like ferrite in the austenite . And,

[4] 압연공정에서 가속냉각을 통해 모재에 적정분율의 베이나이트 미세조직을 확보함으로써 모재강도를 개선한다. 이들 [1][2][3][4]을 보다 구체적으로 설명한다.[4] The base material strength is improved by securing the proper fraction of bainite microstructure in the base material through accelerated cooling in the rolling process. These [1] [2] [3] [4] are demonstrated in more detail.

[1] TiN석출물과 Ti-Mg복합산화물 관리[1] TiN precipitate and Ti-Mg complex oxide management

구조용강재에 대입열용접을 적용하는 경우 용융선 부근의 용접열영향부는 약 1400℃이상의 고온으로 가열되어 모재내에 석출되어 있는 TiN석출물이 용접열에 의하여 부분적으로 용해되거나 또는 오스왈드 라이프닝현상(Ostwald ripening, 크기가 작은 석출물이 분해되어 크기가 큰 석출물로 확산되면서 큰 석출물은 더욱 커지는 현상)에 의해서 일부 석출물만이 조대해지며 또한 TiN석출물의 개수가 현저히 감소하여 구오스테나이트 결정립 성장의 억제효과가 소멸된다.When heat input welding is applied to structural steels, the weld heat affected zone near the melting line is heated to a high temperature of about 1400 ° C or more, and TiN precipitates precipitated in the base metal are partially dissolved by welding heat or Ostwald ripening. Small precipitates are decomposed and diffuse into larger precipitates, resulting in larger precipitates). Only some precipitates are coarse, and the number of TiN precipitates is significantly reduced, thereby suppressing the inhibitory effect of the growth of austenite grains. .

본 발명자들은 이러한 현상은 모재내에 분포되어 있는 TiN석출물이 용접열에 의해 분해된 고용 Ti원자의 확산에 의해서 일어나는 것이라는데 착안하여 Ti/N의 비에 따른 TiN석출물의 특성을 살펴본 결과, 고질소환경(Ti/N의 비가 낮음)에서는 고용 Ti농도와 고용 Ti원자의 확산속도가 감소되고 TiN석출물의 고온 안정성이 향상되는 새로운 사실을 알게 되었다. 즉, Ti와 N의 비(Ti/N)가 1.2∼2.5의 범위를 가질때 고용 Ti의 양이 극도로 감소되면서 TiN석출물의 고온안정성이 높아져서 0.01-0.1㎛ 크기의 미세한 TiN석출물이 0.5㎛이하의 간격으로 1.0x107개/㎟ 이상으로 분포되는 결과를 얻었다. 이는 동일 Ti함량에서 질소함량을 증가시키면 고용되어 있는 모든 Ti원자가 쉽게 질소원자와 결합하고, 또한, 고질소 환경에서는 고용 Ti양이 감소하기 때문에 질소함량이 낮은 경우에서 보다 TiN석출물이 고온에서 안정해지는 용해도적(Solubility Product)이 낮아지기 때문인 것으로 분석되었다. 본 발명에서는 고질소환경에서 고용N의 존재로 인한 시효성을 조장할 수 있다는 점을 감안하여, N/B, Al/N, V/N의 비 그리고, N와 Ti+Al+B+(V)을 총체적으로 관리하여 N를 BN, AlN, VN으로 석출시킨다.The inventors have found that this phenomenon is caused by the diffusion of TiN precipitates dispersed in the base metal by the dissolution of the dissolved Ti atoms by the heat of welding, and the characteristics of TiN precipitates according to the ratio of Ti / N are as follows. / N ratio is low), it is found that the dissolved Ti concentration and diffusion rate of the dissolved Ti atoms and the high temperature stability of the TiN precipitates are improved. That is, when the ratio of Ti and N (Ti / N) is in the range of 1.2 to 2.5, the amount of solid solution Ti is extremely reduced and the high temperature stability of the TiN precipitate is increased, so that the fine TiN precipitate of 0.01-0.1 μm or less is 0.5 μm or less. A result of distribution of 1.0 × 10 7 pieces / mm 2 or more at intervals was obtained. This increases the content of nitrogen at the same Ti content, so that all the Ti atoms dissolved are easily combined with the nitrogen atom, and in a high nitrogen environment, the amount of solid solution Ti decreases, making TiN precipitates more stable at higher temperatures than in the case of low nitrogen content. It is analyzed that this is because the solubility product is lowered. In view of the fact that the present invention can promote the aging due to the presence of solid solution N in a high nitrogen environment, the ratio of N / B, Al / N, V / N, and N and Ti + Al + B + (V) Is managed as a whole to precipitate N into BN, AlN, and VN.

나아가, 본 발명에서는 미세하고 균일하게 분포된 TiN석출물과 함께 1400℃이상에서도 안정한 Ti-Mg 복합산화물을 함께 이용하는데, 또 다른 특징이 있다. Ti-Mg복합산화물은 모재내에 분산되어 용접시 용접열영향부 오스테나이트 결정립 성장을 억제 할 뿐만 아니라 침상형 페라이트변태를 촉진시켜 용접열영향부의 인성을 향상시킬 수 있다.Furthermore, in the present invention, the Ti-Mg composite oxide, which is stable at 1400 ° C. or more, together with the fine and uniformly distributed TiN precipitates, has another feature. The Ti-Mg composite oxide is dispersed in the base material to suppress the growth of the austenitic grains of the weld heat affected zone during welding and to promote the needle-like ferrite transformation to improve the toughness of the weld heat affected zone.

[2] 강재(모재)의 페라이트입도 관리[2] ferrite grain size management

본 발명의 연구에 따르면, 구오스테나이트의 크기를 약 80㎛로 하기 위해서는, 모재의 미세조직을 페라이트 + 베이나이트의 복합조직으로 하면서 페라이트의 크기를 20㎛이하로 하는 것이 중요하다는 것을 알 수 있다. 이 때, 페라이트의 미세화는, 열간압연시 강가공에 의한 오스테나이트 결정립미세화 뿐만 아니라, 탄화물(Fe3C, WC, VC)을 이용하여 냉과정에서 발생하는 페라이트 결정립의 성장을 억제하는 것이다.According to the study of the present invention, in order to make the size of the old austenite about 80 µm, it is important to make the size of the ferrite 20 µm or less while the microstructure of the base material is a ferrite + bainite composite. . At this time, the refinement of the ferrite is to suppress the growth of the ferrite grains generated in the cold process by using carbides (Fe 3 C, WC, VC) as well as austenite grain refining by hot working during hot rolling.

[3] 용접열영향부의 미세조직[3] microstructure of weld heat affected zone

본 발명의 연구로부터 밝혀진 사실은, 용접열영향부의 인성에는 모재가 약 1400℃이상으로 가열될 때 구오스테나이트 결정립 크기 뿐 아니라, 구오스테나이트 결정립계에서 석출하는 페라이트의 양(70%이상)과 크기(20㎛이하) 그리고 그 형상이 중요한 영향을 미친다는 것이다. 본 발명에서는 Mg/O비를 0.2-3, Ti/O의 비를 4-10 그리고, (Ti+Mg)/O의 비를 3-12로 하여 Ti-Mg의 산화물 개수와 이 산화물내에함유되는 Mg의 비율을 적량화하는 것과 함께, AlN, BN 등의 석출물을 이용하여 구오스테나이트 입내에서 미세한 페라이트를 다량 생성시키는데, 이때의 페라이트는 대부분 다각형(polygonal) 페라이트와 침상형 페라이트로서 열영향부의 인성을 크게 개선한다.The facts of the present invention reveal that the toughness of the weld heat affected zone is not only the size of the former austenite grains when the base material is heated above about 1400 ° C., but also the amount and size of the ferrite (more than 70%) precipitated at the old austenite grain boundaries. (Less than 20㎛) And its shape has an important effect. In the present invention, the Mg / O ratio is 0.2-3, the Ti / O ratio is 4-10, and the (Ti + Mg) / O ratio is 3-12. In addition to optimizing the ratio of Mg, using a precipitate of AlN, BN, etc., a large amount of fine ferrite is produced in the mouth of the austenite. Greatly improves.

[4] 베이나이트 조직분율 제어[4] bainite tissue fraction control

본 발명자들은 슬라브를 열간압연한 다음에 가속냉각속도를 제어(5∼20℃/sec)할 경우에 모재의 강도를 개선할 수 있는 베이나이트 조직분율을 손쉽게 제어할 수 있다는 것과 이때 용접열영향부의 물성은 모재의 미세조직 변화와는 무관하다는 사실을 확인하였다.The present inventors can easily control the bainite texture fraction which can improve the strength of the base material when the slab is hot rolled and then the accelerated cooling rate is controlled (5 to 20 ° C./sec). It was confirmed that the physical properties are not related to the microstructure change of the base metal.

이하, 본 발명을 강재의 성분과 그 제조방법으로 구분하여 상세히 설명한다.Hereinafter, the present invention will be described in detail by dividing the steel component and its manufacturing method.

[용접 구조용 강재][Welding Structural Steels]

·탄소(C)의 함량은 0.03∼0.17%로 하는 것이 바람직하다.It is preferable to make content of carbon (C) into 0.03 to 0.17%.

탄소(C)의 함량이 0.03% 미만인 경우에는 구조용강으로서의 강도확보가 불충분하다. 또한, C가 0.17%를 초과하는 경우에는 냉각중 상부 베이나이트, 마르텐사이트 및 퇴화 퍼얼라이트(degenerate pearlite)등의 인성에 취약한 미세조직이 변태되어 구조용 강재의 저온충격인성 저하시키고, 또한 용접부의 경도 또는 강도를 증가시켜 인성의 열화 및 용접균열의 생성을 초래한다.When the content of carbon (C) is less than 0.03%, securing strength as a structural steel is insufficient. In addition, when C exceeds 0.17%, microstructures susceptible to toughness, such as upper bainite, martensite and degenerate pearlite, are transformed during cooling to lower the low temperature impact toughness of structural steel, and also the hardness of the welded portion. Or increasing the strength resulting in deterioration of toughness and generation of weld cracks.

·실리콘(Si)의 함량은 0.01-0.5%로 제한하는 것이 바람직하다.The content of silicon (Si) is preferably limited to 0.01-0.5%.

실리콘의 함량이 0.01% 미만인 경우에 제강과정에서 용강의 탈산효과가 불충분하고 강재의 내부식성을 저하시키며, 0.5%를 초과하는 경우에는 그 효과가 포화되고, 압연후 냉각시 소입성 증가에 따른 도상 마르텐사이트의 변태를 촉진시켜 저온충격인성을 저하시킨다.If the content of silicon is less than 0.01%, the deoxidation effect of molten steel is insufficient during steelmaking and the corrosion resistance of steel is reduced. If the content is more than 0.5%, the effect is saturated, It promotes the transformation of martensite and lowers the low temperature impact toughness.

·망간(Mn)의 함량은 0.4-2.0%로 제한하는 것이 바람직하다.The content of manganese (Mn) is preferably limited to 0.4-2.0%.

Mn은 강중에서 탈산작용, 용접성, 열간가공성 및 강도를 향상시키는 유효한 원소로서, Ti계 산화물 주위에 MnS형태로 석출하여 용접열영향부 인성개선에 유효한 침상형 및 다각형 형상의 페라이트 생성에 영향을 미치는 원소이다. 이러한 Mn은 기지조직내에 치환형 고용체를 형성하여 기지를 고용강화시켜 강도 및 인성을 확보하는데, 이를 위해서는 0.4%이상의 첨가하는 것이 좋다. 그러나, Mn함유량이 2.0%이상을 초과할 경우 고용강화 효과보다는 Mn편석에 의한 조직불균질이 용접열영향부 인성에 유해한 영향을 미친다. 또한 Mn함량이 2.0%이상 첨가될 경우에 강의 응고시 편석기구에 따라 거시편석 및 미시편석이 일어나 압연시 중심부에 중심편석대의 형성을 조장하여 모재의 중심부 저온변태 조직을 생성시키는 원인으로 작용한다.Mn is an effective element that improves deoxidation, weldability, hot workability and strength in steel, and precipitates in the form of MnS around Ti-based oxides, which affects the formation of acicular and polygonal ferrites effective for improving the toughness of weld heat affected zones. Element. Such Mn forms a solid solution to form a solid solution in the matrix to strengthen the matrix to secure the strength and toughness, for this purpose it is preferred to add more than 0.4%. However, when the Mn content exceeds 2.0%, tissue heterogeneity due to Mn segregation has a detrimental effect on the toughness of the weld heat affected zone, rather than the effect of strengthening the solid solution. In addition, when the Mn content is added more than 2.0%, macro segregation and micro segregation occurs depending on the segregation mechanism during steel coagulation, which promotes the formation of a central segregation zone in the center part during rolling, thereby creating a low temperature transformation structure in the center of the base material. .

·알루미늄(Al)의 함량은 0.0005-0.1%로 제한하는 것이 바람직하다.The content of aluminum (Al) is preferably limited to 0.0005-0.1%.

Al은 탈산제로서 필요한 원소로 산소와의 반응으로 Al산화물을 형성하여 Ti가 산소와 반응하는 것을 방지함으로써 Ti가 미세 TiN석출물을 형성하는데 일조할 뿐 아니라, 강중에 미세한 AlN석출물을 형성시키는데 유효한 원소이다. 미세한 AlN석출물을 형성시키기 위해서는 Al함유량을 0.0005%이상으로 하는 것이 좋다. 그러나, 0.1%를 초과하면 AlN을 석출시키고 남은 고용Al은 용접열영향부 냉각과정에서 인성에 취약한 위드만스테튼 페라이트(Widmanstatten ferrite) 및 도상 마텐사이트의 생성을 조장하여 대입열 용접열영향부의 인성을 저하시킨다.Al is an element necessary as a deoxidizer and forms an Al oxide by reacting with oxygen to prevent Ti from reacting with oxygen, which not only helps Ti to form fine TiN precipitates, but also is effective for forming fine AlN precipitates in steel. . In order to form fine AlN precipitates, the Al content is preferably made 0.0005% or more. However, if it exceeds 0.1%, AlN is precipitated and the remaining solid Al promotes the formation of Widmanstatten ferrite and phase martensite, which are vulnerable to toughness during the cooling process of the weld heat affected zone. Lowers.

·티타늄(Ti)의 함량은 0.005-0.2%로 제한하는 것이 바람직하다.The content of titanium (Ti) is preferably limited to 0.005-0.2%.

Ti는 N과 결합하여 고온에서 안정한 미세 TiN석출물을 형성시키고 또한 산소와 반응하여 Ti-Mg복합산화물을 형성시키기 때문에 본 발명에서는 필수불가결한 원소이다. 이러한 미세한 TiN 석출효과 및 Ti-Mg복합산화물을 얻기 위해서는 Ti을 0.005%이상 첨가하는 것이 바람직하나, 0.2%를 초과하면 용강중에서 조대한 TiN 정출물 및 조대한 Ti-Mg산화물이 형성되어 연주시 조대한 정출이 혼입되고 모재내에 존재하여 강재의 용접시 용접열영향부의 구오스테나이트 결정립성장을 억제하지 못하기 때문에 바람직하지 못하다.Ti is indispensable in the present invention because it combines with N to form a fine TiN precipitate that is stable at high temperature and also reacts with oxygen to form a Ti-Mg composite oxide. In order to obtain such a fine TiN precipitation effect and Ti-Mg complex oxide, it is preferable to add more than 0.005% of Ti, but when it exceeds 0.2%, coarse TiN crystals and coarse Ti-Mg oxides are formed in molten steel. It is not preferable because the crystallization of the crystal is present in the base metal and does not suppress the growth of the former austenite grains in the weld heat affected zone during welding of the steel.

·붕소(보론, B)의 함량은 0.0003-0.01%로 제한하는 것이 바람직하다.The content of boron (boron, B) is preferably limited to 0.0003-0.01%.

B은 결정립내에서 인성이 우수한 침상 페라이트(acicular ferrite) 뿐만 아니라 입계에서 다각형상의 페라이트를 생성시키는데 매우 유효한 원소이다. B은 BN석출물을 형성하여 구오스테나이트 결정립의 성장을 방해하고 결정입계 및 입내에서 Fe탄붕화물을 형성하여 인성이 우수한 침상형 및 다각형의 페라이트 변태를 촉진한다. B 함유량이 0.0003%미만인 경우에는 이러한 효과를 기대할 수 없으며 0.01%를 초과하면 소입성이 증가하여 용접열영향부의 경화 및 저온균열이 발생할 가능성이 있기 때문에 바람직하지 못하다.B is a very effective element for producing polygonal ferrite at grain boundaries as well as acicular ferrite having excellent toughness in grains. B forms a BN precipitate, which hinders the growth of the old austenite grains and forms Fe carbide in the grain boundary and in the mouth to promote ferrite transformation of acicular and polygons having excellent toughness. If the B content is less than 0.0003%, such an effect cannot be expected, and if it exceeds 0.01%, the hardenability increases, which may cause hardening of the weld heat affected zone and low temperature cracking.

·질소(N)의 함량은 0.008-0.03%로 제한하는 것이 바람직하다.The content of nitrogen (N) is preferably limited to 0.008-0.03%.

N은 TiN, AlN, BN, VN, NbN등을 형성시키는데 필수불가결한 원소로, 대입열 용접시 용접열영향부의 구오스테나이트 결정립 성장을 최대로 억제시키고 TiN, AlN, BN, VN, NbN 등의 석출물의 양을 증가시킨다. 특히 TiN 및 AlN석출물의 크기 및 석출물 간격, 석출물 분포, 산화물과의 복합석출 빈도수, 석출물 자체의 고온 안정성 등에 현저한 영향을 미치기 때문에, 그 함량은 0.008%이상으로 설정하는 것이 바람직하다. 하지만, 질소함량이 0.03%를 초과하면 그 효과가 포화되며, 용접열영향부내의 분포하는 고용질소량의 증가로 인해 인성을 저하시키고 용접시 희석에 따른 용접금속중에 혼입되어 용접금속의 인성저하를 초래할 수 있다.N is an indispensable element for forming TiN, AlN, BN, VN, NbN, etc., and it is possible to minimize the growth of the old austenite grains in the weld heat affected zone during the high heat input welding and to increase TiN, AlN, BN, VN, NbN, etc. Increase the amount of precipitate; Particularly, the content of TiN and AlN precipitates and the spacing of precipitates, the distribution of precipitates, the frequency of complex precipitation with oxides, and the high temperature stability of the precipitates themselves are significantly affected. However, when the nitrogen content exceeds 0.03%, the effect is saturated, and toughness decreases due to an increase in the amount of solid solution nitrogen distributed in the weld heat affected zone, and it may be incorporated into the weld metal due to dilution during welding, resulting in a decrease in the toughness of the weld metal. Can be.

·텅스텐(W)의 함량은 0.001-0.2%로 제한하는 것이 바람직하다.The content of tungsten (W) is preferably limited to 0.001-0.2%.

텅스텐은 열간압연 이후 모재에 텅스텐 탄화물(WC)로 균일하게 석출되어 페라이트변태 후 페라이트 결정립 성장을 효과적으로 억제하고, 또한 용접열영향부의 가열 초기 구오스테나이트 결정립의 성장을 억제하는 원소이다. 그 함량이 0.001%미만인 경우에는 열간압연후 냉각시 페라이트 결정립성장 억제를 위한 텅스텐 탄화물이 적게 분포하게 되고, 0.2% 보다 많이 첨가되는 경우 그 효과가 포화된다.Tungsten is an element that uniformly precipitates tungsten carbide (WC) in the base material after hot rolling, thereby effectively suppressing ferrite grain growth after ferrite transformation, and also suppressing the growth of the initial austenite grains in the initial heating of the weld heat affected zone. If the content is less than 0.001%, there is less distribution of tungsten carbide for suppressing ferrite grain growth upon cooling after hot rolling, and the effect is saturated when more than 0.2% is added.

·인(P) 및 황(S)의 함량은 0.030%이하로 제한하는 것이 바람직하다.The content of phosphorus (P) and sulfur (S) is preferably limited to 0.030% or less.

P는 압연시 중심편석 및 용접시 고온균열을 조장하는 불순원소이기 때문에 가능한 한 낮게 관리하는 것이 바람직하다. 모재 인성, 용접열영향부 인성 향상 및 중심편석 저감을 위해서는 0.03%이하로 관리하는 것이 좋다.P is preferably as low as possible because it is an impurity element that promotes central segregation during rolling and hot cracking during welding. In order to improve the toughness of the base metal, the toughness of the weld heat affected zone, and to reduce the center segregation, it is recommended to manage it to 0.03% or less.

S는 다량으로 존재하는 경우 FeS 등의 저융점화합물을 형성시키기 때문에 가능한 한 낮게 관리하는 것이 바람직하다. 모재인성, 용접열영향부 인성 및 중심편석 저감을 위해서는 S함량을 0.03%이하로 하는 것이 좋다. 특히, 황의 경우에는 Ti계 산화물 주위에 MnS형태로 석출하여 용접열영향부 인성개선에 유효한 침상형 및 다각형 형상의 페라이트 생성에 영향을 미치므로 용접시 고온균열을 고려할 경우 보다 바람직한 범위로는 0.003%에서 0.03%이하로 제한하는 것이 바람직하다.Since S forms a low melting point compound such as FeS when present in a large amount, it is preferable to manage S as low as possible. In order to reduce the base material toughness, weld heat affected zone toughness and central segregation, it is recommended that the S content be 0.03% or less. In particular, sulfur is precipitated in the form of MnS around Ti-based oxides, which affects the formation of needle-shaped and polygonal ferrites, which are effective for improving the toughness of welding heat affected zones. It is desirable to limit it to 0.03% or less.

·산소(O)의 함량은 0.0020-0.03%로 제한하는 것이 바람직하다.The content of oxygen (O) is preferably limited to 0.0020-0.03%.

O는 용강중에서 Ti와 반응하여 Ti-Mg복합산화물을 형성시키는데 필수불가결한 원소이다. Ti-Mg복합산화물은 용접열영향부에서 구오스테나이트로부터 페라이트 변태시 침상페라이트의 변태를 촉진시킨다. O함유량이 0.0020%미만인 경우에는 Ti-Mg복합산화물의 개수가 작기 때문에 바람직하지 못하며, 0.03%를 초과하면 조대한 Ti-Mg복합산화물 및 기타 FeO등의 산화물이 생성되므로 용접열영향부 인성에 바람직하지 않다.O is an indispensable element for forming Ti-Mg complex oxide by reacting with Ti in molten steel. Ti-Mg complex oxide promotes the transformation of acicular ferrite during the ferrite transformation from the former austenite in the weld heat affected zone. If the O content is less than 0.0020%, the number of Ti-Mg composite oxides is not preferable, and if it is more than 0.03%, coarse Ti-Mg composite oxides and other oxides such as FeO are formed, which is preferable for the toughness of the weld heat affected zone. Not.

·마그네슘(Mg)의 함량은 0.001-0.005%로 제한하는 것이 바람직하다.The content of magnesium (Mg) is preferably limited to 0.001-0.005%.

Mg는 용강중의 Ti 및 O와 결합하여 Ti-Mg복합산화물을 형성시켜 용접열영향부에서 침상페라이트 변태를 촉진시키기는 유용한 원소로, 미세한 Ti-Mg복합산화물을 형성시키기 위해서는 0.001%이상의 Mg함유량을 첨가하는 것이 바람직하다. 그러나, Mg함유량이 0.005%를 초과하면 용강중에 조대한 Mg산화물이 형성되어 모재의 기계적성질에 나쁜 영향을 미친다.Mg is a useful element that combines with Ti and O in molten steel to form Ti-Mg composite oxides to promote needle ferrite transformation in the weld heat affected zone. Mg content of 0.001% or more is required to form fine Ti-Mg composite oxides. It is preferable to add. However, when the Mg content exceeds 0.005%, coarse Mg oxide is formed in molten steel, which adversely affects the mechanical properties of the base metal.

·Ti/N의 비는 1.2∼2.5로 하는 것이 바람직하다.The ratio of Ti / N is preferably 1.2 to 2.5.

본 발명에서 Ti/N비를 2.5이하로 낮추는데, 이는 2가지 장점이 있다. 첫째는, TiN양 즉, TiN석출물의 개수를 증가시킬 수 있다는 점이다. 즉, 동일 Ti함량에서 질소함량을 증가시키면 연주과정중 냉각과정에서 고용되어 있는 모든 Ti원자가 질소원자와 결합하여 미세한 TiN석출량이 증가하게 된다. 둘째는, 고온에서 TiN이 안정하다는 점이다. 즉, 용접열영향부와 같은 고온에서 석출물의 안정성을 나타내는 용해도적(Solubility Product)이 작아지기 때문에 고질소 TiN과 같은 석출물의 경우 질소함량이 낮은 경우에서 보다 TiN석출물이 안정하다. 반면에 Ti/N비가 2.5보다 높은 경우는 제강과정인 용강중에서 조대한 TiN이 정출되어 TiN의 균일한 분포가 얻어지지 않으며, 또한 TiN으로 석출하지 않고 남은 잉여의 Ti는 고용상태로 존재하여 용접열영향부 인성에 나쁜 영향을 미친다. Ti/N비가 1.2미만에서는 모재의 고용질소량이 증가하여 용접열향부의 인성에 유해하기 때문이다.In the present invention, the Ti / N ratio is lowered to 2.5 or less, which has two advantages. First, it is possible to increase the amount of TiN, that is, the number of TiN precipitates. In other words, if the nitrogen content is increased at the same Ti content, all Ti atoms that are dissolved in the cooling process during the playing process are combined with the nitrogen atoms to increase the fine TiN precipitation. Second, TiN is stable at high temperatures. That is, since the solubility product which shows the stability of the precipitate at high temperature such as the weld heat affected zone becomes smaller, the precipitate such as high nitrogen TiN is more stable than the case where the nitrogen content is low. On the other hand, if the Ti / N ratio is higher than 2.5, coarse TiN is crystallized in molten steel, which is a steelmaking process, and a uniform distribution of TiN is not obtained. Also, excess Ti remaining without precipitation as TiN remains in a solid solution to weld heat. Affects bad toughness. If the Ti / N ratio is less than 1.2, the amount of solid solution nitrogen in the base metal increases, which is detrimental to the toughness of the weld heat-oriented part.

·N/B의 비는 10∼40으로 하는 것이 바람직하다.It is preferable to make ratio of N / B into 10-40.

본 발명에서 N/B비가 10미만이면 용접후 냉각과정중에 구오스테나이트 결정입계에서 다각형의 페라이트 변태를 촉진하는 BN의 석출량이 불충분하며, N/B비가 40초과의 경우에는 그 효과가 포화되며 고용질소량이 증가하여 용접열영향부의 인성을 저하시키기 때문이다.In the present invention, if the N / B ratio is less than 10, the precipitation amount of BN that promotes the ferrite transformation of polygons at the old austenite grain boundary during the post-weld cooling process is insufficient, and when the N / B ratio is over 40, the effect is saturated and dissolved. This is because the amount of nitrogen is increased to lower the toughness of the weld heat affected zone.

·Al/N의 비는 2.5∼7로 하는 것이 바람직하다.It is preferable to make Al / N ratio into 2.5-7.

본 발명에서 Al/N비가 2.5미만인 경우에는 침상형 페라이트 변태를 유도하기 위한 AlN석출물의 분포가 불충분하고, 용접열영향부의 고용질소량이 증가하여 용접균열이 발생할 가능성이 있으며, Al/N비가 7초과의 경우에는 그 효과가 포화된다.In the present invention, when the Al / N ratio is less than 2.5, AlN precipitates for inducing needle-like ferrite transformation are insufficient, and the amount of solid solution nitrogen in the weld heat affected zone may increase, resulting in a weld crack, and an Al / N ratio of more than 7 In the case the effect is saturated.

·(Ti+2Al+4B)/N의 비는 6.5∼14로 하는 것이 바람직하다.It is preferable that ratio of (Ti + 2Al + 4B) / N is 6.5-14.

본 발명에서 (Ti+2Al+4B)/N의 비가 6.5미만의 경우 용접열영향부의 구오스테나이트 결정립 성장억제, 결정입계에서의 미세한 다각형 페라이트 생성, 고용질소량, 결정입내에서의 침상형 및 다각형의 페라이트 생성 및 조직분율의 제어를 위한 TiN, AlN, BN, VN 석출물의 크기 및 분포개수가 불충분하며, (Ti+2Al+4B)/N이 14초과의 경우에는 그 효과가 포화된다. 만일, V이 첨가되는 경우에는 (Ti+2Al+4B+V)/N의 비를 7-17로 하는 것이 바람직하다.In the present invention, when the ratio of (Ti + 2Al + 4B) / N is less than 6.5, the growth inhibition of the austenite grain growth of the weld heat affected zone, the generation of fine polygonal ferrite at the grain boundary, the amount of solid solution nitrogen, the needle shape and the polygonal shape in the grain boundary Insufficient size and number of distribution of TiN, AlN, BN, and VN precipitates for ferrite formation and control of tissue fraction, and the effect is saturated when (Ti + 2Al + 4B) / N is more than 14 seconds. If V is added, the ratio of (Ti + 2Al + 4B + V) / N is preferably 7-17.

· Ti/O의 비는 4-10으로 하는 것이 바람직하다.The ratio of Ti / O is preferably set to 4-10.

Ti/O비가 4미만의 경우에는 오스테나이트 결정립 성장억제에 요구되는 TiO산화물 개수가 불충분하며, TiO산화물내의 함유하는 Ti비율이 작아져서 침상 페라이트 핵생성 자리로서의 기능을 상실하여 용접열영향부의 인성개선에 유효한 침상페라이트 상분율이 저하된다. Ti/O의 비가 10초과의 경우에는 용접열영향부 오스테나이트 결정립성정억제 효과가 포화되며, 산화물내에 함유되는 Mn 등의 성분의 비율이 오히려 작아져서 입내 페라이트의 핵생성 자리로서의 기능을 상실한다.If the Ti / O ratio is less than 4, the number of TiO oxides required to inhibit austenite grain growth is insufficient, and the Ti ratio in TiO oxides becomes small, thus losing the function of acicular ferrite nucleation sites and improving the toughness of the weld heat affected zone. The effective acicular ferrite phase fraction is lowered. If the ratio of Ti / O is more than 10, the effect of inhibiting the weld heat affected zone austenite grain size crystallization is saturated, and the ratio of components such as Mn contained in the oxide becomes rather small, thus losing the function of the nucleation site of the ferrite in the mouth.

·Mg/O비는 0.2-3으로 제한하는 것이 바람직하다.The Mg / O ratio is preferably limited to 0.2-3.

Mg/O비가 0.2미만의 경우에는 오스테나이트 결정립 성장억제에 요구되는 Ti-Mg복합산화물 개수가 불충분하며 산화물내의 함유하는 Mg비율이 작아져서 침상 페라이트 핵생성 자리로서의 기능을 상실하여 용접열영향부의 인성개선에 유효한 침상 페라이트 상분율이 저하된다. 또한, Mg/O비가 3을 초과할 경우에는 오스테나이트 결정립 성장억제 효과는 포화되며 산화물내에 함유하는 Mn 등 성분의 비율이 오히려 작아져서 입내 페라이트의 핵생성 자리로서의 기능을 상실한다.If the Mg / O ratio is less than 0.2, the number of Ti-Mg complex oxides required for austenite grain growth inhibition is insufficient, and the Mg ratio contained in the oxide becomes small, and thus loses its function as a needle-like ferrite nucleation site. The needle ferrite phase fraction effective for improvement is lowered. In addition, when the Mg / O ratio exceeds 3, the austenite grain growth inhibitory effect is saturated, and the ratio of components such as Mn contained in the oxide becomes smaller, thus losing the function of nucleation sites of the ferrite in the mouth.

·(Ti+Mg)/O비는 3-12로 제한하는 것이 바람직하다.The (Ti + Mg) / O ratio is preferably limited to 3-12.

(Ti+Mg)/O비가 3미만의 경우에는 오스테나이트 결정립 성장억제에 요구되는Ti-Mg복합 산화물 개수가 불충분하여 오스테나이트 결정립내 침상 페라이트 핵생성 자리로서의 기능을 상실하여 용접열영향부의 인성개선에 유효한 침상 페라이트 상분율이 저하된다. 또한, (Ti-Mg)/O비가 12를 초과할 경우에는 오스테나이트 결정립 성장억제 효과는 포화되며 산화물내에 함유하는 Mn성분의 비율이 오히려 작아져서 입내 페라이트의 핵생성 자리로서의 기능을 상실한다.When the (Ti + Mg) / O ratio is less than 3, the number of Ti-Mg complex oxides required for the austenite grain growth inhibition is insufficient, and thus the toughness of the weld heat affected zone is improved by losing its function as a needle ferrite nucleation site in the austenite grain. The effective acicular ferrite phase fraction decreases. In addition, when the (Ti-Mg) / O ratio exceeds 12, the austenite grain growth inhibitory effect is saturated, and the ratio of the Mn component contained in the oxide becomes rather small, thus losing the function of the nucleation site of the ferrite in the mouth.

상기와 같이 조성되는 강재(모재)와 열영영향부의 인성을 보다 개선시키기 위해 V을 추가로 첨가한다.In order to further improve the toughness of the steel material (base material) and the heat-affected portion formed as described above, V is further added.

·바나듐(V)의 함량은 0.01-0.2%로 제한하는 것이 바람직하다.The content of vanadium (V) is preferably limited to 0.01-0.2%.

V은 N와 결합해 VN을 형성하여 용접열영향부에서 페라이트 형성을 촉진시키는 원소이며, VN는 단독으로 석출하거나 TIN석출물에 석출하여 페라이트 변태를 촉진시킨다. 또한 V은 C과 결합하여 VC를 형성하는데, 이러한 VC탄화물은 페라이트 변태후 페라이트 결정립 성장을 억제하는 역할을 한다. V함유량이 0.01%미만에서는 VN석출량이 작기 때문에 용접열영향부에서 페라이트 변태촉진 효과를 얻기가 힘들다. 한편 0.2%를 초과하면 모재 및 용접열영향부(HAZ)의 인성열화를 초래하고 용접경화성을 향상시켜 용접저온균열 발생위험이 있기 때문에 바람직하지 않다.V is an element that combines with N to form VN to promote ferrite formation in the weld heat affected zone, and VN precipitates alone or precipitates in TIN precipitates to promote ferrite transformation. In addition, V combines with C to form VC, which acts to inhibit ferrite grain growth after ferrite transformation. When the V content is less than 0.01%, it is difficult to obtain the ferrite transformation promoting effect in the weld heat affected zone because the VN deposition amount is small. On the other hand, exceeding 0.2% is not preferable because it causes toughness of the base metal and the weld heat affected zone (HAZ) and improves the weld hardenability, which may cause the low temperature crack of the weld.

또한, V/N의 비는 0.3∼9로 하는 것이 바람직하다. 본 발명에서 V/N비가 0.3미만인 경우에는 용접열영향부 인성개선을 위한 TiN+MnS 복합석출물 경계에 석출하여 분포하는 적정 VN석출물 개수 및 크기를 확보하기 어렵다. V/N비가 9를 초과하는 경우에는 TiN+MnS석출물 경계에 석출하는 VN석출물의 크기가 조대화되어 오히려TiN+MnS복합석출물 경계에 석출되는 VN석출빈도수가 감소하기 때문에 용접열영향부의 인성에 유효한 페라이트 상분율을 감소시킨다.Moreover, it is preferable to make ratio of V / N into 0.3-9. In the present invention, when the V / N ratio is less than 0.3, it is difficult to secure an appropriate number and size of VN precipitates deposited and distributed at the TiN + MnS composite precipitate boundary for improving the toughness of the weld heat affected zone. If the V / N ratio exceeds 9, the size of the VN precipitates deposited at the TiN + MnS precipitate boundary is coarsened, and the frequency of VN precipitation precipitated at the TiN + MnS composite precipitate boundary is reduced, which is effective for the toughness of the weld heat affected zone. Reduce ferrite phase percentage.

상기와 같이 조성되는 강에 본 발명에서는 기계적성질을 보다 향상시키기 위해, Ni, Cu, Nb, Mo, Cr의 그룹에서 선택된 1종 또는 2종이상을 추가로 첨가한다.In the present invention, in order to further improve the mechanical properties in the steel composition as described above, one or more selected from the group of Ni, Cu, Nb, Mo, Cr is further added.

·니켈(Ni)의 함량은 0.1-3.0%로 제한하는 것이 바람직하다.The content of nickel (Ni) is preferably limited to 0.1-3.0%.

Ni은 고용강화에 의해 모재의 강도와 인성을 향상시키는 유효한 원소이다. 이러한 효과를 얻기 위해서는 Ni함유량이 0.1%이상 함유되는 것이 바람직하지만, 3.0%를 초과하는 경우에는 소입성을 증가시켜 용접열영향부의 인성을 저하시키고 용접열영향부 및 용접금속에서 고온균열의 발생 가능성이 있기 때문에 바람직하지 못하다.Ni is an effective element which improves the strength and toughness of the base material by solid solution strengthening. In order to achieve this effect, the Ni content is preferably 0.1% or more, but when the content exceeds 3.0%, the hardenability is increased to reduce the toughness of the weld heat affected zone and the possibility of high temperature cracking in the weld heat affected zone and the weld metal. This is not desirable because there is.

·구리(Cu)의 함량은 0.1-1.5%로 제한하는 것이 바람직하다.The content of copper (Cu) is preferably limited to 0.1-1.5%.

Cu는 기지에 고용되어 고용강화 효과로 인하여 모재강도 및 인성을 확보하기 위해서 유효한 원소이다. 이를 위해서는 Cu함유량이 0.1%이상 함유되어야 하지만, 1.5%를 초과하는 경우에는 용접열영향부에서 소입성을 증가시켜 인성을 저하시키며 용접열영향부 및 용접금속에서 고온균열을 조장시키기 때문에 바람직하지 못하다. 특히, 상기 Cu는 황과 함께 Ti계 산화물 주위에 CuS형태로 석출하여 용접열영향부 인성개선에 유효한 침상형 및 다각형 형상의 페라이트 생성에 영향을 미치는 원소이므로 그 함량을 0.3-1.5%로 하는 것이 바람직하다.Cu is an element which is effective to secure the base material strength and toughness due to solid solution at the base. For this purpose, Cu content should be contained more than 0.1%, but if it exceeds 1.5%, it is not preferable because it increases the hardenability by increasing the hardenability in the weld heat affected zone and promotes high temperature crack in the weld heat affected zone and the weld metal. . In particular, Cu is an element that affects the formation of acicular and polygonal ferrites, which are effective in improving the toughness of the welded heat affected zone by depositing CuS around Ti-based oxides with sulfur, so that the content is 0.3-1.5%. desirable.

또한 Cu와 Ni을 복합첨가하는 경우 이들의 합계는 3.5%미만으로 하는 것이 바람직하다. 그 이유는 3.5%미만의 경우에 소입성이 커져서 용접열영향부 인성 및 용접성에 악영향을 초래하기 때문이다.In addition, in the case of complex addition of Cu and Ni, the total sum thereof is preferably less than 3.5%. The reason is that less than 3.5% of the hardenability increases, which adversely affects the weld heat affected zone toughness and weldability.

·니요븀(Nb)의 함량은 0.01-0.10%로 제한하는 것이 바람직하다.The content of niobium (Nb) is preferably limited to 0.01-0.10%.

Nb는 모재 강도확보의 관점에서 유효한 원소로, 이를 위해 0.01%이상 첨가하나, 0.1%를 초과하는 경우에는 조대한 NbC의 단독석출을 초래하여 모재의 인성에 유해하게 되므로 바람직하지 못하다.Nb is an effective element from the viewpoint of securing the strength of the base material. For this purpose, Nb is added in an amount of 0.01% or more. However, Nb is undesirable because it causes coarse precipitation of coarse NbC, which is detrimental to the toughness of the base material.

·크롬(Cr)은 0.05∼1.0%로 하는 것이 바람직하다.Chromium (Cr) is preferably made 0.05 to 1.0%.

Cr은 소입성을 증가시키고 또한 강도를 향상시키는데, 그 함유량이 0.05%미만에는 강도를 얻을 수 없고 1.0%를 초과하는 경우 모재 및 HAZ인성열화를 초래한다.Cr increases the hardenability and also improves the strength. If the content is less than 0.05%, the strength cannot be obtained and when the content exceeds 1.0%, the base metal and the HAZ toughness deteriorate.

·몰리브덴(Mo)은 0.05-1.0%로 하는 것이 바람직하다.Molybdenum (Mo) is preferably 0.05-1.0%.

Mo도 소입성을 증가시키고 또한 강도를 향상시키는 원소로, 그 함유량이 강도확보를 위하여 0.05%이상으로 하지만, HAZ경화 및 용접저온균열을 억제하기 위해서는 Cr과 마찬가지로 상한을 1.0%로 한다.Mo is also an element that increases the hardenability and improves the strength. The content thereof is 0.05% or more for securing the strength, but the upper limit is set to 1.0% like Cr for suppressing the HAZ hardening and the welding low temperature crack.

또한, 본 발명에서는 가열시에 구오스테나이트의 입성장억제를 위해 Ca, REM의 1종 또는 2종을 추가로 첨가한다.In addition, in the present invention, one or two kinds of Ca and REM are further added to suppress the grain growth of the austenite at the time of heating.

Ca 및 REM은 고온안정성이 우수한 산화물을 형성시켜 모재내에서 가열시 구오스테나이트 결정립 성장을 억제하고 용접열영향부의 인성을 향상시킨다. 또한, Ca은 제강시 조대한 MnS형상을 제어하는 효과가 있다. 이를 위해, 칼슘(Ca)은 0.0005%이상, REM은 0.005%이상 첨가하는 것이 좋으나, Ca이 0.005% REM이 0.05%를 초과하는 경우 대형개재물 및 클러스터(cluster)를 생성시켜 강의 청정도를 해치게 된다. REM으로서는 Ce, La, Y 및 Hf등의 1종 또는 2종이상을 사용하여도 무방하고 어느 것도 상기 효과를 얻을 수 있다.Ca and REM form an oxide having excellent high temperature stability, thereby suppressing the growth of the austenite grains when heated in the base metal and improving the toughness of the weld heat affected zone. In addition, Ca has the effect of controlling the coarse MnS shape during steelmaking. To this end, it is preferable to add more than 0.0005% of calcium (Ca) and more than 0.005% of REM, but if Ca exceeds 0.005% of REM of more than 0.05%, large inclusions and clusters are generated to harm the cleanliness of the steel. As REM, 1 type, or 2 or more types, such as Ce, La, Y, and Hf, may be used, and any of the above effects can be obtained.

·강재의 미세조직· Microstructure of steel

본 발명에서 강재는 페라이트+베이나이트의 복합조직으로, 베이나이트의 조직분율은 30-80% 범위를 하는 것이 바람직하다. 그 이유는 30%미만에서는 본 발명의 효과를 보이기 위한 적정 모재강도를 확보하기 어려우며, 80% 초과의 경우에는 모재인성을 확보하기 어렵기 때문이다.In the present invention, the steel is a composite structure of ferrite + bainite, the tissue fraction of bainite is preferably in the range of 30-80%. The reason is that less than 30% is difficult to secure the appropriate base material strength for showing the effect of the present invention, and if it is more than 80% it is difficult to secure the base material toughness.

그리고, 페라이트+베이나이트의 복합조직에서 페라이트 결정립 크기를 20㎛이하로 하는 것이 바람직하다. 이는 페라이트의 결정립크기가 20㎛ 보다 클 경우대입열 용접시 용접열영향부의 오스테나이트 결정립 크기가 80㎛이상이 되어 용접열영향부 인성에 유해하기 때문이다.In the composite structure of ferrite + bainite, the ferrite grain size is preferably 20 µm or less. This is because when the grain size of the ferrite is larger than 20 μm, the austenite grain size of the weld heat affected zone becomes 80 μm or more during high heat input welding, which is detrimental to the weld heat affected zone toughness.

·석출물Precipitate

용접열영향부의 구오스테나이트 결정립은 모재의 오스테나이트 결정립 크기가 일정할 경우 모재에 분포하는 산화물 또는 질화물의 크기 및 그 개수 그리고, 분포에 크게 영향을 받게 된다. 또한, 대입열 이상 용접시(가열온도 1400℃이상) 모재에 분포하는 질화물의 경우 30-40%가 모재로 재고용되어 용접열영향부의 구오스테나이트 결정립 성장 억제효과가 감소하기 때문에, 가열시 모재에 재고용되는 질화물들을 고려한 그 이상의 질화물들의 균일한 분포가 필요하다. 용접열영향부에서 구오스테나이트의 성장을 억제하기 위해서는, 미세한 TiN 석출물을 균일하게 분포시켜 일부 석출물이 조대해지는 오스왈드 라이프닝(Ostwald ripening)현상을 억제하는 것이 중요하다. 이를 위해서는 TiN석출물의 간격을 0.5㎛이하로 제어하여 TiN의 분포를 균일하게 하야 한다.The former austenite grains of the weld heat affected zone are greatly influenced by the size, number and distribution of oxides or nitrides distributed in the base material when the austenite grain size of the base material is constant. In addition, since 30-40% of the nitrides distributed in the base material are welded to the base material at the time of high heat input welding (above the heating temperature of 1400 ℃ or more), the effect of inhibiting the growth of the austenite grains in the weld heat affected zone is reduced. There is a need for a uniform distribution of further nitrides taking into account the re-used nitrides. In order to suppress the growth of the old austenite in the weld heat affected zone, it is important to uniformly distribute the fine TiN precipitate to suppress the Ostwald ripening phenomenon in which some precipitates are coarsened. For this purpose, the TiN precipitates should be controlled to 0.5 μm or less to make the TiN distribution uniform.

또한, TiN의 입경 및 임계 갯수를 0.01-0.1㎛ 및 1mm2당 1.0x107개 이상으로 한정하는 것이 바람직하다. 그 이유는 0.01㎛미만에서는 대입열 용접시 대부분 모재에 쉽게 재고용되어 구오스테나이트 결정립의 성장을 억제하는 효과가 미흡해지며, 0.1㎛을 초과하는 경우에는 구오스테나이트 결정립에 대한 피닝(pinning, 결정립 성장억제)효과가 적어지고 조대한 비금속개재물과 같은 거동을 하여 기계적 성질에 유해한 영향을 미치기 때문이다. 또한, 석출물의 갯수가 1mm2당 1.0x107개 미만에서는 대입열이상의 용접시 용접열영향부의 구오스테나이트 결정립 크기를 임계치인인 80㎛이하로 제어하기가 어렵다.In addition, it is preferable to limit the particle diameter and the critical number of TiN to 0.01-0.1 μm and 1.0 × 10 7 or more per 1 mm 2 . The reason for this is that less than 0.01 μm is easily re-used to the base metal during high heat input welding, and the effect of inhibiting the growth of the old austenite grains is insufficient. When the thickness exceeds 0.1 μm, pinning of the old austenite grains This is because the growth inhibition effect is reduced and behaves like coarse non-metallic inclusions, which adversely affects mechanical properties. In addition, when the number of precipitates is less than 1.0 × 10 7 per 1 mm 2 , it is difficult to control the size of the old austenite grains of the weld heat affected zone at the time of welding higher than the heat input to be 80 μm or less, which is a threshold value.

·산화물·oxide

본 발명에서는 Ti-Mg산화물의 입경 및 임계개수를 0.5-2.0㎛ 및 1mm2당 1.0x102-1.0x103개의 범위로 하는 것이 바람직하다. 그 이유는 산화물의 크기가 0.5㎛미만의 경우에는 용접열영향부 결정립내에서 침상 페라이트 핵생성 촉진 효과가 미흡하며, 2.0㎛ 초과의 경우에는 용접열영향부 결정립 성장억제 효과가 미흡하고 또한 핵생성 되는 침상 페라이트의 변태량이 감소하기 때문이다.In the present invention, the particle diameter and the critical number of the Ti-Mg oxide are preferably in the range of 0.5-2.0 μm and 1.0 × 10 2 -1.0 × 10 3 per 1 mm 2 . The reason for this is that when the oxide size is less than 0.5 µm, the needle ferrite nucleation promoting effect is insufficient in the weld heat-affected grains. This is because the amount of transformation of the acicular ferrite is reduced.

산화물 개수의 한정이유는 1mm2당 1.0x102개이하에서 용접열영향부내에서 침상 페라이트를 핵생성시키는 산화물의 개수가 적기 때문에 침상 페라이트양이 적기 때문에 인성에 나쁜 영향을 미치고 또한 1mm2당 1.0x103이상에서는 Ti-Mg복합산화물수가 많기 때문에 산화물에서 핵생성하는 1차 침상페라이트가 서로 성장하다가 부딪쳐서 2차 침상페라이트의 형성을 제한하기 때문에 결정립내에 침상페라이트 양이 감소하기 때문에 바람직하지 못하다.The reason for limiting the number of oxide having an adverse effect on toughness because less acicular ferrite amount because there is less number of the oxide of the acicular ferrite nucleation in the welding heat affected portion below 1.0x10 2 per 1mm 2 also 1mm 2 per 1.0x10 Above 3 , the number of Ti-Mg complex oxides is not preferable because the amount of acicular ferrite in the grains decreases because the primary acicular ferrites nucleating in the oxides grow and collide with each other to limit the formation of the acicular acicular ferrites.

[제조방법][Manufacturing method]

·정련(탈산, 탈가스)공정Refining (Deoxidation, Degassing) Process

일반적으로 강의 정련공정은 정련로(전로, 전기로)에서 1차정련한 다음, 정련로의 용강을 래들(L.F)로 출강하여 2차정련(노외정련)하는데, 용접구조용 강재와 같이 후물재에서는 노외정련 다음에 탈가스(RH공정)를 행한다. 보통 탈산은 1차정련과 2차정련에서 이루어진다.In general, the steel refining process is first refined in the refining furnace (electric furnace, electric furnace), and then the molten steel of the refining furnace is pulled out by the ladle (LF) to the secondary refining (external refining). After out-refining, degassing (RH process) is performed. Normal deoxidation takes place in primary and secondary refining.

본 발명자들은 이러한 탈산공정에서 용존산소량이 산화물의 생성거동에 크게 영향을 미친다는 사실에 착안한 연구과정에서 Ti을 적량의 Ti-Mg 복합산화물과 다량의 미세한 TiN석출물로 다량으로 균일하게 분포시키기 위한 다음의 사실을 밝혀낼 수 있었다.The present inventors focused on the fact that the amount of dissolved oxygen in the deoxidation process greatly affects the formation behavior of the oxide to uniformly distribute a large amount of Ti into an appropriate amount of Ti-Mg composite oxide and a large amount of fine TiN precipitate. The following facts could be found.

(1) 용존 산소량은 산화물의 생성거동에 크게 영향을 미치며 다량의 산화물을 생성시키기 위해서는 적정한 용존산소량이 존재하는데, 그 수치는 50-200ppm 정도라는 점과,(1) The amount of dissolved oxygen greatly affects the formation behavior of oxides, and in order to generate a large amount of oxides, an appropriate amount of dissolved oxygen exists, which is about 50-200 ppm,

(2) 이러한 용존산소량을 갖는 용강에 Mg을 먼저 투입한 다음 Ti을 투입하면, Mg산화물은 기존의 다른 산화물보다 산소와의 친화력이 상당히 커서 좀더 미세한 산화물 분포를 얻을 수 있다는 점, 그리고, Ti의 일부는 Ti-Mg복합산화물을 형성하여 산화물의 개수를 증가시키고 또한, 이러한 Ti-Mg복합산화물은 TiN, MnS, CuS, VN 등의 석출물의 석출빈도수를 증가시키며, 첨가된 Ti중의 나머지는 용강중에 고용되어 응고시 미세한 Ti석출물을 형성한다는 점인데, 이를 자세히 설명한다.(2) When Mg is first introduced into molten steel having such dissolved oxygen, and then Ti is added, Mg oxide has a significantly higher affinity with oxygen than other oxides, and thus a finer oxide distribution can be obtained. Some form Ti-Mg complex oxides to increase the number of oxides, and these Ti-Mg complex oxides increase the precipitation frequency of precipitates such as TiN, MnS, CuS, VN, and the rest of the added Ti in molten steel. The solid solution forms a fine Ti precipitate upon solidification, which will be described in detail.

본 발명에서는 Mg, Ti 투입전에 용강을 Ti 보다 탈산력이 큰 탈산원소를 용강에 투입하여 용존산소량을 50-200ppm으로 조정한다. 탈산제의 탈산력은 아래와 같다.In the present invention, before the addition of Mg and Ti, molten steel is added to the molten steel with a higher deoxidizing element than Ti to adjust the dissolved oxygen amount to 50-200 ppm. The deoxidizing power of the deoxidizer is as follows.

Cr < Mn < Si < Ti < Al < REM < Zr < Ca ≒ MgCr <Mn <Si <Ti <Al <REM <Zr <Ca ≒ Mg

산소와의 친화력이 큰 탈산제 일수록 용강중 산소와 결합하는 속도가 빠르고 결합력도 강하다. 따라서, Zr, Ti의 첨가전에 Ti 보다 탈산력이 큰 탈산제를 투입하여 적정 용존산소(50-200ppm)을 확보하여야 탈산공정의 진행시간을 단축하면서 목적하는 TiO산화물로 형성하면서 Ti을 TiN석출물로 만들 수 있다. 즉, Ti 보다 탈산력이 큰 탈산제를 사전에 투입하기 때문에 Ti가 용강중에서 조대한 1차산화물로 생성되기 보다는 고용Ti로 잔존하는 비율이 상당히 높아져서 응고시 미세한 다량의 Ti산화물 및 TiN질화물을 확보할 수 있는 것이다.The deoxidizer with greater affinity with oxygen has a higher rate of binding to oxygen in molten steel and a stronger binding force. Therefore, before adding Zr and Ti, deoxidizer with greater deoxidizing power than Ti should be added to secure proper dissolved oxygen (50-200ppm) to make Ti into TiN precipitate while forming the target TiO oxide while reducing the progress time of deoxidation process. Can be. That is, since the deoxidizer with greater deoxidizing power than Ti is pre-injected, the ratio of Ti remaining in solid solution rather than coarse primary oxide in molten steel increases considerably, thus securing fine amounts of Ti oxide and TiN nitride during solidification. It can be.

본 발명에서는 Ti보다 탈산력이 큰 원소(Al, REM, Zr, Ca, Mg)를 투입하기 전에, Mn, Si 등의 원소를 투입하여 탈산하고, 이어서 Al 등과 같은 Ti 보다 탈산력이 큰 탈산제를 투입하는 것도 바람직하다. 이 방법은 탈산력이 약한 Si, Mn등을 이용하여 조정하고 또한 Al을 첨가시켜 조대한 1차 산화물을 부상분리를 통하여 용강의 산소량을 조정하는 것이 유리하다는 장점이 있다.In the present invention, before adding an element (Al, REM, Zr, Ca, Mg) having a higher deoxidizing power than Ti, by deoxidizing by adding elements such as Mn, Si, and then deoxidizer having a higher deoxidizing power than Ti such as Al It is also preferable to inject. This method has the advantage of adjusting the amount of oxygen of molten steel through the separation of coarse primary oxide by adjusting Al and adding Al and adding Al by adding weak Al.

본 발명에서 탈산 조업패턴의 일례로서, 1차정련에서 Mn, Si, Al의 순으로 투입한 다음 2차정련에서 Mg을 투입하고 최종적으로 Ti를 첨가하는 것이다. 본 발명에서는 Al 최종함유량을 0.005-0.1%범위로 한정하는데, 그 이유는 상기한 함량범위일 때 1차 탈산후에 투입하는 Al 투입에 의해서 용강중의 산소와 반응하여 부상분리에 의하여 용강중의 산소량을 제어하는데 효과적이기 때문이다. Al의 적정범위를 도출하기 위해 실험한 결과, Al이 0.005%보다도 작으면 적정 용존산소량 제어 등에 미치는 영향도가 충분하지 않고 0.1%를 초과하게 되면 용강중의 산소량이 부족하여 Ti-Mg복합산화물의 형성량이 감소하기 때문이다.As an example of the deoxidation operation pattern in the present invention, Mn, Si, Al are added in the order of primary refining, followed by Mg in the secondary refining, and finally Ti is added. In the present invention, the final Al content is limited to the range of 0.005-0.1%. The reason is that the oxygen content in the molten steel is controlled by floating separation by reacting with the oxygen in the molten steel by Al injecting after the first deoxidation in the above content range. Because it is effective to. As a result of experiment to derive the proper range of Al, when Al is less than 0.005%, the influence on the control of the proper dissolved oxygen amount is not sufficient, and when it exceeds 0.1%, the amount of oxygen in the molten steel is insufficient to form Ti-Mg complex oxide. This is because the amount decreases.

상기와 같이 본 발명에서는 Ti의 투입전에 용존산소량을 50-200ppm으로 탈산하는 것이 바람직한데, 그 이유는 다음과 같다. 용존산소량이 50ppm미만의 경우에 용강중의 산소량이 너무 적어 본 발명의 효과를 보이기 위한 적정 Ti-Mg계 산화물의 형성량이 불충분하기 때문이며, 200ppm 초과의 경우에는 그 효과가 포화되며 목표로 하는 원소뿐만 아니라 타합금 첨가원소를 산화시켜 정확한 화학성분들을 구성된 합금성분계를 얻는 문제점이 있기 때문이다.As described above, in the present invention, it is preferable to deoxidize the dissolved oxygen amount to 50-200 ppm before the introduction of Ti, for the following reason. If the amount of dissolved oxygen is less than 50 ppm, the amount of oxygen in the molten steel is too small to form an appropriate amount of Ti-Mg-based oxide for showing the effect of the present invention, and in the case of more than 200 ppm, the effect is saturated and not only the target element This is because there is a problem of oxidizing another alloying element to obtain an alloy component system composed of accurate chemical components.

상기와 같이 Si, Mn, Al원소를 이용하여 용존산소량을 제어한 다음에, 탈산원소로 Mg 및 Ti를 첨가하는데 그 이유는 다음과 같다. Mg는 용강중 산소와의 친화력이 크기 때문에 용강중에 존재하는 산소와 반응하여 Mg산화물을 형성한다. 또한 이러한 Mg산화물은 Ti와 친화력이 커서 Ti-Mg복합산화물 형성에 직접적인 영향을미쳐 응고시 강중에 분포하는 Ti계 산화물의 개수 증가에 상당히 효과적인 영향을 미친다. Ti와 Mg을 동시에 첨가하는 경우에는 Mg이 Ti보다 산소와의 친화력이 커서 우선적으로 용강중의 산소와 결합하여 Ti계 산화물보다는 Mg계 산화물을 형성한다. 따라서, 다각형 또는 침상의 페라이트 변태핵으로 작용하는 Ti산화물의 개수를 크게 감소시키는 문제점이 있기 때문에 먼저 Mg에 의한 탈산공정으로 Mg산화물을 분포시킨 후 Ti에 의한 탈산공정을 진행함으로서 페라이트 핵생성에 영향을 미치는 Ti산화물의 개수를 증가시키는 것이 유리하다.As described above, the amount of dissolved oxygen is controlled by using Si, Mn, and Al elements, and then Mg and Ti are added as deoxidation elements. Since Mg has a high affinity with oxygen in molten steel, Mg reacts with oxygen present in molten steel to form Mg oxide. In addition, the Mg oxide has a high affinity with Ti, which has a direct effect on the formation of Ti-Mg composite oxide, which has a significant effect on increasing the number of Ti-based oxides distributed in the steel during solidification. When Ti and Mg are added at the same time, Mg has a greater affinity for oxygen than Ti and preferentially combines with oxygen in molten steel to form Mg oxides rather than Ti oxides. Therefore, since there is a problem of greatly reducing the number of Ti oxides acting as a polygonal or needle-like ferrite transformation nucleus, the ferrite nucleation is influenced by first distributing the Mg oxide in the deoxidation process by Mg and then deoxidizing by Ti. It is advantageous to increase the number of Ti oxides which affect the

본 발명에서 3차탈산원소로 Mg을 0.001-0.005%범위로 첨가하는데, 그 이유는 Mg의 함량이 0.001%이하에서는 용강중에 형성되는 Mg산화물 개수가 너무 적어 Ti-Mg복합산화물의 형성이 부족하기 때문이며, 0.005%이상에서는 Mg과 산소와의 친화력이 Ti산화물보다 큰 이유로 Ti와 결합할 수 있는 산소량이 부족해져 본 발명의 효과를 보이기 위한 Ti-Mg복합산화물 뿐만아니라 TiO산화물의 개수도 감소하기 때문이다.In the present invention, Mg is added in the range of 0.001-0.005% as the tertiary deoxidation element, because the Mg content is less than 0.001%, the number of Mg oxides formed in molten steel is too small to form Ti-Mg complex oxides. This is because if the affinity between Mg and oxygen is greater than Ti oxide, the amount of oxygen that can be combined with Ti is insufficient at 0.005% or more, so that the number of TiO oxides as well as Ti-Mg composite oxides for showing the effect of the present invention is reduced. .

상기와 같이, Mg탈산원소 첨가 후 용강상태에서 Ti를 0.005-0.2% 첨가한다. 용강상태에서 Ti산화물을 형성하는 것 보다 오히려 대부분 용강에 고용시키고 응고시 Ti산화물을 형성하게 되면 Ti산화물이 좀더 미세하고 개수 또한 증가되는 효과가 있다. 따라서, Mg탈산원소 첨가후 Ti를 첨가하게 되면 산화물로 생성되는 것보다는 고용Ti로 잔존하는 비율이 상당히 높아 응고시 미세하면서 다량의 Ti산화물및 TiN석출물을 확보할 수 있다. 이때 바람직한 Ti첨가량은 0.005-0.2%범위인데, 이는 본 발명의 효과를 보이기 위한 적정 Ti산화물 및 TiN석출물 분포 뿐만아니라 용접열영향부 인성개선에 유효한 MnS, CuS, BN, VN석출거동을 함께 고려한 범위이다.As described above, 0.005-0.2% Ti is added in the molten steel state after the addition of Mg deoxidation element. Rather than forming Ti oxide in the molten steel state, the solid solution in most molten steel and forming Ti oxide during solidification has an effect of increasing the number and finer Ti oxide. Therefore, when Ti is added after the addition of Mg deoxidation element, the ratio remaining as solid solution Ti is considerably higher than that produced as an oxide, and thus a fine amount of Ti oxide and TiN precipitate can be secured during solidification. At this time, the preferred amount of Ti is in the range of 0.005-0.2%, which is in consideration of MnS, CuS, BN, and VN precipitation behaviors effective for improving the toughness of the weld heat affected zone as well as the proper distribution of Ti oxide and TiN precipitates for showing the effects of the present invention. to be.

상기와 같이, Mg을 첨가하고 이어 Ti을 첨가한 다음에 후속하여 정련 예를 들어 탈가스처리하는데, 이때 연속주조전까지 용강의 유지시간은 0.5-20분 이내로 한정하는 것이 바람직하다. 용강의 유지시간이 0.5분이하에서는 조대한 1차 산화물이 부상분리 될 시간적 여유가 없어 응고후 잔존하여 Ti계 산화물의 평균크기가 증가하게 되며, 20분 이상에서는 산화물끼리 결합하여 조대화되고 부상될 가능성이 매우 높기 때문이다. 따라서 Mg원소 첨가후 0.5-20분 시간범위에서 Ti원소를 첨가하면 응고시 미세한 Ti-Mg복합 산화물을 얻을 수 있다.As described above, Mg is added followed by Ti, followed by refining, for example, degassing, wherein the holding time of the molten steel until continuous casting is preferably limited to within 0.5-20 minutes. If the retention time of molten steel is less than 0.5 minutes, there is no time for coarse primary oxides to float and remain. After coagulation, the average size of Ti-based oxides is increased. Because this is very high. Therefore, when Ti element is added within 0.5-20 minutes after Mg element is added, a fine Ti-Mg composite oxide can be obtained during solidification.

·주조공정Casting process

본 발명에서는 상기와 같이 정련처리한 용강을 연속주조하여 슬라브로 만든다. 연속주조는 고질소강에서 주편표면크랙의 발생 가능성이 높다는 점을 고려하여 저속으로 주조하고 2차냉각대에서 약냉조건을 부여하는 것이 생산성 향상측면에서 바람직하다. 2차냉각대에서 냉각조건은 TiN석출물의 미세화와 균일한 분포에도 영향을 미치는 중요한 인자이다.In the present invention, the molten steel refined as described above is continuously cast into slabs. Continuous casting is preferable from the viewpoint of productivity improvement by casting at low speed and giving a weak cooling condition in the secondary cooling zone in consideration of the high possibility of occurrence of cast surface cracks in high nitrogen steel. Cooling conditions in the secondary cooling zone are important factors affecting the refinement and uniform distribution of TiN precipitates.

본 발명의 연구에 따르면, 연속주조속도는 저속인 1.2m/min이하 보다 바람직하게는 약 0.9∼1.2m/min으로 하는 것이다. 그 이유는 주조속도가 0.9m/min미만의 경우에 주편표면크랙에는 유리하나 생산성이 떨어지며, 1.2m/min 보다 빠르면 주편표면크랙 발생가능성이 높다.According to the study of the present invention, the continuous casting speed is less than 1.2 m / min at low speed, more preferably about 0.9 to 1.2 m / min. The reason is that when the casting speed is less than 0.9m / min, it is advantageous for cast surface cracks, but the productivity is lowered.

·열간압연공정Hot rolling process

본 발명에서 상기 슬라브를 1100-1250℃에서 60-180분간 가열한다. 1100℃미만에서는 용질원자들가 확산되는 속도가 작기 때문에 TiN석출물의 개수가 작은 문제가 있으며, 1250℃를 초과할 경우에는 Ti계 석출물 등이 조대화되거나 분해되어, 석출물들이 석출물 개수가 감소하기 때문에 바람직하지 못하다. 한편, 가열시간 60분미만에서는 용질원자들의 편석저감 효과가 없으며 또한 용질원자가 확산하여 석출물을 형성할 충분한 시간이 부족하기 때문에 바람직하지 못하다. 또한 가열시간이 180분을 초과할 경우 오스테나이트 결정입도의 조대화가 일어나며 작업생산성 측면에서도 바람직하지 못하다.In the present invention, the slab is heated at 1100-1250 ° C. for 60-180 minutes. Below 1100 ° C., the number of TiN precipitates is small because the rate of diffusion of solute atoms is small. If it exceeds 1250 ° C., Ti-based precipitates are coarsened or decomposed, and thus the number of precipitates decreases. I can't. On the other hand, if the heating time is less than 60 minutes, it is not preferable because there is no segregation reduction effect of the solute atoms and there is not enough time for the solute atoms to diffuse to form precipitates. In addition, when the heating time exceeds 180 minutes, coarsening of austenite grain size occurs, which is not preferable in terms of work productivity.

상기와 같이 가열한 다음, 오스테나이트 재결정역 온도에서 40% 이상의 압연비로 열간압연하는 것이 바람직하다. 오스테나이트 재결정역온도는 강조성과 그 이전의 압하량 등에 영향을 받는데, 본 발명의 강조성에 통상의 압하량을 고려할 때 오스테나이트 재결정역 온도는 약 1050∼850℃구간이다. 이 구간에서 적어도 40%이상의 압연비를 부여하여야 하는데, 만일 압연비가 40%미만인 경우에는 오스테나이트 입내의 페라이트 핵생성 자리가 부족하여 오스테나이트 재결정에 의한 페라이트 결정립 미세화 효과가 미흡하고, 용접시 용접열영향부의 인성에 유효한 영향을 미치는 석출물 거동에 영향을 미치게 된다.After heating as above, it is preferable to hot-roll at a rolling ratio of 40% or more at the austenite recrystallization zone temperature. The austenite recrystallization zone temperature is affected by the emphasis and the previous reduction amount, and the austenite recrystallization zone temperature is in the range of about 1050 to 850 ° C. in consideration of the usual reduction amount in the emphasis of the present invention. In this section, a rolling ratio of at least 40% should be given. If the rolling ratio is less than 40%, the ferrite nucleation site in the austenite grain is insufficient and the effect of refining the ferrite grains due to austenite recrystallization is insufficient. It affects the precipitate behavior which effectively affects the toughness of the affected zone.

열간압연시 오스테나이트 결정립크기는 재가열로에서의 온도와 시간 그리고, 압연량 등에 영향을 받는데, 이 오스테나이트의 결정립크기는 소입성에 영향을 미치므로 이를 제어하면 원하는 베이나이트 분율을 얻을 수 있다. 베이나이트 분율을 높이고자 하는 경우에는 오스테나이트의 결정립크기를 10㎛이상으로 하는 것이 권장되나, 오스테나이트 결정립크기가 50㎛ 보다 커지게 되면 변태시 소입성이 너무 커져서 마르텐사이트 변태가 일어날 가능성이 높다.In hot rolling, the austenite grain size is affected by the temperature, time in the reheating furnace, and the rolling amount. The grain size of the austenite affects the quenchability, so that the desired bainite fraction can be obtained by controlling it. In order to increase the bainite fraction, it is recommended to set the austenite grain size to 10 μm or more.However, if the austenite grain size becomes larger than 50 μm, the hardenability becomes too large during transformation, which may cause martensite transformation. .

본 발명에서 열간압연후 베이나이트 변태 종료온도±10℃까지 5-20℃/sec의 범위로 냉각속도를 제한하는 이유는 다음과 같다. 본 발명강의 상 변태는 베이나이트 변태 종료온도±10℃ 이내 구간에서 발생하기 때문에 이 구간까지는 냉각속도를 제어해야 한다. 가속냉각속도가 5℃/sec미만의 경우에는 본 발명의 효과를 보이기 위한 베이나이트 상분율 확보가 어려우며, 20℃/sec초과의 경우에는 마르텐사이트 상분율이 증가하여 모재 인성에 유해하다.In the present invention, the reason for limiting the cooling rate in the range of 5-20 ° C / sec to the bainite transformation end temperature ± 10 ° C after hot rolling is as follows. The phase transformation of the present invention steel occurs in a section within the bainite transformation end temperature ± 10 ℃, the cooling rate must be controlled up to this section. If the accelerated cooling rate is less than 5 ° C / sec it is difficult to secure the bainite phase fraction for showing the effect of the present invention, and in the case of more than 20 ° C / sec martensite phase ratio increases to be harmful to the base material toughness.

본 발명에서 강의 주조는 연속주조 또는 금형주조에 의해 슬라브를 제조할 수 있다. 이때 냉각속도가 빠르면 석출물을 미세분산시키기 유리하므로 냉각속도가빠른 연속주조가 바람직하다. 또한 같은 이유로 슬라브는 두께가 얇은편이 유리하다. 그리고, 이 슬라브를 본 발명에 따라 침질처리한 다음에 열간압연공정에서 사용자 용도에 따라 핫챠지(hot charge)압연 및 직접(direct)압연을 적용할 수도 있고, 공지된 제어압연, 제어냉각등 각종 기술을 적용할 수 있다. 또한, 본 발명에 따라 제조된 열간압연판의 기계적 성질을 개선하기 위해 열처리를 적용할 수도 있다. 그러나, 이와 같이 공지의 기술들을 본 발명에 적용하더라도 이는 본 발명의 단순한 변경으로서 실질적으로 본 발명의 기술사상의 범위내라고 해석하는 것은 당연하다.Casting of the steel in the present invention can be produced by slab by continuous casting or mold casting. In this case, if the cooling rate is high, it is advantageous to finely disperse the precipitate, so continuous casting having a high cooling rate is preferable. For the same reason, slabs are advantageously thinner. In addition, the slab may be immersed according to the present invention, and then hot charge rolling and direct rolling may be applied according to the user's use in the hot rolling process. Technology can be applied. In addition, heat treatment may be applied to improve the mechanical properties of the hot rolled sheet produced according to the present invention. However, even if the well-known techniques are applied to the present invention, it is natural that they are interpreted to be substantially within the technical scope of the present invention as a simple change of the present invention.

이하, 본발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

[실시예]EXAMPLE

표 1과 같은 성분 조성을 갖는 강종들을 시료로 하여 전로에서 용해하여 연속주조법에 의해 슬라브로 제조하였으며, 이때 본 발명의 효과를 보이기 위한 강종별 합금성분 원소간의 구성비를 표 3에 나타내었다. 강종별 슬라브의 응고속도, 슬라브 가열온도, 가열시간, 압연개시온도 및 종료온도, 압하량, 압연공정에서 두께 25∼40mm로 제조된 압연재의 냉각속도는 표 2, 4에 나타내었다. 이때, 전 강종의 압연시 압하비는 60%이상으로 하였다.Steel grades having the composition as shown in Table 1 were prepared in the slab by the continuous casting method by dissolving them in a converter, and the composition ratio between alloying elements by steel type to show the effect of the present invention is shown in Table 3. The solidification rate, slab heating temperature, heating time, rolling start temperature and end temperature, rolling reduction, and cooling rate of the rolled material having a thickness of 25 to 40 mm in the rolling process are shown in Tables 2 and 4. At this time, the rolling reduction ratio of all the steel grades was 60% or more.

상기와 같이 열간압연된 판재들로부터 모재의 기계적 성질을 평가하기 위한 시험편들은 압연재의 판두께 중앙부에서 채취하였으며 인장시험편은 압연방향, 그리고 샤피(Charpy)충격시편은 압연방향과 수직한 방향에서 채취하였다.The test pieces for evaluating the mechanical properties of the base metal from the hot rolled plates as described above were taken at the center of the plate thickness of the rolled material, the tensile test piece was taken in the rolling direction, and the Charpy impact specimen was taken in the direction perpendicular to the rolling direction. It was.

인장시험편은 KS규격(KS B 0801) 4호 시험편을 이용하였으며 인장시험은 크로스 헤드 스피드(cross head speed) 5mm/mim에서 시험하였다. 충격시험편은 KS(KS B 0809) 3호 시험편에 준하여 제조하였으며 이때 노치방향은 모재의 경우 압연방향의 측면 (L-T)에서 가공하였으며 용접재의 경우 용접선 방향으로 가공하였다. 또한 용접열영향부의 최고가열온도에 따른 오스테나이트 결정립 크기를 조사하기 위하여 재현용접 모사시험장치(simulator)를 사용하여 최고가열온도(1200∼1400℃)까지 140℃/sec조건으로 가열시킨후 1초간 유지한 다음, He 가스를 이용하여 급냉시켰다. 급냉시킨 시험편을 연마하고 부식하여 최고가열온도조건에서의 오스테나이트 결정입도를 KS구격 (KS D 0205)에 의해 측정하였다.Tensile test piece was used KS standard (KS B 0801) No. 4 test piece and the tensile test was tested at the cross head speed (5mm / mim). The impact test piece was manufactured according to KS (KS B 0809) No. 3 test piece, and the notch direction was processed on the side of the rolling direction (L-T) in the case of the base material and in the welding line direction on the welding material. In addition, in order to investigate the austenite grain size according to the maximum heating temperature of the welding heat affected zone, it is heated to 140 ℃ / sec condition for 1 second after the heating up to the maximum heating temperature (1200 ~ 1400 ℃) by using the simulation welding simulator (simulator). After holding, it was quenched with He gas. The quenched specimens were ground and corroded to determine the austenite grain size at the highest heating temperature condition by KS (KS D 0205).

냉각후 미세조직의 분석 및 용접영향부의 인성에 중요한 영향을 미치는 석출물과 산화물의 크기와 갯수 그리고 간격은 화상분석기(image analyzer)와 전자현미경을 이용한 포인트 카운팅(point counting)법으로 측정하였다. 이때, 피검면은 100mm2을 기준으로 하여 평가하였다.The size, number, and spacing of precipitates and oxides, which have a significant effect on the microstructure analysis and the toughness of the weld affected zone after cooling, were measured by the point counting method using an image analyzer and an electron microscope. At this time, the test surface was evaluated based on 100 mm 2 .

용접열영향부의 충격인성 평가는 실제 용접입열량에 상당하는 약 80kJ/cm, 150kJ/cm, 250kJ/cm에 상당하는 용접조건, 즉 최고가열온도를 1400℃로 가열한후 800-500℃의 냉각시간이 각각 60초, 120초, 180초인 용접 열사이클을 부여한 다음,시험편 표면을 연마하고 충격시험편으로 가공하여 -40℃에서 샤피충격시험을 통하여 평가하였다.Impact toughness evaluation of the weld heat affected zone is 800-500 ℃ cooling after heating the welding conditions equivalent to about 80 kJ / cm, 150 kJ / cm, 250 kJ / cm, that is, the maximum heating temperature to 1400 ℃ After the welding heat cycles of 60 seconds, 120 seconds, and 180 seconds were applied, the surface of the test piece was polished, processed into an impact test piece, and evaluated through a Charpy impact test at -40 ° C.

화학조성(중량%)Chemical composition (% by weight) CC SiSi MnMn PP SS AlAl TiTi B(ppm)B (ppm) N(ppm)N (ppm) WW CuCu NiNi CrCr MoMo NbNb VV CaCa MgMg REMREM O(ppm)O (ppm) 발명강1Inventive Steel 1 0.120.12 0.130.13 1.541.54 0.0060.006 0.0050.005 0.040.04 0.0140.014 77 115115 0.0050.005 -- -- -- -- -- 0.010.01 -- 0.0030.003 -- 3232 발명강2Inventive Steel 2 0.070.07 0.120.12 1.501.50 0.0060.006 0.0050.005 0.070.07 0.050.05 1010 275275 0.0020.002 -- 0.20.2 -- -- -- 0.010.01 -- 0.0020.002 -- 5454 발명강3Invention Steel 3 0.140.14 0.100.10 1.481.48 0.0060.006 0.0050.005 0.060.06 0.0150.015 33 112112 0.0030.003 0.10.1 -- -- -- -- 0.020.02 -- 0.0020.002 -- 2828 발명강4Inventive Steel 4 0.100.10 0.120.12 1.481.48 0.0060.006 0.0050.005 0.020.02 0.020.02 55 8080 0.0010.001 -- -- -- -- -- 0.050.05 -- 0.0010.001 -- 3131 발명강5Inventive Steel 5 0.080.08 0.150.15 1.521.52 0.0060.006 0.0040.004 0.090.09 0.050.05 1515 300300 0.0020.002 0.10.1 -- 0.10.1 -- -- 0.050.05 -- 0.0020.002 -- 5252 발명강6Inventive Steel 6 0.100.10 0.140.14 1.501.50 0.0070.007 0.0050.005 0.0250.025 0.020.02 1010 100100 0.0040.004 -- -- -- 0.10.1 -- 0.090.09 -- 0.0010.001 -- 3232 발명강7Inventive Steel 7 0.130.13 0.140.14 1.481.48 0.0070.007 0.0050.005 0.040.04 0.0150.015 88 115115 0.150.15 0.10.1 -- -- -- -- 0.020.02 -- 0.0010.001 -- 3030 발명강8Inventive Steel 8 0.110.11 0.150.15 1.521.52 0.0070.007 0.0050.005 0.060.06 0.0180.018 1010 120120 0.0010.001 -- -- -- -- 0.0150.015 0.010.01 -- 0.0020.002 -- 4444 발명강9Inventive Steel 9 0.130.13 0.210.21 1.501.50 0.0070.007 0.0050.005 0.0250.025 0.020.02 44 9090 0.0020.002 -- -- 0.10.1 -- -- 0.020.02 0.0010.001 0.0020.002 -- 4343 발명강10Inventive Steel 10 0.070.07 0.160.16 1.451.45 0.0080.008 0.0060.006 0.0450.045 0.0250.025 66 100100 0.050.05 -- 0.30.3 -- -- 0.010.01 0.020.02 -- 0.0020.002 0.010.01 5252 발명강11Inventive Steel 11 0.090.09 0.120.12 1.481.48 0.0060.006 0.0030.003 0.0480.048 0.0190.019 1010 130130 0.010.01 -- 0.20.2 -- -- -- -- -- 0.0010.001 -- 3232 종래강1Conventional Steel 1 0.050.05 0.130.13 1.311.31 0.0020.002 0.0060.006 0.00140.0014 0.0090.009 1.61.6 2222 -- -- -- -- -- -- -- -- -- -- 2222 종래강2Conventional Steel 2 0.050.05 0.110.11 1.341.34 0.0020.002 0.0030.003 0.00360.0036 0.0120.012 0.50.5 4848 -- -- -- -- -- -- -- -- -- -- 3232 종래강3Conventional Steel 3 0.130.13 0.240.24 1.441.44 0.0120.012 0.0030.003 0.00440.0044 0.0100.010 1.21.2 127127 -- 0.30.3 -- -- -- 0.050.05 -- -- -- -- 138138 종래강4Conventional Steel 4 0.060.06 0.180.18 1.351.35 0.0080.008 0.0020.002 0.00270.0027 0.0130.013 88 3232 -- -- -- 0.140.14 0.150.15 -- 0.0280.028 -- 0.00220.0022 -- 2525 종래강5Conventional Steel 5 0.060.06 0.180.18 0.880.88 0.0060.006 0.0020.002 0.00210.0021 0.0130.013 55 2020 -- 0.750.75 0.580.58 0.240.24 0.140.14 0.0150.015 0.0370.037 -- 0.00240.0024 -- 2727 종래강6Conventional Steel 6 0.130.13 0.270.27 0.980.98 0.0050.005 0.0010.001 0.0010.001 0.0090.009 1111 2828 -- 0.350.35 1.151.15 0.530.53 0.490.49 0.0010.001 0.0450.045 -- 0.00190.0019 -- 2525 종래강7Conventional Steel 7 0.130.13 0.240.24 1.441.44 0.0040.004 0.0020.002 0.020.02 0.0080.008 88 7979 -- 0.30.3 -- -- -- 0.0360.036 -- -- -- -- -- 종래강8Conventional Steel 8 0.070.07 0.140.14 1.521.52 0.0040.004 0.0020.002 0.0020.002 0.0070.007 44 5757 -- 0.320.32 0.350.35 -- -- 0.0130.013 -- -- -- -- -- 종래강9Conventional Steel 9 0.060.06 0.250.25 1.311.31 0.0080.008 0.0020.002 0.0190.019 0.0070.007 1010 9191 -- -- -- 0.210.21 0.190.19 0.0250.025 0.0350.035 -- -- -- -- 종래강10Conventional Steel 10 0.090.09 0.260.26 0.860.86 0.0090.009 0.0030.003 0.0460.046 0.0080.008 1515 142142 -- -- 1.091.09 0.510.51 0.360.36 0.0210.021 0.0210.021 -- -- -- -- 종래강11Conventional Steel 11 0.140.14 0.440.44 1.351.35 0.0120.012 0.0120.012 0.0300.030 0.0490.049 77 8989 -- -- -- -- -- -- 0.0690.069 -- -- -- -- ·종래강(1, 2, 3)은 일본 공개특허공보 평9-194990의 발명강(5, 32, 55)임·종래강(4, 5, 6)은 일본 공개특허공보 평10-298708의 발명강(14, 24, 28)임·종래강(7, 8, 9, 10)은 일본 공개특허공보 평8-60292의 발명강(48, 58, 60, 61)임·종래강(11)은 일본 공개특허공보 평11-140582호의 발명강 F임Conventional steels (1, 2, 3) are invention steels (5, 32, 55) of Japanese Patent Application Laid-Open No. 9-194990. Conventional steels (4, 5, 6) are Japanese Patent Application Laid-open Nos. Invented steels (14, 24, 28) and conventional steels (7, 8, 9, 10) are invented steels (48, 58, 60, 61) of Japanese Patent Application Laid-Open No. 8-60292. Is invention steel F of JP-A-11-140582

사용강종Steel grade used 구분division 1차탈산순서Primary deoxidation sequence Al 탈산후용존산소량(ppm)Amount of dissolved oxygen after Al deoxidation (ppm) Al탈산후 Mg첨가량(%)Mg addition after Al deoxidation (%) Mg첨가후 Ti첨가량(%)Ti content after Mg addition (%) 용강유지시간(min)Molten steel holding time (min) 응고후 산소량(ppm)Oxygen content after coagulation (ppm) 주조조건Casting condition 주조속도(m/min)Casting speed (m / min) 비수량(ℓ/kg)Specific quantity (ℓ / kg) 발명강1Inventive Steel 1 발명재1Invention 1 Mn→SiMn → Si 6868 0.0030.003 0.0140.014 1515 3030 1.11.1 0.350.35 발명재2Invention 2 Mn→SiMn → Si 7272 0.0030.003 0.0140.014 1515 3232 1.11.1 0.350.35 발명재3Invention 3 Mn→SiMn → Si 5656 0.0030.003 0.0140.014 1515 3434 1.11.1 0.350.35 비교재1Comparative Material 1 Mn→SiMn → Si 3535 0.0030.003 0.0140.014 1515 99 1.11.1 0.350.35 비교재2Comparative Material 2 Mn→SiMn → Si 264264 0.0030.003 0.0140.014 1515 134134 1.11.1 0.350.35 발명강2Inventive Steel 2 발명재4Invention 4 Mn→SiMn → Si 6464 0.0020.002 0.050.05 1515 5454 1.21.2 0.300.30 발명강3Invention Steel 3 발명재5Invention 5 Mn→SiMn → Si 6262 0.0020.002 0.0150.015 1313 2828 1.21.2 0.300.30 발명강4Inventive Steel 4 발명재6Invention 6 Mn→SiMn → Si 6262 0.0010.001 0.020.02 1414 3131 1.21.2 0.350.35 발명강5Inventive Steel 5 발명재7Invention 7 Mn→SiMn → Si 5959 0.0020.002 0.050.05 1818 5252 1.21.2 0.300.30 발명강6Inventive Steel 6 발명재8Invention Material 8 Mn→SiMn → Si 5858 0.0010.001 0.020.02 1515 3232 1.21.2 0.350.35 발명강7Inventive Steel 7 발명재9Invention Material 9 Mn→SiMn → Si 6262 0.0010.001 0.0150.015 1414 3030 1.21.2 0.300.30 발명강8Inventive Steel 8 발명재10Invention 10 Mn→SiMn → Si 7373 0.0020.002 0.0180.018 1616 4444 1.11.1 0.320.32 발명강9Inventive Steel 9 발명재11Invention 11 Mn→SiMn → Si 8282 0.0020.002 0.020.02 1515 4343 1.11.1 0.350.35 발명강10Inventive Steel 10 발명재12Invention Material12 Mn→SiMn → Si 6969 0.0020.002 0.0250.025 1515 5252 1.21.2 0.350.35 발명강11Inventive Steel 11 발명재13Invention Material 13 Mn→SiMn → Si 6262 0.0010.001 0.0190.019 1515 3232 1.11.1 0.300.30 종래강(1-11)은 그 제조조건이 구체적으로 기재되어 있지 않음Conventional steel (1-11) is not specifically described its manufacturing conditions

본 발명의 효과를 보이기 위한 합금원소 구성비Alloy element composition ratio for showing the effect of the present invention Ti/OTi / O Mg/OMg / O (Ti+Mg)/O(Ti + Mg) / O Ti/NTi / N N/BN / B Al/NAl / N V/NV / N (Ti+2Al+4B+V)/N(Ti + 2Al + 4B + V) / N 발명재1Invention 1 4.74.7 1.01.0 5.75.7 1.21.2 16.416.4 3.53.5 0.90.9 9.39.3 발명재2Invention 2 4.44.4 0.90.9 5.35.3 1.21.2 16.416.4 3.53.5 0.90.9 9.39.3 발명재3Invention 3 4.04.0 0.90.9 5.05.0 1.21.2 16.416.4 3.53.5 0.90.9 9.39.3 비교재1Comparative Material 1 15.615.6 3.33.3 18.918.9 1.21.2 16.416.4 3.53.5 0.90.9 9.39.3 비교재2Comparative Material 2 1.01.0 0.20.2 1.31.3 1.21.2 16.416.4 3.53.5 0.90.9 9.39.3 발명재4Invention 4 9.39.3 0.40.4 13.013.0 1.81.8 27.527.5 2.52.5 0.40.4 7.47.4 발명재5Invention 5 5.45.4 0.70.7 9.69.6 1.31.3 37.337.3 5.45.4 1.81.8 14.014.0 발명재6Invention 6 6.56.5 0.30.3 6.16.1 2.52.5 16.016.0 2.52.5 6.36.3 14.014.0 발명재7Invention 7 9.69.6 0.40.4 6.86.8 1.71.7 20.020.0 3.03.0 1.71.7 9.59.5 발명재8Invention Material 8 6.36.3 0.30.3 10.010.0 2.02.0 10.010.0 2.52.5 9.09.0 16.416.4 발명재9Invention Material 9 5.05.0 0.30.3 5.35.3 1.31.3 14.414.4 3.53.5 1.71.7 10.310.3 발명재10Invention 10 4.14.1 0.50.5 4.54.5 1.51.5 12.012.0 5.05.0 0.80.8 12.712.7 발명재11Invention 11 4.74.7 0.50.5 5.15.1 2.22.2 22.522.5 2.82.8 2.22.2 10.210.2 발명재12Invention Material12 4.84.8 0.40.4 5.25.2 2.52.5 16.716.7 4.54.5 2.02.0 13.713.7 발명재13Invention Material 13 5.95.9 0.30.3 6.36.3 1.51.5 13.013.0 3.63.6 -- 9.09.0 종래강1Conventional Steel 1 0.40.4 -- 0.40.4 4.14.1 13.813.8 0.60.6 -- 5.75.7 종래강2Conventional Steel 2 3.83.8 -- 3.83.8 2.52.5 96.096.0 0.80.8 -- 4.04.0 종래강3Conventional Steel 3 0.70.7 -- 0.70.7 0.80.8 105.8105.8 0.40.4 -- 1.51.5 종래강4Conventional Steel 4 5.25.2 0.90.9 6.086.08 4.14.1 2.52.5 0.80.8 8.88.8 24.524.5 종래강5Conventional Steel 5 4.84.8 0.90.9 5.75.7 6.56.5 0.250.25 10.510.5 18.518.5 4747 종래강6Conventional Steel 6 3.63.6 0.80.8 4.364.36 3.23.2 0.390.39 0.40.4 16.116.1 21.621.6 종래강7Conventional Steel 7 -- -- -- 1.01.0 9.99.9 2.52.5 -- 6.56.5 종래강8Conventional Steel 8 -- -- -- 1.21.2 14.314.3 0.40.4 -- 2.22.2 종래강9Conventional Steel 9 -- -- -- 0.80.8 9.19.1 2.12.1 3.93.9 9.29.2 종래강10Conventional Steel 10 -- -- -- 0.60.6 9.59.5 3.23.2 1.51.5 8.98.9 종래강11Conventional Steel 11 -- -- -- 5.55.5 12.712.7 3.43.4 7.87.8 20.320.3

사용강종Steel grade used 구분division 가열온도(℃)Heating temperature (℃) 가열시간(min)Heating time (min) 압연개시온도(℃)Rolling Start Temperature (℃) 압연종료온도(℃)Rolling end temperature (℃) 재결정역에서의 압하량/누적압하량(%)Rolling amount / accumulated loading amount at recrystallization area (%) 냉각속도(℃/min)Cooling rate (℃ / min) 냉각종료온도(℃)Cooling end temperature (℃) 발명재2Invention 2 발명예1Inventive Example 1 11501150 150150 10301030 790790 65/8065/80 1515 550550 발명예2Inventive Example 2 12001200 130130 10401040 790790 65/8065/80 1515 550550 발명예3Inventive Example 3 12401240 9090 10401040 790790 65/8065/80 1515 550550 비교예1Comparative Example 1 950950 4040 10401040 790790 65/8065/80 1515 550550 비교예2Comparative Example 2 13501350 250250 10351035 790790 65/8065/80 1515 550550 발명재1Invention 1 발명예4Inventive Example 4 12001200 130130 10201020 790790 65/8065/80 1616 550550 발명재3Invention 3 발명예5Inventive Example 5 12001200 130130 10401040 790790 65/8065/80 1616 550550 비교재1Comparative Material 1 비교예3Comparative Example 3 12101210 120120 10301030 780780 65/8065/80 0.10.1 상온Room temperature 비교재2Comparative Material 2 비교예4Comparative Example 4 12101210 120120 10301030 790790 65/8065/80 3535 상온Room temperature 발명재4Invention 4 발명예6Inventive Example 6 11801180 150150 10201020 780780 60/8060/80 1717 550550 발명재5Invention 5 발명예7Inventive Example 7 11901190 140140 10101010 800800 60/8060/80 1818 550550 발명재6Invention 6 발명예8Inventive Example 8 12201220 110110 10101010 810810 60/7560/75 1717 550550 발명재7Invention 7 발명예9Inventive Example 9 12201220 110110 10201020 800800 60/7560/75 1111 550550 발명재8Invention Material 8 발명예10Inventive Example 10 12101210 120120 10101010 790790 60/7560/75 1010 550550 발명재9Invention Material 9 발명예11Inventive Example 11 12401240 100100 10001000 780780 55/7055/70 99 550550 발명재10Invention 10 발명예12Inventive Example 12 12101210 120120 10101010 790790 55/7055/70 1919 550550 발명재11Invention 11 발명예13Inventive Example 13 11901190 100100 10001000 800800 55/7055/70 1818 550550 발명재12Invention Material12 발명예14Inventive Example 14 12201220 110110 10201020 780780 55/7055/70 1212 550550 발명재13Invention Material 13 발명예15Inventive Example 15 11801180 150150 10201020 780780 65/7565/75 1212 550550 종래강11Conventional Steel 11 12001200 -- Ar3이상Ar 3 or higher 960960 8080 방냉Cooling 종래강(1-10)의 제조조건은 구체적으로 제시되어 있지 않음Manufacturing conditions of conventional steel (1-10) are not specifically presented

구분division 석출물 특성Precipitate properties 산화물 특성Oxide properties 모재 조직 특성Base material texture characteristics 개수(개/mm2)Count (pcs / mm 2 ) 평균 크기(㎛)Average size (㎛) 평균간격(㎛)Average interval (㎛) 개수(개/mm2)Count (pcs / mm 2 ) 평균 크기(㎛)Average size (㎛) 두께(mm)Thickness (mm) 항복강도(MPa)Yield strength (MPa) 인장강도(MPa)Tensile Strength (MPa) 연신율(%)Elongation (%) FGS(㎛)FGS (μm) 페라이트 상분율(%)Ferrite Percentage (%) 베이나이트분율(%)Bainite fraction (%) -40℃에서의 충격인성(J)Impact toughness at -40 ° C (J) 발명예1Inventive Example 1 2.4X108 2.4 X 10 8 0.0160.016 0.250.25 2.3X102 2.3 X 10 2 1.81.8 2525 494494 653653 3838 1111 6666 3232 358358 발명예2Inventive Example 2 3.2X108 3.2 X 10 8 0.0170.017 0.240.24 2.1X102 2.1X10 2 1.41.4 2525 495495 651651 3939 99 6363 3535 362362 발명예3Inventive Example 3 2.5X108 2.5 X 10 8 0.0120.012 0.260.26 2.3X102 2.3 X 10 2 1.21.2 2525 496496 650650 3939 1010 6363 3838 357357 비교예1Comparative Example 1 2.3X106 2.3 X 10 6 0.1740.174 1.61.6 2.7X101 2.7 X 10 1 2.22.2 2525 493493 654654 2626 1616 5050 4040 106106 비교예2Comparative Example 2 3.4X106 3.4 X 10 6 0.1650.165 1.81.8 2.6X101 2.6 X 10 1 2.32.3 2525 492492 660660 1717 1717 3131 3232 4545 발명예4Inventive Example 4 3.2X108 3.2 X 10 8 0.0250.025 0.320.32 3.2X102 3.2 X 10 2 1.21.2 3030 496496 658658 3838 1111 6363 3232 349349 발명예5Inventive Example 5 2.6X108 2.6 X 10 8 0.0130.013 0.340.34 2.6X102 2.6 X 10 2 1.21.2 3030 496496 662662 3838 1010 6363 3030 354354 비교예3Comparative Example 3 1.3X106 1.3 X 10 6 0.1820.182 1.21.2 1.5X101 1.5X10 1 3.43.4 3030 484484 664664 2828 2121 6363 3232 220220 비교예4Comparative Example 4 4.3X106 4.3X10 6 0.1770.177 1.41.4 1.2X101 1.2X10 1 3.73.7 3030 492492 682682 1515 2424 2020 4242 208208 발명예6Inventive Example 6 3.3X108 3.3 X 10 8 0.0260.026 0.350.35 1.8X102 1.8 X 10 2 1.31.3 3030 490490 663663 3838 1010 6262 3232 364364 발명예7Inventive Example 7 4.6X108 4.6 X 10 8 0.0240.024 0.320.32 3.2X102 3.2 X 10 2 1.21.2 3535 490490 664664 3939 1010 6565 3434 360360 발명예8Inventive Example 8 4.3X108 4.3X10 8 0.0140.014 0.400.40 2.1X102 2.1X10 2 1.61.6 3535 492492 642642 3636 1111 6262 3232 365365 발명예9Inventive Example 9 5.6X108 5.6 X 10 8 0.0280.028 0.290.29 2.4X102 2.4 X 10 2 1.51.5 3535 491491 636636 3737 1010 6464 3131 359359 발명예10Inventive Example 10 5.2X108 5.2 X 10 8 0.0210.021 0.280.28 2.3X102 2.3 X 10 2 1.51.5 3535 494494 666666 3636 1010 6363 2929 375375 발명예11Inventive Example 11 3.7X108 3.7 X 10 8 0.0290.029 0.250.25 2.7X102 2.7 X 10 2 1.71.7 4040 490490 666666 3737 1212 6363 2828 364364 발명예12Inventive Example 12 3.2X108 3.2 X 10 8 0.0250.025 0.310.31 1.7X102 1.7 X 10 2 1.51.5 4040 496496 642642 3838 1111 6565 3030 356356 발명예13Inventive Example 13 3.3X108 3.3 X 10 8 0.0420.042 0.340.34 1.8X102 1.8 X 10 2 1.51.5 4040 406406 664664 3838 1212 6262 2626 348348 발명예14Inventive Example 14 3.6X108 3.6X10 8 00320032 0.280.28 2.2X102 2.2 X 10 2 1.61.6 4040 387387 650650 3737 1010 6363 3131 349349 발명예15Inventive Example 15 4.2X108 4.2 X 10 8 0.0180.018 0.260.26 1.9X102 1.9 X 10 2 1.71.7 3030 489489 649649 3939 99 6666 2828 368368 종래강1Conventional Steel 1 3535 406406 436436 종래강2Conventional Steel 2 3535 405405 441441 종래강3Conventional Steel 3 2525 629629 681681 종래강4Conventional Steel 4 MgO-TiN의 석출물 3.03×106개/mm2 Precipitates of MgO-TiN 3.03 × 10 6 pcs / mm 2 4040 472472 609609 종래강5Conventional Steel 5 MgO-TiN의 석출물 4.07×106개/mm2 Precipitates of MgO-TiN 4.07 × 10 6 pcs / mm 2 4040 494494 622622 종래강6Conventional Steel 6 MgO-TiN의 석출물 2.80×106개/mm2 Precipitates of MgO-TiN 2.80 × 10 6 pcs / mm 2 5050 812812 912912 종래강7Conventional Steel 7 2525 629629 681681 종래강8Conventional Steel 8 5050 504504 601601 종래강9Conventional Steel 9 6060 526526 648648 종래강10Conventional Steel 10 6060 760760 829829 종래강11Conventional Steel 11 5050 401401 514514

표 5 나타낸 바와 같이, 본 발명에 의해 제조된 열간압연재의의 석출물(Ti계 질화물)의 개수는 2.4X108개/mm2이상의 범위를 가지고 있는데 반해, 종래강의 경우는4.07 X106개/mm2이하의 범위를 보이고 있어 종래재 대비 발명재가 상당히 균일하면서도 미세한 석출물 크기를 갖으면서 그 개수 또한 현저히 증가되었음을 잘 알 수 있다. 또한, 본 발명재는 산화물(Ti-Mg)의 개수도 약 1.7x102∼3.2x103개 범위를 보이고 있으며 평균크기도 약 1.2-1.8㎛의 범위를 보이고 있다. 한편 본 발명강의 모재조직구성에 있어서 본 발명강의 경우 베이나이트와 미세한 페라이트로 구성되어 있다.As shown in Table 5, the number of precipitates (Ti-based nitride) of the hot rolled material produced by the present invention has a range of 2.4X10 8 / mm 2 or more, whereas in the case of conventional steel 4.07 X10 6 / mm 2 Since the following ranges show that the invention material has a fairly uniform and fine precipitate size compared to the conventional material, the number is also significantly increased. In addition, the present invention shows a number of oxides (Ti-Mg) of about 1.7x10 2 ~ 3.2x10 3 ranges and the average size is about 1.2-1.8㎛. Meanwhile, in the base metal structure of the present invention steel, the present invention steel is composed of bainite and fine ferrite.

구분division 용접열영향부 오스테나이트결정립 크기(㎛)Austenitic grain size of welding heat affected zone (㎛) 100kJ/cm입열량의용접열영향부미세조직Microstructure with welding heat effect of 100kJ / cm heat input 재현 용접열영향부-40℃ 충격 인성(J)(최고가열온도:1400℃)Reproduction Weld Heat Affected Zone -40 ℃ Impact Toughness (J) (Maximum Heating Temperature: 1400 ℃) 1200(℃)1200 (℃) 1300(℃)1300 (℃) 1400(℃)1400 (℃) 페라이트 상분율(%)Ferrite Percentage (%) 페라이트평균결정립크기(㎛)Ferrite Average Grain Size (㎛) Δt800-500=60초Δt 800-500 = 60 seconds Δt800-500=120초Δt 800-500 = 120 seconds Δt800-500=180초Δt 800-500 = 180 seconds 충격인성(J)Impact Toughness (J) 천이온도(℃)Transition temperature (℃) 충격인성(J)Impact Toughness (J) 천이온도(℃)Transition temperature (℃) 충격인성(J)Impact Toughness (J) 천이온도(℃)Transition temperature (℃) 발명예1Inventive Example 1 2323 3434 5656 7474 1515 372372 -74-74 332332 -67-67 293293 -63-63 발명예2Inventive Example 2 2222 3535 5555 7777 1313 384384 -76-76 350350 -69-69 302302 -64-64 발명예3Inventive Example 3 2323 3535 5656 7575 1313 366366 -72-72 330330 -67-67 295295 -63-63 비교예1Comparative Example 1 5454 8686 182182 3838 2424 124124 -43-43 4343 -34-34 2828 -28-28 비교예2Comparative Example 2 6565 9292 198198 3636 2626 102102 -40-40 3030 -32-32 1717 -25-25 발명예4Inventive Example 4 2525 3838 6363 7676 1414 353353 -71-71 328328 -68-68 284284 -65-65 발명예5Inventive Example 5 2626 4141 5757 7878 1515 365365 -71-71 334334 -67-67 295295 -62-62 비교예3Comparative Example 3 5656 8080 178178 4040 2626 108108 -39-39 5656 -32-32 2424 -24-24 비교예4Comparative Example 4 6363 8888 184184 3939 2828 6464 -28-28 3939 -30-30 1010 -21-21 발명예6Inventive Example 6 2525 3232 5353 7575 1414 383383 -73-73 354354 -69-69 303303 -63-63 발명예7Inventive Example 7 2424 3535 5555 7777 1414 365365 -71-71 337337 -67-67 292292 -63-63 발명예8Inventive Example 8 2727 3737 5353 7474 1313 362362 -71-71 339339 -67-67 296296 -62-62 발명예9Inventive Example 9 2424 3636 5252 7878 1515 368368 -72-72 330330 -67-67 284284 -63-63 발명예10Inventive Example 10 2222 3434 5353 7575 1414 383383 -72-72 345345 -66-66 293293 -63-63 발명예11Inventive Example 11 2626 3535 6464 7575 1414 356356 -71-71 328328 -68-68 282282 -68-68 발명예12Inventive Example 12 2727 3939 6464 7474 1515 353353 -71-71 321321 -67-67 276276 -62-62 발명예13Inventive Example 13 2323 3838 6868 7474 1414 354354 -71-71 320320 -67-67 254254 -62-62 발명예14Inventive Example 14 2525 3535 6464 7070 1515 342342 -71-71 326326 -67-67 248248 -63-63 발명예15Inventive Example 15 2323 3636 5353 7676 1616 349349 -72-72 332332 -68-68 293293 -94-94 종래강1Conventional Steel 1 -58-58 종래강2Conventional Steel 2 -55-55 종래강3Conventional Steel 3 -54-54 종래강4Conventional Steel 4 230230 9393 132(0℃)132 (0 ℃) 종래강5Conventional Steel 5 180180 8787 129(0℃)129 (0 ℃) 종래강6Conventional Steel 6 250250 4747 60(0℃)60 (0 degrees Celsius) 종래강7Conventional Steel 7 -60-60 -61-61 종래강8Conventional Steel 8 -59-59 -48-48 종래강9Conventional Steel 9 -54-54 -42-42 종래강10Conventional Steel 10 -57-57 -45-45 종래강11Conventional Steel 11 219(0℃)219 (0 ℃)

표 6 에서는 본 발명강 및 종래강의 용접열영향부 물성을 나타낸 것이다. 용접열영향부와 같은 최고가열온도 1400℃조건에서의 오스테나이트 결정립 크기를 보면 본 발명의 경우 52-64㎛의 범위를 갖는 반면, 종래재의 경우 약 180㎛이상의 매우 조대한 범위를 가자는 것을 알 수 있다. 따라서 본 발명강에서는 용접시 용접열영향부의 오스테나이트 결정립 억제 효과가 매우 우수한 것임을 잘 알 수 있다. 또한, 100kJ/cm의 용접입열량에서 본 발명의 경우 열영향부의 상분율이 약 70%이상으로 구성되어 있다.Table 6 shows the properties of the weld heat affected zone of the present invention steel and conventional steel. The austenitic grain size at the maximum heating temperature of 1400 ° C. such as the welding heat affected zone shows that the present invention has a range of 52-64 μm, while the conventional material has a very coarse range of about 180 μm or more. Can be. Therefore, in the present invention, it can be seen that the austenite grain suppression effect of the weld heat affected zone during welding is very excellent. Further, in the case of the present invention, the heat input portion of the heat-affected portion is composed of about 70% or more at a welding heat input of 100 kJ / cm.

상술한 바와 같이, 본 발명은 고강도의 모재물성을 가지면서 TiN석출물과 함께 Ti-Mg복합 산화물을 이용함으로써 우수한 대입열 용접열영향부 인성을 동시에 확보할 수 있는 용접용 구조용강을 제공할 수 있는 것이다.As described above, the present invention can provide a structural steel for welding that can secure excellent high heat input welding heat affected zone toughness simultaneously by using Ti-Mg composite oxide together with TiN precipitates with high strength base material properties. will be.

Claims (9)

중량%로 C:0.03-0.17%, Si:0.01-0.5%, Mn:0.4-2.0%, Ti:0.005-0.2%, Al: 0.0005-0.1%, N:0.008-0.030%, B:0.0003-0.01%, W:0.001-0.2%, P:0.03%이하, S:0.03%이하, O:0.002-0.03%, Mg:0.001-0.005%, 1.2≤Ti/N≤2.5, 10≤N/B≤40, 2.5≤Al/N≤7, 6.5≤(Ti+2Al+4B)/N≤14, 4≤Ti/O≤10, 0.2≤Mg/O≤3, 3≤(Ti+Mg)/O≤12을 만족하고, 30∼80%의 베이나이트와 나머지 20㎛이하의 페라이트로 이루어지는 TiN석출물과 Mg-Ti의 복합산화물을 갖는 고강도 용접구조용 강재.By weight C: 0.03-0.17%, Si: 0.01-0.5%, Mn: 0.4-2.0%, Ti: 0.005-0.2%, Al: 0.0005-0.1%, N: 0.008-0.030%, B: 0.0003-0.01 %, W: 0.001-0.2%, P: 0.03% or less, S: 0.03% or less, O: 0.002-0.03%, Mg: 0.001-0.005%, 1.2≤Ti / N≤2.5, 10≤N / B≤40 , 2.5≤Al / N≤7, 6.5≤ (Ti + 2Al + 4B) / N≤14, 4≤Ti / O≤10, 0.2≤Mg / O≤3, 3≤ (Ti + Mg) / O≤12 A high strength welded structural steel having a TiN precipitate composed of 30 to 80% of bainite and remaining 20 µm or less of ferrite and a composite oxide of Mg-Ti. 제 1항에 있어서, 상기 강재에는 V이 0.01∼0.2% 함유되고, V와 N의 비(V/N)가 0.3∼9 그리고, 7≤(Ti+2Al+4B+V)/N≤17를 만족함을 특징으로 하는 TiN석출물과 Mg-Ti의 복합산화물을 갖는 고강도 용접구조용 강재.The steel material according to claim 1, wherein V is contained in an amount of 0.01 to 0.2%, a ratio of V and N (V / N) is 0.3 to 9, and 7≤ (Ti + 2Al + 4B + V) / N≤17. High strength welded structural steel having a composite oxide of TiN precipitate and Mg-Ti characterized in that it satisfies. 제 1항 또는 제 2항에 있어서, 상기 강재에는 Ni:0.1∼3.0%, Cu:0.1∼1.5%, Nb:0.01∼0.1%, Mo:0.05∼1.0%, Cr:0.05∼1.0%의 그룹에서 선택된 1종 또는 2종 이상 그리고, Ca:0.0005-0.005%, Rem:0.005∼0.05%의 그룹에서 선택된 1종 또는 2종이 함유되는 것을 특징으로 하는 TiN석출물과 Mg-Ti의 복합산화물을 갖는 고강도 용접구조용 강재.The steel material according to claim 1 or 2, wherein the steel comprises Ni: 0.1 to 3.0%, Cu: 0.1 to 1.5%, Nb: 0.01 to 0.1%, Mo: 0.05 to 1.0%, and Cr: 0.05 to 1.0%. High strength welding with a composite oxide of TiN precipitate and Mg-Ti, characterized in that one or two or more selected, and one or two selected from the group Ca: 0.0005-0.005%, Rem: 0.005 to 0.05% Structural steels. 제 1항 또는 제 2항에 있어서, 상기 강재는 크기가 0.01-0.1㎛인 TiN석출물이 0.5㎛이하의 간격으로 1.0x107개/㎟ 이상 분포되고, 또한, 0.5∼2.0㎛의 Ti-Mg 복합산화물이 1×102-1×103개/mm2개 분포됨을 특징으로 하는 TiN석출물과 Mg-Ti의 복합산화물을 갖는 고강도 용접구조용 강재.The TiN precipitate according to claim 1 or 2, wherein the TiN precipitate having a size of 0.01-0.1 µm is distributed at 1.0 × 10 7 / mm 2 or more at intervals of 0.5 µm or less, and the Ti-Mg composite having 0.5-2.0 µm. A steel for high strength welded structure having a TiN precipitate and a composite oxide of Mg-Ti, wherein the oxide is distributed 1 × 10 2 -1 × 10 3 pcs / mm 2 . 중량%로 C:0.03-0.17%, Si:0.01-0.5%, Mn:0.4-2.0%, Ti:0.005-0.2%, Al: 0.0005-0.1%, N:0.008-0.030%, B:0.0003-0.01%, W:0.001-0.2%, P:0.03%이하, S:0.03%이하, O:0.002-0.03%, Mg:0.001-0.005%, 1.2≤Ti/N≤2.5, 10≤N/B≤40, 2.5≤Al/N≤7, 6.5≤(Ti+2Al+4B)/N≤14, 4≤Ti/O≤10, 0.2≤Mg/O≤3, 3≤(Ti+Mg)/O≤12을 만족하는 슬라브를 1100-1250℃범위에서 60-180분간 가열한 후에 오스테나이트 재결정역에서 40%이상의 압연비로 열간압연한 다음, 베이나이트변태 종료온도±10℃까지는 5∼20℃/sec의 속도로 냉각하는 것을 포함하여 이루어지는 TiN석출물과 Mg-Ti의 복합산화물을 갖는 고강도 용접구조용 강재의 제조방법.By weight C: 0.03-0.17%, Si: 0.01-0.5%, Mn: 0.4-2.0%, Ti: 0.005-0.2%, Al: 0.0005-0.1%, N: 0.008-0.030%, B: 0.0003-0.01 %, W: 0.001-0.2%, P: 0.03% or less, S: 0.03% or less, O: 0.002-0.03%, Mg: 0.001-0.005%, 1.2≤Ti / N≤2.5, 10≤N / B≤40 , 2.5≤Al / N≤7, 6.5≤ (Ti + 2Al + 4B) / N≤14, 4≤Ti / O≤10, 0.2≤Mg / O≤3, 3≤ (Ti + Mg) / O≤12 After slab satisfying the heat treatment was heated for 60-180 minutes in the range of 1100-1250 ℃, hot-rolled at a rolling ratio of 40% or more in the austenitic recrystallization zone, and then the rate of 5-20 ℃ / sec until the bainite transformation temperature ± 10 ℃ A method for producing a high strength welded structural steel having a TiN precipitate and a composite oxide of Mg-Ti comprising cooling with a furnace. 제 5항에 있어서, 상기 강재에는 V이 0.01∼0.2% 함유되고, V와 N의 비(V/N)가 0.3∼9 그리고, 7≤(Ti+2Al+4B+V)/N≤17를 만족함을 특징으로 하는 TiN석출물과 Mg-Ti의 복합산화물을 갖는 고강도 용접구조용 강재의 제조방법.6. The steel material according to claim 5, wherein V is contained in an amount of 0.01 to 0.2%, a ratio of V and N (V / N) is 0.3 to 9, and 7≤ (Ti + 2Al + 4B + V) / N≤17. A method for producing a high strength welded structural steel having a composite oxide of TiN precipitate and Mg-Ti, characterized in that it satisfies. 제 5항 또는 제 6항에 있어서, 상기 강재에는 Ni:0.1∼3.0%, Cu:0.1∼1.5%, Nb:0.01∼0.1%, Mo:0.05∼1.0%, Cr:0.05∼1.0%의 그룹에서 선택된 1종 또는 2종 이상 그리고, Ca:0.0005-0.005%, REM:0.005∼0.05%의 그룹에서 선택된 1종 또는 2종이 함유되는 것을 특징으로 하는 TiN석출물과 Mg-Ti의 복합산화물을 갖는 고강도 용접구조용 강재의 제조방법.The steel material according to claim 5 or 6, wherein the steel comprises Ni: 0.1 to 3.0%, Cu: 0.1 to 1.5%, Nb: 0.01 to 0.1%, Mo: 0.05 to 1.0%, and Cr: 0.05 to 1.0%. High strength welding with a composite oxide of TiN precipitate and Mg-Ti, characterized in that one or two or more selected, and one or two selected from the group Ca: 0.0005-0.005%, REM: 0.005 to 0.05% Method of manufacturing structural steels. 제 5항에 있어서, 상기 슬라브는 Ti 보다 탈산력이 큰 탈산원소를 Ti의 투입전에 투입하여 용존산소량을 50∼200ppm으로 탈산한 다음, Mg을 첨가하여 Mg의 양을 0.005-0.1%가 되도록 하고, Ti을 첨가하여 Ti의 양을 0.005∼0.2% 되도록 한 후 탈가스처리하여 연속주조한 것임을 특징으로 하는 TiN석출물과 Mg-Ti의 복합산화물을 갖는 고강도 용접구조용 강재의 제조방법.According to claim 5, The slab is deoxidized element having a greater deoxidizing power than Ti is added before the introduction of Ti to deoxidize the dissolved oxygen amount to 50 ~ 200ppm, Mg is added to make the amount of Mg 0.005-0.1% A method of manufacturing a high strength welded structural steel having a TiN precipitate and a composite oxide of Mg-Ti, characterized in that the casting is carried out by degassing after adding Ti to 0.005 to 0.2% by adding Ti. 제 5항 또는 제8항에 있어서, 상기 슬라브의 연속주조는 용강을 0.9∼1.2m/min의 속도로 연속주조하면서 2차냉각대에서 0.3∼0.35ℓ/kg의 비수량으로 약냉함을 특징으로 하는 TiN석출물과 Mg-Ti의 복합산화물을 갖는 고강도 용접구조용 강재의 제조방법.The method of claim 5 or 8, wherein the continuous casting of the slab is characterized in that the continuous cooling of molten steel at a rate of 0.9 ~ 1.2m / min is weakly cooled in a non-amount of 0.3 ~ 0.35ℓ / kg in the secondary cooling zone A method for producing a high strength welded steel having a composite oxide of TiN precipitate and Mg-Ti.
KR10-2000-0070185A 2000-11-24 2000-11-24 High strength Steel plate to be precipitating TiN and complex oxide of Mg-Ti for welded structure, method for manufacturing the same KR100470054B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0070185A KR100470054B1 (en) 2000-11-24 2000-11-24 High strength Steel plate to be precipitating TiN and complex oxide of Mg-Ti for welded structure, method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0070185A KR100470054B1 (en) 2000-11-24 2000-11-24 High strength Steel plate to be precipitating TiN and complex oxide of Mg-Ti for welded structure, method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20020040210A true KR20020040210A (en) 2002-05-30
KR100470054B1 KR100470054B1 (en) 2005-02-04

Family

ID=19701076

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0070185A KR100470054B1 (en) 2000-11-24 2000-11-24 High strength Steel plate to be precipitating TiN and complex oxide of Mg-Ti for welded structure, method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR100470054B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482212B1 (en) * 2000-11-25 2005-04-21 주식회사 포스코 Method for manufacturing high strength steel plate to be precipitating TiN and complex oxide of Mg-Ti by nitriding treatment for welded structure
US7485196B2 (en) 2001-09-14 2009-02-03 Nucor Corporation Steel product with a high austenite grain coarsening temperature
US7588649B2 (en) 2001-09-14 2009-09-15 Nucor Corporation Casting steel strip
US7690417B2 (en) 2001-09-14 2010-04-06 Nucor Corporation Thin cast strip with controlled manganese and low oxygen levels and method for making same
US8016021B2 (en) 2003-01-24 2011-09-13 Nucor Corporation Casting steel strip with low surface roughness and low porosity
US9149868B2 (en) 2005-10-20 2015-10-06 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US9999918B2 (en) 2005-10-20 2018-06-19 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US10071416B2 (en) 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
US11193188B2 (en) 2009-02-20 2021-12-07 Nucor Corporation Nitriding of niobium steel and product made thereby

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256401B2 (en) * 1995-02-27 2002-02-12 川崎製鉄株式会社 High heat input welding steel having heat input of 500 kJ / cm or more and method for producing the same
JPH11264048A (en) * 1998-03-16 1999-09-28 Nippon Steel Corp High-strength steel plate excellent in toughness of welded zone
JP3898842B2 (en) * 1998-09-25 2007-03-28 新日本製鐵株式会社 Steel sheet with excellent low temperature toughness in the heat affected zone

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482212B1 (en) * 2000-11-25 2005-04-21 주식회사 포스코 Method for manufacturing high strength steel plate to be precipitating TiN and complex oxide of Mg-Ti by nitriding treatment for welded structure
US7485196B2 (en) 2001-09-14 2009-02-03 Nucor Corporation Steel product with a high austenite grain coarsening temperature
US7588649B2 (en) 2001-09-14 2009-09-15 Nucor Corporation Casting steel strip
US7690417B2 (en) 2001-09-14 2010-04-06 Nucor Corporation Thin cast strip with controlled manganese and low oxygen levels and method for making same
US8002908B2 (en) 2001-09-14 2011-08-23 Nucor Corporation Steel product with a high austenite grain coarsening temperature
US8016021B2 (en) 2003-01-24 2011-09-13 Nucor Corporation Casting steel strip with low surface roughness and low porosity
US9149868B2 (en) 2005-10-20 2015-10-06 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US9999918B2 (en) 2005-10-20 2018-06-19 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US10071416B2 (en) 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
US11193188B2 (en) 2009-02-20 2021-12-07 Nucor Corporation Nitriding of niobium steel and product made thereby

Also Published As

Publication number Publication date
KR100470054B1 (en) 2005-02-04

Similar Documents

Publication Publication Date Title
KR100470054B1 (en) High strength Steel plate to be precipitating TiN and complex oxide of Mg-Ti for welded structure, method for manufacturing the same
KR100481363B1 (en) Method of manufacturing high strength steel plate to be precipitating TiN and TiO for welded structures
KR100482197B1 (en) Method of manufacturing high strength steel plate to be precipitating TiO and TiN by nitriding treatment for welded structures
KR100380750B1 (en) Method for high strength steel plate having superior toughness in weld heat-affected zone
KR100482188B1 (en) Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone by recrystallization controlled rolling
KR100362680B1 (en) High strength steel plate having superior toughness in weld heat-affected zone and Method for manufacturing the same, welding fabric using the same
KR100368264B1 (en) Method for manufacturing steel plate having superior toughness in weld heat-affected zone and them made from the method, welding fabric using the same
KR100368244B1 (en) Method for steel plate having superior toughness in weld heat-affected zone
KR100470649B1 (en) Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone by controlled rolling at two phase regions
KR100470055B1 (en) Method for manufacturing steel plate to be precipitating TiN and complex oxide of Mg-Ti by nitriding treatment for welded structure
KR100376521B1 (en) High strength steel plate having superior toughness in weld heat-affected zone and Method for manufacturing the same
KR100470053B1 (en) Steel plate to be precipitating TiN and complex oxide of Mg-Ti, method for manufacturing the same, welding fabric using the same
KR100470050B1 (en) High strength steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same
KR100470048B1 (en) Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
KR100368243B1 (en) Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
KR100362682B1 (en) High strength steel plate having superior toughness in weld heat-affected zone and Method for manufacturing the same
KR100470052B1 (en) High strength steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same
KR100482212B1 (en) Method for manufacturing high strength steel plate to be precipitating TiN and complex oxide of Mg-Ti by nitriding treatment for welded structure
KR100481365B1 (en) Method of manufacturing steel plate to be precipitating TiN and TiO for welded structures
KR100435488B1 (en) method for manufacturing Steel plate to be precipitating TiN and ZrN by nitriding treatment for welded structures
KR100470059B1 (en) High strength Steel plate to be precipitating TiN and ZrN for welded structures, method for manufacturing the same
KR100482196B1 (en) Method of manufacturing steel plate to be precipitating TiO and TiN by nitriding treatment for welded structures
KR100470058B1 (en) Steel plate to be precipitating TiN and ZrN for welded structures, method for manufacturing the same
KR20020042894A (en) Steel plate to be precipitating TiN+MnS for welded structures, method for manufacturing the same, welding fabric made from the same
KR100435489B1 (en) method for manufacturing high strength steel plate to be precipitating TiN and ZrN for welded structures

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090128

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee