JPH11264048A - High-strength steel plate excellent in toughness of welded zone - Google Patents

High-strength steel plate excellent in toughness of welded zone

Info

Publication number
JPH11264048A
JPH11264048A JP6505498A JP6505498A JPH11264048A JP H11264048 A JPH11264048 A JP H11264048A JP 6505498 A JP6505498 A JP 6505498A JP 6505498 A JP6505498 A JP 6505498A JP H11264048 A JPH11264048 A JP H11264048A
Authority
JP
Japan
Prior art keywords
toughness
rem
steel
oxide
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6505498A
Other languages
Japanese (ja)
Inventor
Yoshio Terada
好男 寺田
Takuya Hara
卓也 原
Akihiko Kojima
明彦 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6505498A priority Critical patent/JPH11264048A/en
Publication of JPH11264048A publication Critical patent/JPH11264048A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a steel plate of high strength and excellent in toughness of a heat affected zone by containing a combined grain among a fine TiN precipitate with a Mg oxide, the oxide essentially made of Ti-Mg-REM and MnS in a low C-Ti-Mg-REM-low Al steel of a specified composition. SOLUTION: This high strength steel plate contains, by weight, 0.01-0.10% C, <=0.6% Si, 0.8-2.5% Mn, <=0.015% P, 0.001-0.005% S, 0.01-0.05% Nb, 0.005-0.030% Ti, 0.0003-0.0020% Mg, 0.0003-0.0010% REM, <=0.01% Al, 0.001-0.006% N, 0.001-0.006% O, further a prescribed quantity of Ni, Cu, etc., and the balance Fe, further satisfying P=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+ Mo+V=2.5-3.5. Further, in addition to the above, 0.1-5.0 μm Ti, Mg, >=5 each/mm<2> a mainly REM oxide-MnS combined body, >=10000 each/mm<2> a Mg oxide containing TiN are contained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、米国石油協会(A
PI)規格でX100以上(降伏強度で約689N/m
2 以上)の高強度と優れた溶接熱影響部(HAZ)靱
性を有する鋼板に関するものである。
The present invention relates to the American Petroleum Institute (A)
PI) X100 or higher (Yield strength: about 689 N / m)
high strength and excellent heat affected zone of the m 2 or more) (relates steel sheet having a HAZ) toughness.

【0002】[0002]

【従来の技術】原油・天然ガスを長距離輸送するパイプ
ラインに使用するラインパイプは、(1)高圧化による
輸送効率の向上や、(2)薄肉化による現地での溶接能
率向上のため、ますます高張力化する傾向にある。これ
までにAPI規格でX80までのラインパイプが実用化
されているが、さらに高強度のラインパイプに対するニ
−ズがでてきた。現在、X100以上の超高強度ライン
パイプはX80級ラインパイプの製造法(NKK技報
No.138(1992),pp24−31およびTh
e 7th Offshore Mechanics
and Arctic Engineering(19
88),Volume V,pp179−185)を基
本に検討されているが、これらのラインパイプは低温靱
性、とくにHAZ靱性などの点で多くの問題を抱えてお
り、これらを克服した画期的な高強度鋼板が望まれてい
る。
2. Description of the Related Art Line pipes used for pipelines for transporting crude oil and natural gas over long distances are required to (1) improve transport efficiency by increasing pressure and (2) improve welding efficiency on site by reducing wall thickness. The tension tends to be higher. Until now, line pipes up to X80 have been put to practical use in accordance with the API standard, but there is a need for higher strength line pipes. At present, ultra-high-strength line pipes of X100 or more are manufactured using X80 class line pipes (NKK technical report
No. 138 (1992), pp24-31 and Th.
e 7th Offshore Machines
and Arctic Engineering (19
88), Volume V, pp 179-185), but these line pipes have many problems in terms of low-temperature toughness, particularly HAZ toughness, etc. High strength steel sheets are desired.

【0003】低合金鋼のHAZ靱性は、(1)結晶粒の
サイズ、(2)高炭素島状マルテンサイト(M* )、上
部ベイナイト(Bu)などの硬化相の分散状態、(3)
粒界脆化の有無、(4)元素のミクロ偏析など種々の冶
金学的要因に支配される。なかでもHAZの結晶粒のサ
イズは低温靱性に大きな影響を与えることが知られてお
り、HAZ組織を微細化する数多くの技術が開発実用化
されている。例えば、TiNを微細に分散させ、490
N/mm2 級高張力鋼の大入熱溶接時のHAZ靱性を改
善する手段が開示されている(昭和54年6月発行「鉄
と鋼」第65巻第8号1232ペ−ジ)。しかしこれら
の析出物は溶融線近傍においては1400℃以上の高温
にさらされるため大部分が粗大化あるいは溶解し、HA
Z組織が粗大化してHAZ靱性が劣化するという欠点を
有する。
[0003] The HAZ toughness of a low alloy steel is as follows: (1) crystal grain size, (2) dispersed state of hardened phase such as high carbon island martensite (M * ), upper bainite (Bu), and (3)
It is governed by various metallurgical factors such as the presence or absence of grain boundary embrittlement and microsegregation of element (4). Above all, it is known that the size of the crystal grains of HAZ has a great effect on the low-temperature toughness, and a number of techniques for refining the HAZ structure have been developed and put to practical use. For example, TiN is finely dispersed and 490
Means for improving the HAZ toughness of N / mm 2 class high strength steel during large heat input welding has been disclosed (Iron and Steel, Vol. 65, No. 8, page 1232, issued June 1979). However, since these precipitates are exposed to a high temperature of 1400 ° C. or more near the melting line, most of them are coarsened or dissolved, and HA
There is a disadvantage that the Z structure is coarsened and the HAZ toughness is deteriorated.

【0004】この問題に対して鋼中にTi酸化物を微細
分散させて、溶接時のHAZにおいて粒内アシキュラ−
フェライト(以下IGFと呼ぶ)を生成させることによ
り溶融線近傍のHAZ組織は微細化され、HAZ靱性が
改善されることが特開昭63−210235号公報、特
開平1−15321号公報などに開示されている。しか
しながら、X100以上の高強度になるとTi酸化物か
らIGFの生成は抑制され、HAZ靱性が劣化するた
め、X100以上の高強度鋼板のHAZ靱性の改善が強
く望まれている。
To solve this problem, Ti oxide is finely dispersed in steel, and intragranular acicular in HAZ at the time of welding.
It is disclosed in JP-A-63-210235, JP-A-1-15321 and the like that the formation of ferrite (hereinafter referred to as IGF) makes the HAZ structure near the melting line finer and improves HAZ toughness. Have been. However, when the strength becomes higher than X100, the production of IGF from the Ti oxide is suppressed, and the HAZ toughness is deteriorated. Therefore, it is strongly desired to improve the HAZ toughness of the high-strength steel sheet of X100 or more.

【0005】[0005]

【発明が解決しようとする課題】本発明は良好なHAZ
靱性を有するX100以上の高強度鋼板を提供するもの
である。
The present invention provides a good HAZ.
It is intended to provide a high-strength steel sheet of X100 or more having toughness.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、重量%
で、C:0.01〜0.10%、Si:0.6%以下、
Mn:0.8〜2.5%、P:0.015%以下、S:
0.001〜0.005%、Nb:0.01〜0.05
%、Ti:0.005〜0.030%、Mg:0.00
03〜0.0020%、REM:0.0003〜0.0
010%、Al:0.01%以下、N:0.001〜
0.006%、O:0.001〜0.006%、に必要
に応じて、さらにNi:0.1〜1.0%、Cu:0.
1〜1.2%、Cr:0.1〜1.0%、Mo:0.1
〜1.0%、V:0.01〜0.10%、Ca:0.0
01〜0.005%の一種または二種以上を含有し、残
部が鉄および不可避的不純物からなり、P=2.7C+
0.4Si+Mn+0.8Cr+0.45(Ni+C
u)+Mo+Vの式で定義されるP値が2.5〜3.5
の範囲にあり、かつ粒子径が0.1〜5.0μmのT
i,Mg,REMを主体とする酸化物とMnSの複合体
を鋳造方向と直角方向の断面において5個/mm2以上
含有し、かつMg系酸化物を含有した粒子径0.1μm
以下のTiNを10000個/mm2 以上含有すること
である。
Means for Solving the Problems The gist of the present invention is that the weight%
And C: 0.01 to 0.10%, Si: 0.6% or less,
Mn: 0.8-2.5%, P: 0.015% or less, S:
0.001 to 0.005%, Nb: 0.01 to 0.05
%, Ti: 0.005 to 0.030%, Mg: 0.00
03-0.0020%, REM: 0.0003-0.0
010%, Al: 0.01% or less, N: 0.001 to
0.006%, O: 0.001 to 0.006%, and if necessary, Ni: 0.1 to 1.0%, Cu: 0.
1 to 1.2%, Cr: 0.1 to 1.0%, Mo: 0.1
1.0%, V: 0.01 to 0.10%, Ca: 0.0
One or two or more kinds of P-2.7C + are contained, and the balance consists of iron and unavoidable impurities.
0.4Si + Mn + 0.8Cr + 0.45 (Ni + C
u) The P value defined by the formula of + Mo + V is 2.5 to 3.5.
And a particle diameter of 0.1 to 5.0 μm.
A composite of an oxide mainly composed of i, Mg, and REM and MnS in a cross section perpendicular to the casting direction at 5 particles / mm 2 or more, and a particle diameter of 0.1 μm containing an Mg-based oxide
The following TiN is contained at least 10,000 / mm 2 .

【0007】以下に、本発明の高強度鋼板について詳細
に説明する。発明者らの研究によれば、HAZ靱性は
(1)鋼の化学成分、(2)組織(結晶粒の大きさと硬
化相の分散状態)に大きく依存し、鋼成分の適正化と結
晶粒の微細化が高靱性化に不可欠であると考えられる。
本発明の特徴は、低C−Ti−Mg−REM−低Al系
鋼において、(1)溶融線近傍においても粗大・溶解し
ない0.1μm以下のMg系酸化物を含んだ微細なTi
N析出物を含有し、(2)100μm以下の比較的小さ
なオ−ステナイト(γ)粒内からでもIGFの生成能に
優れた0.1μm以上のTi−Mg−REMを主体とす
る酸化物とMnSとの複合体を含有させることにより、
HAZ全域に渡って組織を微細化してHAZ靱性を向上
させることにある。
Hereinafter, the high strength steel sheet of the present invention will be described in detail. According to the study of the inventors, the HAZ toughness largely depends on (1) the chemical composition of the steel, and (2) the structure (the size of the crystal grains and the dispersed state of the hardened phase). It is considered that miniaturization is indispensable for increasing toughness.
The feature of the present invention is that, in low C-Ti-Mg-REM-low Al-based steel, (1) fine Ti containing 0.1 μm or less of Mg-based oxide which is not coarse and does not melt even near the melting line.
(2) an oxide mainly composed of Ti-Mg-REM of 0.1 µm or more, which has excellent ability to generate IGF even in relatively small austenite (γ) grains of 100 µm or less; By containing a complex with MnS,
An object of the present invention is to improve the HAZ toughness by refining the structure over the entire HAZ.

【0008】従来よりTiNを微細に分散させた鋼では
1350℃に再加熱される領域まではγ粒の粗大化を抑
制してHAZ組織の微細化に有効であった。しかし14
00℃以上の高温にさらされる溶融線近傍ではTiN粒
子は粗大かつ溶解するためにγ粒の抑制効果はほとんど
消滅する。そこで、1400℃以上の高温でも安定な析
出物について鋭意検討した結果、微細なMg系酸化物を
核として生成したTiN粒子は1400℃以上の高温で
も粗大・溶解しにくくなり、溶融線近傍のγ粒の粗大化
抑制に大きな効果があることが判明した。従来の鋼では
溶融線近傍のγ粒径は200μm以上となるのに対し
て、本発明鋼では0.1μm以下の酸化物を核として生
成したTiN粒子を10000個/mm2 以上含有させ
ることによりγ粒径を100μm以下にすることができ
る。
Conventionally, in a steel in which TiN is finely dispersed, coarsening of γ grains is suppressed up to a region where the steel is reheated to 1350 ° C., and this is effective in refining the HAZ structure. But 14
In the vicinity of the melting line exposed to a high temperature of 00 ° C. or more, the TiN particles are coarse and dissolved, so that the effect of suppressing γ particles almost disappears. Therefore, as a result of intensive studies on precipitates that are stable even at a high temperature of 1400 ° C. or higher, TiN particles generated by using fine Mg-based oxides as nuclei hardly become coarse and dissolve even at a high temperature of 1400 ° C. or higher. It has been found that there is a great effect on suppressing coarsening of grains. In the conventional steel, the γ particle diameter in the vicinity of the melting line is 200 μm or more, whereas in the steel of the present invention, the content of TiN particles generated by using oxides of 0.1 μm or less as nuclei is 10000 particles / mm 2 or more. The γ particle size can be reduced to 100 μm or less.

【0009】また、従来100μm程度まで抑制された
γ粒内からIGFを生成させることはできなかった。こ
れはIGFの生成する温度よりもγ粒界に生成するフェ
ライトの生成温度が高く、γ粒界から生成したフェライ
トにγ粒内が覆われてしまうためIGFの生成が困難で
あった。そこで、比較的小さなγ粒内からでもIGFを
生成させる酸化物の種類について鋭意検討した結果、T
i、Mg、REMを主体とする酸化物(酸化物中に占め
るTi+Mg+REMの割合が50%以上)は酸化物上
へのMnSの析出を促進し、この酸化物とMnSとの複
合体はIGFの生成能に優れ、0.1μm以上の酸化物
とMnSの複合体を5個/mm2 以上含有させることに
より小さなγ粒内においてもIGFが顕著に生成するこ
とが判明した。
Further, it has not been possible to generate IGF from within the γ grains suppressed to about 100 μm conventionally. This is because the temperature at which ferrite is generated at the γ grain boundary is higher than the temperature at which IGF is generated, and the ferrite generated from the γ grain boundary covers the inside of the γ grain, making it difficult to generate IGF. Therefore, as a result of intensive studies on the type of oxide that generates IGF even within relatively small γ grains, T
An oxide mainly composed of i, Mg, and REM (the ratio of Ti + Mg + REM in the oxide is 50% or more) promotes precipitation of MnS on the oxide, and a complex of this oxide and MnS is formed of IGF. It has been found that IGF is remarkably formed even in small γ grains by containing 5 μm / mm 2 or more of a composite of oxide and MnS having a size of 0.1 μm or more, which is excellent in generating ability.

【0010】すなわち,本発明の要点は、Ti,Mg,
REM、Al、S、N量を限定することにより、(1)
0.1μm以下のMg系酸化物を含んだTiN系微細析
出物を含有させて溶融線近傍においてもγ粒の粗大化を
抑制させること、(2)0.1μm以上のTi、Mg、
REMを主体とする酸化物とMnSとの複合体を含有さ
せて比較的小さなγ粒内からIGFを生成させて、HA
Z全域にわたり組織を微細化してHAZ靱性を向上させ
ることである。
That is, the gist of the present invention is that Ti, Mg,
By limiting the amounts of REM, Al, S, and N, (1)
Containing TiN-based fine precipitates containing Mg-based oxides of 0.1 μm or less to suppress the coarsening of γ grains even in the vicinity of the melting line; (2) Ti, Mg, 0.1 μm or more,
A complex of an oxide mainly composed of REM and MnS is contained to generate IGF from relatively small γ grains, and HA
The purpose is to improve the HAZ toughness by refining the structure over the entire Z region.

【0011】上記の酸化物や析出物を鋼中に含有させる
ためにはTi、Mg、REM、Al、S、N量の適正化
が重要である。このためにTi,Mg,REM、Al、
S、N量をそれぞれTi:0.005〜0.030%、
Mg:0.0003〜0.0020%、REM:0.0
003〜0.0010%、Al:0.01%以下、S:
0.001〜0.005%、N:0.001〜0.00
6%に限定する必要がある。
In order to contain the above oxides and precipitates in steel, it is important to optimize the amounts of Ti, Mg, REM, Al, S and N. For this purpose, Ti, Mg, REM, Al,
The amounts of S and N are respectively Ti: 0.005 to 0.030%,
Mg: 0.0003-0.0020%, REM: 0.0
003 to 0.0010%, Al: 0.01% or less, S:
0.001 to 0.005%, N: 0.001 to 0.00
It must be limited to 6%.

【0012】Ti、Mg、REM、S、N量の下限はT
i、Mg、REMを主体とする酸化物とMnSの複合体
およびMg酸化物を含むTiN粒子を生成させるための
必要最小量である。Ti量の上限はTiCの生成による
HAZ靱性の劣化を防止するためである。MgおよびR
EMの多量添加はHAZ靱性を劣化させるためにその上
限の値をそれぞれ0.0020%、0.0010%とし
た。N量の上限はスラブ表面疵や固溶NによるHAZ靱
性の劣化を防止するためである。
The lower limits of the amounts of Ti, Mg, REM, S and N are T
This is the minimum amount required to generate a composite of oxide and MnS mainly composed of i, Mg, and REM and TiN particles containing Mg oxide. The upper limit of the amount of Ti is to prevent HAZ toughness from deteriorating due to generation of TiC. Mg and R
Since the addition of a large amount of EM deteriorates the HAZ toughness, the upper limit values are set to 0.0020% and 0.0010%, respectively. The upper limit of the amount of N is to prevent deterioration of HAZ toughness due to slab surface flaws and solid solution N.

【0013】また、Ti、Mg、REMを主体とする酸
化物を生成させるためにはAl量の上限を0.01%と
する。Al量が0.01%を超えると酸化物中にAlが
多く含有し、優れたIGF生成能が得られなくなるため
である。Sの上限はMnSの多量生成による母材靱性の
劣化を防止するためである。しかし、たとえ鋼中にT
i、Mg、REMを主体とする酸化物とMnSとの複合
体とMg系酸化物を含むTiN粒子を鋼中に分散させる
ことができても基本成分が適当でないと優れたHAZ靱
性は得られない。
In order to generate an oxide mainly composed of Ti, Mg and REM, the upper limit of the Al content is set to 0.01%. If the amount of Al exceeds 0.01%, the oxide contains a large amount of Al, so that excellent IGF-forming ability cannot be obtained. The upper limit of S is for preventing deterioration of the base material toughness due to the large amount of MnS. However, even if T
Even if a composite of an oxide mainly composed of i, Mg, and REM and MnS and TiN particles containing an Mg-based oxide can be dispersed in steel, excellent HAZ toughness can be obtained if the basic components are not appropriate. Absent.

【0014】以下に、その他の基本成分の限定理由につ
いて説明する。Cの下限0.01%は母材および溶接部
の強度、低温靱性の確保ならびにNb、V添加による析
出硬化、結晶粒の微細化効果を発揮させるための最小量
である。しかしC量が多過ぎると低温靱性、現地溶接性
の著しい劣化を招くので、上限を0.10%とした。S
iは脱酸や強度向上のため添加する元素であるが、多く
添加すると現地溶接性、HAZ靱性を劣化させるので、
上限を0.6%とした。鋼の脱酸はTiのみでも十分で
あり、Siは必ずしも添加する必要はない。
The reasons for limiting other basic components will be described below. The lower limit of 0.01% of C is a minimum amount for securing the strength and low-temperature toughness of the base material and the welded portion, and for exhibiting the effects of precipitation hardening and crystal grain refinement by adding Nb and V. However, if the C content is too large, the low-temperature toughness and the on-site weldability are remarkably deteriorated, so the upper limit is set to 0.10%. S
i is an element added for deoxidation and strength improvement, but if added too much, it deteriorates on-site weldability and HAZ toughness.
The upper limit was set to 0.6%. Deoxidation of steel is sufficient with Ti alone, and Si need not always be added.

【0015】Mnは強度、低温靱性を確保する上で不可
欠な元素であり、その下限は0.8%である。しかしM
nが多過ぎると鋼の焼入性が増加して現地溶接性、HA
Z靱性を劣化させるだけでなく、連続鋳造鋼片の中心偏
析を助長し、低温靱性も劣化させるので上限を2.5%
とした。本発明において不可避的不純物元素であるP量
を0.015%以下とする。この主たる理由は母材およ
びHAZの低温靱性をより一層向上させるためである。
P量の低減は連続鋳造スラブの中心偏析を低減させて、
粒界破壊を防止し低温靱性を向上させる。
Mn is an indispensable element for securing strength and low-temperature toughness, and its lower limit is 0.8%. But M
If n is too large, the hardenability of the steel increases and the weldability on site, HA
Not only deteriorates Z toughness but also promotes center segregation of continuous cast steel slab and lowers low temperature toughness, so the upper limit is 2.5%
And In the present invention, the amount of P, which is an unavoidable impurity element, is set to 0.015% or less. The main reason for this is to further improve the low-temperature toughness of the base material and HAZ.
Reduction of P content reduces center segregation of continuous cast slab,
Prevents grain boundary fracture and improves low temperature toughness.

【0016】Nbはγ粒界に生成するフェライトを抑制
して、Ti、Mg、REMを主体とする酸化物とMnS
の複合体を核とするIGFの生成を促進させる働きがあ
る。この効果を得るためには最低0.01%のNb量が
必要である。しかしながら、Nb量が多すぎるとHAZ
靱性が劣化するので、その上限の値を0.05%とし
た。OはTi、Mg、REMを主体とする酸化物を生成
させるために0.001%以上必要である。しかし多す
ぎると非金属介在物の生成により鋼の清浄度や母材低温
靱性の劣化を招くため、上限の値を0.006%とし
た。
Nb suppresses ferrite generated at the γ grain boundary, and an oxide mainly composed of Ti, Mg, REM and MnS
Has the function of promoting the production of IGF whose complex is the nucleus. To obtain this effect, a minimum amount of 0.01% of Nb is required. However, if the Nb content is too large, HAZ
Since the toughness deteriorates, the upper limit value is set to 0.05%. O is required to be 0.001% or more to generate an oxide mainly composed of Ti, Mg, and REM. However, when the content is too large, the cleanliness of the steel and the low-temperature toughness of the base material are deteriorated due to the formation of nonmetallic inclusions. Therefore, the upper limit value is set to 0.006%.

【0017】次に、Ni、Cu、Cr、Mo、V、Ca
を添加する理由について説明する。基本成分にさらにこ
れらの元素を添加する主たる目的は本発明鋼の特徴を損
なうことなく、強度・低温靱性などの特性の向上を図る
ためである。従って、その添加量は自ら制限されるべき
性質のものである。Niは溶接性、HAZ靱性に悪影響
をおよぼすことなく母材の強度、低温靱性を向上させる
が、0.1%以下では効果が薄く、1.0%以上の添加
は溶接性に好ましくないためにその上限の値を1.0%
とした。
Next, Ni, Cu, Cr, Mo, V, Ca
The reason for adding is described. The main purpose of adding these elements to the basic components is to improve properties such as strength and low-temperature toughness without impairing the features of the steel of the present invention. Therefore, the amount of addition is of a nature that should be restricted by itself. Ni improves the strength and low-temperature toughness of the base material without adversely affecting the weldability and the HAZ toughness. However, the effect is small at 0.1% or less, and the addition of 1.0% or more is not preferable for the weldability. 1.0% of the upper limit value
And

【0018】CuはNiとほぼ同様の効果を有するとと
もに耐食性、耐水素誘起割れ性などにも効果があり、
0.1%以上の添加が必要である。しかし過剰に添加す
ると析出硬化により母材、HAZの靱性劣化や熱間圧延
時にCu−クラックが発生するために、その上限の値を
1.2%とした。Crは母材、溶接部の強度を増加させ
る効果があり、0.1%以上の添加が必要である。しか
し、多過ぎると現地溶接性やHAZ靱性を著しく劣化さ
せる。このためCr量の上限は1.0%とした。
Cu has almost the same effect as Ni, and also has an effect on corrosion resistance, resistance to hydrogen-induced cracking, and the like.
It is necessary to add 0.1% or more. However, when added in excess, precipitation hardening causes deterioration in the toughness of the base material and HAZ and Cu-cracks during hot rolling, so the upper limit value was set to 1.2%. Cr has the effect of increasing the strength of the base material and the welded portion, and it is necessary to add 0.1% or more. However, if it is too much, the on-site weldability and HAZ toughness are remarkably deteriorated. Therefore, the upper limit of the Cr content is set to 1.0%.

【0019】Moは母材および溶接部の強度を上昇させ
る元素であるが、1.0%を超えるとCrと同様に母
材、HAZの靱性および溶接性を劣化させる。また0.
1%以下の添加ではその効果が薄い。VはほぼNbと同
様の効果を有するが、その効果はNbに比較して格段に
弱い。その効果を発揮させるためには0.01%以上の
添加が必要である。また上限は現地溶接性、HAZ靱性
の点から0.10%まで許容できる。
Mo is an element that increases the strength of the base material and the welded portion, but if it exceeds 1.0%, the toughness and weldability of the base material and the HAZ are deteriorated like Cr. Also 0.
Addition of 1% or less has little effect. V has almost the same effect as Nb, but the effect is much weaker than Nb. In order to exert the effect, it is necessary to add 0.01% or more. Further, the upper limit is allowable up to 0.10% from the viewpoint of on-site weldability and HAZ toughness.

【0020】Caは硫化物(MnS)の形態を制御し、
低温靱性を向上(シャルピ−試験における吸収エネルギ
−の増加など)させるほか、耐サワ−性の向上にも著し
い効果を発揮する。0.001%以下ではその効果が薄
く、また0.005%を超えて添加するとCaO−Ca
Sが大量に生成してクラスタ−、大型介在物となり、鋼
の清浄度を害するだけでなく、現地溶接性にも悪影響を
およぼす。このためCa添加量を0.001〜0.00
5%に制限した。
Ca controls the form of sulfide (MnS),
In addition to improving the low-temperature toughness (such as an increase in the absorbed energy in the Charpy test), it also has a remarkable effect on sour resistance. When the content is less than 0.001%, the effect is weak, and when it exceeds 0.005%, CaO—Ca
S is generated in large amounts to form clusters and large inclusions, which not only impairs the cleanliness of steel but also adversely affects on-site weldability. For this reason, the amount of Ca added is 0.001 to 0.00.
Limited to 5%.

【0021】以上の個々の添加元素の限定に加えて本発
明では、さらにP=2.7C+0.4Si+Mn+0.
8Cr+0.45(Ni+Cu)+Mo+Vで示す値を
2.5≦P≦3.5に制限する必要がある。これはHA
Z靱性、現地溶接性を損なうことなく、目的とする強度
・低温靱性バランスを達成するためである。P値の下限
を2.5としたのはX100以上の強度と優れた低温靱
性を得るためである。またP値の上限を3.5としたの
は優れたHAZ靱性、現地溶接性を維持するためであ
る。
In the present invention, in addition to the limitation of the individual additive elements described above, P = 2.7C + 0.4Si + Mn + 0.
It is necessary to limit the value represented by 8Cr + 0.45 (Ni + Cu) + Mo + V to 2.5 ≦ P ≦ 3.5. This is HA
This is to achieve the desired balance between strength and low-temperature toughness without impairing Z toughness and on-site weldability. The lower limit of the P value is set to 2.5 in order to obtain a strength of X100 or more and excellent low-temperature toughness. The upper limit of the P value is set at 3.5 in order to maintain excellent HAZ toughness and on-site weldability.

【0022】なお、本発明における微細粒子の測定方法
について以下に説明する。0.1μm以下の微細なMg
酸化物を含むTiN析出物は透過電子顕微鏡(TEM)
を用いて10000〜50000倍の倍率で少なくとも
1000μm2 以上の面積を観察してその個数を求め
る。Mg酸化物の含有の有無についてはエネルギ−分散
型X線分光法(EDS)による組成分析とX線回折によ
る構造解析が望ましい。また0.1μm以上のIGFの
生成に寄与する酸化物の個数は光学顕微鏡にて1000
倍の倍率かつ4mm2 の視野で測定した。その後EPM
Aにより酸化物へのMnSの析出状態を観察する。
The method for measuring fine particles according to the present invention will be described below. Fine Mg of 0.1μm or less
Oxide-containing TiN precipitates are measured by transmission electron microscopy (TEM)
Is used to observe an area of at least 1000 μm 2 at a magnification of 10,000 to 50,000 times to determine the number thereof. Regarding the presence or absence of Mg oxide, composition analysis by energy dispersive X-ray spectroscopy (EDS) and structural analysis by X-ray diffraction are desirable. The number of oxides contributing to the production of IGF of 0.1 μm or more was 1000
The measurement was performed at a magnification of 1 and a visual field of 4 mm 2 . Then EPM
With A, the state of precipitation of MnS on the oxide is observed.

【0023】[0023]

【実施例】本発明の実施例について述べる。転炉−連続
鋳造法で種々の鋼成分の鋼片から厚板圧延、加速冷却法
により鋼板を製造して、諸性質を調査した。溶接部の特
性は各鋼板を内外面1層のSAW(サブマ−ジドア−ク
溶接)を実施した後、鋼板1/2t部より採取したシャ
ルピ−試験片を用いて評価した。ノッチ位置は内面溶接
と外面溶接の溶接金属が交わる点とした。実施例を表1
〜3に示す。本発明の鋼板は優れた強度・低温靱性およ
びHAZ靱性を有する。これに対して比較鋼は化学成分
や酸化物の種類や個数が適切でなく、いずれかの特性が
劣る。
An embodiment of the present invention will be described. A steel plate was manufactured from steel slabs of various steel components by a converter-continuous casting method, and a steel plate was manufactured by an accelerated cooling method, and various properties were investigated. The properties of the welded portion were evaluated using a Charpy test specimen sampled from a 1 / 2t portion of the steel sheet after each steel sheet was subjected to one layer of inner and outer surfaces by SAW (submerged-arc welding). The notch position was the point where the weld metal of the inner surface weld and the outer surface weld intersect. Example 1
3 are shown. The steel sheet of the present invention has excellent strength / low temperature toughness and HAZ toughness. On the other hand, the comparative steel is not suitable for the type and number of chemical components and oxides, and is inferior in either property.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】鋼11はC量が多すぎるため、母材および
HAZ靱性が劣る。鋼12はTiが添加されていないた
め、母材およびHAZ靱性が劣る。鋼13はTi量が多
すぎるため、HAZ靱性が劣る。鋼14はMgが添加さ
れていないため、HAZ靱性が劣る。鋼15はMg量が
多すぎるため、HAZ靱性が劣る。鋼16はREMが添
加されていないため、HAZ靱性が劣る。鋼17はRE
M量が多すぎるため、HAZ靱性が劣る。鋼18はAl
量が多すぎるため、HAZ靱性が劣る。鋼19はP値が
低すぎるためX100としての強度が得られない。
Since the steel 11 has too much C content, the base material and the HAZ toughness are inferior. Steel 12 is inferior in base metal and HAZ toughness because Ti is not added. Steel 13 has an inferior HAZ toughness because the amount of Ti is too large. Steel 14 has no HAZ toughness because Mg is not added. Steel 15 has inferior HAZ toughness because the amount of Mg is too large. Steel 16 is inferior in HAZ toughness because no REM is added. Steel 17 is RE
Since the amount of M is too large, the HAZ toughness is poor. Steel 18 is Al
Since the amount is too large, the HAZ toughness is poor. Steel 19 has a P value that is too low, so that the strength as X100 cannot be obtained.

【0028】鋼20はP値が高すぎるため、HAZ靱性
が劣る。鋼21は0.1μm 以上の酸化物中に主として
含有する元素がAl,Mg,REMであり、Ti,M
g,REMの含有する割合が50%以下であるため、H
AZ靱性が劣る。鋼22は0.1μm以上の酸化物中に
主として含有する元素がTi,Mgであり、Ti,M
g,REMの含有する割合が50%以下であるため,H
AZ靱性が劣る。鋼23は0.1μm以上の酸化物にM
nSが析出していないため、HAZ靱性が劣る。鋼24
は0.1μm以上の酸化物の個数が少なすぎるため、H
AZ靱性が劣る。鋼25は0.1μm以下のTiN析出
物の中にMg系酸化物を含まないため、HAZ靱性が劣
る。鋼26は0.1μm以下のTiN析出物の個数が少
なすぎるため、HAZ靱性が劣る。
Since the steel 20 has too high a P value, the HAZ toughness is poor. In the steel 21, the elements mainly contained in the oxide of 0.1 μm or more are Al, Mg, REM, Ti, M
g, REM content is 50% or less.
Poor AZ toughness. In the steel 22, the elements mainly contained in the oxide of 0.1 μm or more are Ti and Mg.
g, the content of REM is 50% or less.
Poor AZ toughness. Steel 23 has an oxide of 0.1 μm or more
Since nS is not precipitated, the HAZ toughness is poor. Steel 24
Is less than 0.1 μm because the number of oxides is too small.
Poor AZ toughness. Since the steel 25 does not contain a Mg-based oxide in TiN precipitates of 0.1 μm or less, the HAZ toughness is poor. Steel 26 has an inferior HAZ toughness because the number of TiN precipitates of 0.1 μm or less is too small.

【0029】[0029]

【発明の効果】本発明により低温靱性、とくにHAZ靱
性に優れた超高強度鋼板(API規格X100以上)が
安定して製造できるようになった。その結果、溶接構造
物やパイプラインの安全性が著しく向上するとともに、
施工能率が飛躍的に改善された。
According to the present invention, an ultra-high-strength steel sheet (API standard X100 or more) excellent in low-temperature toughness, particularly HAZ toughness, can be stably manufactured. As a result, the safety of welded structures and pipelines is significantly improved,
Construction efficiency has been dramatically improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.01〜0.10%、 Si:0.6%以下、 Mn:0.8〜2.5%、 P:0.015%以下、 S:0.001〜0.005%、 Nb:0.01〜0.05%、 Ti:0.005〜0.030%、 Mg:0.0003〜0.0020%、 REM:0.0003〜0.0010%、 Al:0.01%以下、 N:0.001〜0.006%、 O:0.001〜0.006%、 に残部が鉄および不可避的不純物からなり、下記の式で
定義されるP値が2.5〜3.5の範囲にあり、かつ粒
子径が0.1〜5.0μmのTi,Mg,REMを主体
とする酸化物とMnSの複合体を5個/mm2 以上含有
し、かつMg系酸化物を含有した粒子径0.1μm以下
のTiNを10000個/mm2 以上含有することを特
徴とする溶接部靱性の優れた高強度鋼板。 P=2.7C+0.4Si+Mn+0.8Cr+0.4
5(Ni+Cu)+Mo+V
C: 0.01 to 0.10%, Si: 0.6% or less, Mn: 0.8 to 2.5%, P: 0.015% or less, S: 0 0.001 to 0.005%, Nb: 0.01 to 0.05%, Ti: 0.005 to 0.030%, Mg: 0.0003 to 0.0020%, REM: 0.0003 to 0.0010 %, Al: 0.01% or less, N: 0.001 to 0.006%, O: 0.001 to 0.006%, with the balance being iron and unavoidable impurities, defined by the following formula: P value is in the range of 2.5 to 3.5, and Ti particle diameter of 0.1 to 5.0 [mu] m, Mg, a complex oxide and MnS mainly of REM 5 pieces / mm 2 or more Containing at least 10000 particles / mm 2 of TiN containing Mg-based oxide and having a particle diameter of 0.1 μm or less. High strength steel sheet with excellent weld toughness. P = 2.7C + 0.4Si + Mn + 0.8Cr + 0.4
5 (Ni + Cu) + Mo + V
【請求項2】 重量%で、 C:0.01〜0.10%、 Si:0.6%以下、 Mn:0.8〜2.5%、 P:0.015%以下、 S:0.001〜0.005%、 Nb:0.01〜0.05%、 Ti:0.005〜0.030%、 Mg:0.0003〜0.0020%、 REM:0.0003〜0.0010%、 Al:0.01%以下、 N:0.001〜0.006%、 O:0.001〜0.006%、 に必要に応じて、さらに Ni:0.1〜1.0%、 Cu:0.1〜1.2%、 Cr:0.1〜1.0%、 Mo:0.1〜1.0%、 V:0.01〜0.10%、 Ca:0.001〜0.005% の一種または二種以上を含有し、残部が鉄および不可避
的不純物からなり、下記の式で定義されるP値が2.5
〜3.5の範囲にあり、かつ粒子径が0.1〜5.0μ
mのTi,Mg,REMを主体とする酸化物とMnSの
複合体を5個/mm2 以上含有し、かつMg系酸化物を
含有した粒子径0.1μm以下のTiNを10000個
/mm2 以上含有することを特徴とする溶接部靱性の優
れた高強度鋼板。 P=2.7C+0.4Si+Mn+0.8Cr+0.4
5(Ni+Cu)+Mo+V
2. In% by weight, C: 0.01 to 0.10%, Si: 0.6% or less, Mn: 0.8 to 2.5%, P: 0.015% or less, S: 0 0.001 to 0.005%, Nb: 0.01 to 0.05%, Ti: 0.005 to 0.030%, Mg: 0.0003 to 0.0020%, REM: 0.0003 to 0.0010 %, Al: 0.01% or less, N: 0.001 to 0.006%, O: 0.001 to 0.006%, Ni: 0.1 to 1.0% as required. Cu: 0.1 to 1.2%, Cr: 0.1 to 1.0%, Mo: 0.1 to 1.0%, V: 0.01 to 0.10%, Ca: 0.001 to One or more of 0.005%, the balance being iron and unavoidable impurities, and having a P value defined by the following formula of 2.5
~ 3.5 and the particle size is 0.1 ~ 5.0μ
m of Ti, Mg, a complex oxide and MnS mainly of REM containing 5 / mm 2 or more and 10,000 particle diameter 0.1μm or less of TiN containing a Mg-based oxides / mm 2 A high-strength steel sheet having excellent weld toughness characterized by containing the above. P = 2.7C + 0.4Si + Mn + 0.8Cr + 0.4
5 (Ni + Cu) + Mo + V
JP6505498A 1998-03-16 1998-03-16 High-strength steel plate excellent in toughness of welded zone Withdrawn JPH11264048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6505498A JPH11264048A (en) 1998-03-16 1998-03-16 High-strength steel plate excellent in toughness of welded zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6505498A JPH11264048A (en) 1998-03-16 1998-03-16 High-strength steel plate excellent in toughness of welded zone

Publications (1)

Publication Number Publication Date
JPH11264048A true JPH11264048A (en) 1999-09-28

Family

ID=13275867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6505498A Withdrawn JPH11264048A (en) 1998-03-16 1998-03-16 High-strength steel plate excellent in toughness of welded zone

Country Status (1)

Country Link
JP (1) JPH11264048A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086013A1 (en) * 2000-05-09 2001-11-15 Nippon Steel Corporation THICK STEEL PLATE BEING EXCELLENT IN CTOD CHARACTERISTIC IN WELDING HEAT AFFECTED ZONE AND HAVING YIELD STRENGTH OF 460 Mpa OR MORE
KR100470054B1 (en) * 2000-11-24 2005-02-04 주식회사 포스코 High strength Steel plate to be precipitating TiN and complex oxide of Mg-Ti for welded structure, method for manufacturing the same
EP1538224A1 (en) * 2002-07-23 2005-06-08 Nippon Steel Corporation Steel product reduced in amount of alumina cluster
WO2014148447A1 (en) 2013-03-22 2014-09-25 株式会社神戸製鋼所 Steel material having superior toughness at welding heat affected zone
JP2018024907A (en) * 2016-08-09 2018-02-15 新日鐵住金株式会社 Steel sheet and method of manufacturing the steel sheet
JP2018024908A (en) * 2016-08-09 2018-02-15 新日鐵住金株式会社 Steel sheet and method of manufacturing the steel sheet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086013A1 (en) * 2000-05-09 2001-11-15 Nippon Steel Corporation THICK STEEL PLATE BEING EXCELLENT IN CTOD CHARACTERISTIC IN WELDING HEAT AFFECTED ZONE AND HAVING YIELD STRENGTH OF 460 Mpa OR MORE
KR100470054B1 (en) * 2000-11-24 2005-02-04 주식회사 포스코 High strength Steel plate to be precipitating TiN and complex oxide of Mg-Ti for welded structure, method for manufacturing the same
EP1538224A1 (en) * 2002-07-23 2005-06-08 Nippon Steel Corporation Steel product reduced in amount of alumina cluster
EP1538224A4 (en) * 2002-07-23 2005-09-21 Nippon Steel Corp Steel product reduced in amount of alumina cluster
EP1978123A1 (en) * 2002-07-23 2008-10-08 Nippon Steel Corporation Steels with few alumina clusters
US7776162B2 (en) 2002-07-23 2010-08-17 Nippon Steel Corporation Steels with few alumina clusters
WO2014148447A1 (en) 2013-03-22 2014-09-25 株式会社神戸製鋼所 Steel material having superior toughness at welding heat affected zone
KR20150119391A (en) 2013-03-22 2015-10-23 가부시키가이샤 고베 세이코쇼 Steel material having superior toughness at welding heat affected zone
JP2018024907A (en) * 2016-08-09 2018-02-15 新日鐵住金株式会社 Steel sheet and method of manufacturing the steel sheet
JP2018024908A (en) * 2016-08-09 2018-02-15 新日鐵住金株式会社 Steel sheet and method of manufacturing the steel sheet

Similar Documents

Publication Publication Date Title
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
US10023946B2 (en) Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
CN109072382B (en) High-tension steel and marine structure
WO2018185851A1 (en) Vertical-seam-welded steel pipe
WO2009082162A2 (en) Flux cored arc weld metal joint having superior ctod in low temperature and steel member having the weld metal joint
JP2006307334A (en) High-strength thick steel plate and process for production thereof, and high-strength steel pipe
JP3699657B2 (en) Thick steel plate with yield strength of 460 MPa or more with excellent CTOD characteristics of the heat affected zone
WO2010095755A1 (en) Method of manufacturing sheet steel for thick-walled sour-resistant line pipe of excellent toughness
WO2016035110A1 (en) Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same
JP4585483B2 (en) High strength steel pipe with excellent weld toughness and deformability and method for producing high strength steel plate
WO2014141633A1 (en) Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2010095730A1 (en) Method of manufacturing sheet steel for sour-resistant line pipe
JP4772486B2 (en) High strength steel pipe for low temperature
JP6264520B1 (en) Vertical seam welded steel pipe
JP4116857B2 (en) High strength steel pipe with excellent weld toughness and deformability
JPH11264048A (en) High-strength steel plate excellent in toughness of welded zone
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP2003306749A (en) Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube
JP3785376B2 (en) Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability
JP3466450B2 (en) High strength and high toughness bend pipe and its manufacturing method
JP3745722B2 (en) Manufacturing method of high-strength steel pipe and high-strength steel plate with excellent deformability and weld toughness
JP4964480B2 (en) High strength steel pipe excellent in toughness of welded portion and method for producing the same
JP3244986B2 (en) Weldable high strength steel with excellent low temperature toughness
JP3764593B2 (en) High strength steel pipe with excellent toughness of weld heat affected zone
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607