KR20020035545A - Manufacturing Methods of High Performance Planting Porous Concrete Utilizing Resined Granular Fertilizer - Google Patents

Manufacturing Methods of High Performance Planting Porous Concrete Utilizing Resined Granular Fertilizer Download PDF

Info

Publication number
KR20020035545A
KR20020035545A KR1020020021407A KR20020021407A KR20020035545A KR 20020035545 A KR20020035545 A KR 20020035545A KR 1020020021407 A KR1020020021407 A KR 1020020021407A KR 20020021407 A KR20020021407 A KR 20020021407A KR 20020035545 A KR20020035545 A KR 20020035545A
Authority
KR
South Korea
Prior art keywords
resin
fertilizer
granular fertilizer
concrete
cement
Prior art date
Application number
KR1020020021407A
Other languages
Korean (ko)
Other versions
KR100356460B1 (en
Inventor
박승범
Original Assignee
박승범
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박승범 filed Critical 박승범
Priority to KR1020020021407A priority Critical patent/KR100356460B1/en
Publication of KR20020035545A publication Critical patent/KR20020035545A/en
Application granted granted Critical
Publication of KR100356460B1 publication Critical patent/KR100356460B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/10Solid or semi-solid fertilisers, e.g. powders
    • C05G5/12Granules or flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Fertilizers (AREA)

Abstract

PURPOSE: A porous concrete using resin-coated granular fertilizer comprising admixtures(blast furnace slag, silica fume, etc.) and polymer coated nitrogen- and phosphate-fertilizer is provided to keep constructional functionality and grow many plants rapidly. Therefore, the porous concrete is used for revetment blocks and underwater concrete construction. CONSTITUTION: The porous concrete with 20-30% of porosity is prepared by mixing admixtures composed of portland cement, industrial byproducts(30-60wt.% of blast furnace slag and 5-20wt.% of silica fume), 20-30wt.% of water, and 1.0-3.0wt.% AE water reducer to increase the fluidity of a cement paste(20), followed by adding 5-20wt.% of resin-coated granular fertilizer, and aggregates(10), crushed stones with 5-10mm and 10-20mm sizes, where the each amount is based on cement. The resin-coated granular fertilizer(40) is obtained by coating nitrogen fertilizer with 0.7-3.0mm size and 45-47% of nitrogen content, and phosphate fertilizer containing 15-17% of citrate-soluble phosphorus with a resin mixed vinyl acetate and polymerized resin emulsion firstly, and acryl resin secondly, so that the fertilizer has 70-75micrometer coating thickness.

Description

수지처리 입상비료를 이용한 고기능 식생용 포러스콘크리트의 제조방법{Manufacturing Methods of High Performance Planting Porous Concrete Utilizing Resined Granular Fertilizer}Manufacturing Method of High Performance Planting Porous Concrete Utilizing Resined Granular Fertilizer

본 발명은 하천호안 및 연안수역의 환경오염과 생태계 파괴를 방지하기 위하여 조기에 다양한 식물 및 생물을 회복시키는 기술개발을 목표로한 수지처리 입상비료를 이용한 고기능 식생용 포러스콘크리트를 제조하기 위한 것으로 포러스콘크리트의 강도증진 및 알칼리 용출을 억제하기 위하여 산업부산물인 고로슬래그 및 실리카흄등의 혼화재를 사용하였으며, 폴리머로 코팅된 질소계와 인계의 입상비료를 혼입하여 착상된 식물에 원활한 영양분을 공급하여 식물의 조기 생장 및 식생기반을 확보하고, 식물연쇄에 의한 환경복원 효과를 높이는 수지처리 입상비료를 이용한 고기능 식생용 포러스콘크리트의 제조방법에 관한 것이다.The present invention is to produce a high-performance vegetation concrete for pore concrete using resin-treated granular fertilizer aiming at the development of technology to recover various plants and organisms early in order to prevent environmental pollution and ecosystem destruction of riverside shores and coastal waters. In order to increase the strength of concrete and to suppress alkali elution, admixtures such as blast furnace slag and silica fume, which are industrial by-products, were used.The mixture of nitrogen-based and phosphorus-based fertilizers coated with polymer was used to supply nutrients to planted plants. The present invention relates to a method for producing high functional vegetal concrete for pore concrete using resin-treated granular fertilizer which secures early growth and vegetation base and enhances the environmental restoration effect by plant chain.

최근 산업화 및 도시화로 인한 환경오염에 대한 인식이 확산되어 환경보존의 필요성이 대두되고 있다. 사회기반시설인 도로, 철도, 항만, 상수도 등의 토목구조물 및 건축 구조물에 사용되어온 콘크리트는 경제와 문화 발전에 크게 공헌하여 왔다. 그러나 이들 콘크리트는 기능을 추구하는데 그쳐 자연을 파괴하고 동식물의 서식을 방해하여 환경문제에 있어 부정적으로 인식되고 있다. 특히 하천 및 연안수역의 호안블록이나 수중콘크리트 구조물은 육상생태계와 수중생태계의 단절로 인한 생태계의 파괴 및 환경오염을 가속화시키는 원인이 되고 있다. 따라서 기존의 호안블록이나 수중콘크리트 구조물의 기능 및 장점을 유지하고, 생태계에 피해를 주지 않는 기술 및 제품의 개발이 시급한 실정이다.Recently, the awareness of environmental pollution due to industrialization and urbanization has spread, and the necessity of environmental preservation is emerging. Concrete, which has been used for civil and structural structures such as roads, railways, harbors, waterworks, etc., which are infrastructure, has contributed greatly to economic and cultural development. However, these concretes are only negatively regarded as environmental problems by destroying nature and hindering the habitat of animals and plants. In particular, shore blocks and aquatic concrete structures in rivers and coastal waters are responsible for accelerating the destruction of ecosystems and environmental pollution due to the disconnection of terrestrial and aquatic ecosystems. Therefore, it is urgent to develop technologies and products that maintain the functions and advantages of existing shore blocks or underwater concrete structures and do not damage the ecosystem.

본 발명은 하천호안 및 연안수역의 환경오염과 생태계 피해를 감소시키기 위하여 각종 혼화재 및 수지 처리된 질소계, 인계의 비료를 연속공극이 형성된 포러스콘크리트에 혼입하여 착상 식물에 원활한 영양분을 공급하여 식생기반 및 조기생장을 촉진시키고, 식물연쇄에 의한 환경복원 효과를 높이는 수지처리 입상비료를 이용한 고기능 식생용 포러스콘크리트의 제조개발을 목적으로 한 것이다.In order to reduce environmental pollution and ecosystem damage in riverside shores and coastal waters, various admixtures, resin-treated nitrogen-based and phosphorus-based fertilizers are mixed in porous pores with continuous pores to supply nutrients to planting plants. And it aims at the development and development of high functional vegetal forage concrete using resin-treated granular fertilizer that promotes early growth and enhances the environmental restoration effect by the plant chain.

도 1은 수지처리 입상비료를 이용한 고기능 식생용 포러스콘크리트의 제조 흐름도1 is a flow chart of the production of high-performance vegetation concrete concrete using resin-treated granular fertilizer

도 2는 수지처리 입상비료를 이용한 고기능 식생용 포러스콘크리트의 단면도Figure 2 is a cross-sectional view of the high-performance vegetation concrete concrete using resin-treated granular

도 3은 수지처리 입상비료의 단면도3 is a cross-sectional view of the resin-treated granular fertilizer

[도면의 주요부분에 대한 부호의 설명][Explanation of symbols on the main parts of the drawings]

10 : 골재, 20 : 시멘트페이스트, 30 : 연속공극, 40 : 수지처리 입상비료,10: aggregate, 20: cement paste, 30: continuous void, 40: resin-treated granular fertilizer,

50 : 입상비료, 60 : 1차코팅, 70 : 2차 코팅50: granular fertilizer, 60: primary coating, 70: secondary coating

본 발명의 목적을 달성하기 위하여 다음과 같은 재료를 사용한다.In order to achieve the object of the present invention, the following materials are used.

본 발명에 사용된 시멘트는 비중 3.14∼3.16인 보통포틀랜트 시멘트를 사용하였으며, 골재는 비중 2.65∼2.75, 단위용적중량 1,490∼1,530kg/m3, 실적률 55∼58%, 흡수율 42∼45%이고 입도범위가 5∼10mm, 10∼20mm인 부순돌을 사용하였으며, 고로슬래그는 국내 제철소에서 부산되는 비중 2.8∼3.0, 비표면적 7,900∼7,930cm2/g이상, SiO2함량이 32∼35%인 것을 사용하였다. 실리카흄은 비표면적 200,000cm2/g이상, 입도가 0.1∼0.5μm, 비중 2.1∼2.2의 것을 사용하였다. 입상비료는 질소분 45∼47%, 수분 0.4∼0.6%, Biuret 0.9∼1.1%인 질소계 비료와 구용성인산 15∼17%, 석회 23∼26%, 규산 15∼17%인 인산 비료로서 크기가 0.7∼3.0mm것을 사용하였고, 입상비료의 수지처리를 위하여 사용된 폴리머는 1차 코팅제로 점도 40,000∼60,000, 발휘발분 43∼47%인 초산비닐과 중합수지에멀션의 혼합 수지를 사용하였으며, 2차 코팅제로 친수성 및 경도를 조절할 수 있는 고형분 70%, 점도 50,000∼100,000인 특수 아크릴계 수지를 사용하였다.As the cement used in the present invention, ordinary portland cement having a specific gravity of 3.14 to 3.16 was used, and the aggregate had a specific gravity of 2.65 to 2.75, a unit volume weight of 1,490 to 1,530 kg / m 3 , a yield of 55 to 58%, and an absorption rate of 42 to 45%. Crushed stone with particle size range of 5-10mm, 10-20mm, blast furnace slag has a specific gravity of 2.8-3.0, specific surface area of 7,900-7,930cm 2 / g or more, and SiO 2 content of 32-35%. Was used. Silica fume was used having a specific surface area of 200,000 cm 2 / g or more, a particle size of 0.1 to 0.5 μm, and a specific gravity of 2.1 to 2.2. Granular fertilizer is nitrogen-based fertilizer with 45-47% nitrogen content, 0.4-0.6% water, 0.9-1.1% Biuret, 15-17% soluble phosphoric acid, 23-26% lime, 15-17% silicic acid fertilizer. 0.7 ~ 3.0mm was used, and the polymer used for the resin treatment of granular fertilizer was a mixed resin of vinyl acetate and polymerized resin emulsion having a viscosity of 40,000 to 60,000 as the primary coating agent and 43 to 47% of the active content. As a coating agent, a special acrylic resin having a solid content of 70% and a viscosity of 50,000 to 100,000 that can control hydrophilicity and hardness was used.

본 발명에서 사용된 배합은 고기능 식생용 포러스콘크리트의 품질특성에 가장 큰 영향을 미치는 공극률을 20∼30%로 변화시키면서 이에 대해 산업부산물인 고로슬래그 및 실리카흄 등의 혼화재를 사용하였고, 혼입률은 시멘트 중량비로 각각 30∼60%, 5∼20%로 혼입하였으며, 시멘트의 분산작용에 의해 콘크리트의 성질을 개선시키는 혼화제로서 고능성 AE감수제를 시멘트 중량비로 1∼3%로 혼입하였다.In the formulation used in the present invention, the porosity which has the greatest effect on the quality characteristics of the high functional vegetal concrete was changed to 20 to 30%, and the admixtures such as blast furnace slag and silica fume, which are industrial by-products, were used. 30 to 60% and 5 to 20%, respectively, and a high performance AE reducing agent was mixed at a cement weight ratio of 1 to 3% as a admixture to improve the properties of concrete by dispersing the cement.

또한 포러스콘크리트에 식물의 착상을 원활하게 하기 위하여 입상비료를 수지처리하여 시멘트 중량비로 5∼20% 혼입하였다.In addition, the granular fertilizer was resin-treated and mixed in 5 to 20% by weight of cement in order to facilitate planting in the porous concrete.

혼합방법은 시멘트, 혼화재, 물, AE감수제를 투입하여 1분간 혼합하고 이에 수지처리된 입상비료를 투입하여 1분간 혼합한 후 골재를 투입하여 2분간 혼합하는 분할투입 방법을 사용하였다. 양생은 소정의 재령까지 23℃±2℃에서 수중양생을 실시하였다.The method of mixing was cement, admixture, water, and AE reducing agent, mixed for 1 minute, mixed with granulated fertilizer, and then mixed for 1 minute, and then mixed with aggregate for 2 minutes. Curing was carried out under water at 23 ° C ± 2 ° C until the prescribed age.

본 발명에서는 수지처리 입상비료를 이용한 고기능 식생용 포러스콘크리트의 품질특성을 파악하기 위하여 다음과 같은 실험을 수행하였다. 수지처리된 입상비료의 침지수 차이에 따른 용해율을 파악하기 위하여 증류수와 해수 100㎖에 입상비료를 각각 3g의 비율로 넣고 60, 120, 180일에 용해율을 측정하였다. 공시체 제작에 따른 수지처리 입상비료의 파괴율을 측정하기 위하여, 비료 및 골재만으로 혼합하는 방법(A방법)과 시멘트페이스트에 미리 혼입한후 골재와 혼합하는 방법(B방법)으로 나누어 실험하였으며, 혼합시간을 3분으로 하고 1분마다 일정량의 시료를 채취하여 중량에 의한 파괴율을 측정하였다. 또한 수지처리된 입상비료를 이용한 포러스콘크리트의 비료성분 용출량 시험은 φ15×30cm의 공시체를 제작하여 해수에 30일, 90일 침지한후 공시체를 꺼낸후, 7리터의 활성탄 처리를한 수돗물에 넣고 일정기간후 공시체로부터 용출되는 질소계의 암모니아 농도 및 인계의 인산농도를 1㎖까지 측정하였으며, pH도 같이 측정하였다. 압축강도시험방법은 φ15×30cm 원주형 공시체를 제작하여 KS F 2408『콘크리트의 압축강도 시험방법』에 준하여 실험하였다. 또한 수지처리 입상비료를 이용한 포러스콘크리트의 육상식물에 대한 식생 능력을 평가하기 위하여 공시체(40×40×10cm)를 제작하여 이에 보수재 및 배양토등을 혼합한 충진재를 내부공극에 충진하고, 3cm가량의 복토를 실시하여 씨앗을 파종하였으며, 파종후 재령 및 비료의 혼입 여부에 따른 생육상태를 관측하여 식생능력을 평가하였다. 수지처리 입상비료를 이용한 포러스콘크리트의 수중식물 및 생물에 대한 부착 및 식생능력을 평가하기 위하여 공시체(40×40×10cm)를 제작하여 자연 해수에 침지하고, 침지후 4개월후에 꺼내서 공시체에 부착된 조류 및 생물의 부착 및 생육상태를 육안으로 관찰하였다.In the present invention, the following experiments were carried out to grasp the quality characteristics of the high-performance vegetation forged concrete using resin-treated granular fertilizer. In order to determine the dissolution rate according to the difference in the immersion water of the resin-treated granular fertilizer, the granular fertilizer was added to 100 ml of distilled water and seawater at a ratio of 3 g, and the dissolution rate was measured at 60, 120, and 180 days. In order to measure the destruction rate of the granulated fertilizer of resin treatment according to the specimen preparation, the experiment was divided into the method of mixing only with fertilizer and aggregate (A method) and the method of mixing with aggregate and mixing with aggregate (B method) in advance. The time was set to 3 minutes, and a certain amount of samples were taken every minute to measure the breakage rate by weight. In addition, the fertilizer component elution test of the porous concrete using resin-treated granular fertilizer was prepared by φ15 × 30cm specimens, soaked in seawater for 30 days and 90 days, and then taken out of the specimens and placed in 7 liters of activated carbon treated tap water. After a period of time, the nitrogen-based ammonia and phosphorus-phosphate concentrations eluted from the specimens were measured up to 1 ml and the pH was also measured. The compressive strength test method was made in accordance with KS F 2408, `` Compressive strength test method for concrete '', with a φ15 × 30cm cylindrical specimen. In addition, to evaluate the vegetation capacity of terrestrial plants of pore concrete using resin-treated granular fertilizer, a specimen (40 × 40 × 10 cm) was produced, and the fillers mixed with water-retaining materials and cultured soil were filled in the internal voids, and about 3 cm Seeds were sown by covering soil, and the vegetation capacity was evaluated by observing the growth status according to the age and fertilizer mix after sowing. In order to evaluate adhesion and vegetation ability of aquatic plants and organisms of porous concrete using resin-treated granular fertilizer, a specimen (40 × 40 × 10cm) was prepared and immersed in natural sea water, and after 4 months of immersion, it was removed and attached to the specimen. The attachment and growth of algae and organisms was visually observed.

수지처리 입상비료를 이용 고기능 식생용 포러스콘크리트의 배합 실시예Example of Mixing Porous Concrete for High Performance Vegetation Using Resin Granulated Fertilizer 배합번호Formulation Number 골재종류Aggregate Type 물/결합재비1)(%)Water / binder cost 1) (%) 공극률(%)Porosity (%) 고로슬래그2)(wt.%)Blast furnace slag 2) (wt.%) 실리카흄2)(wt.%)Silica fume 2) (wt.%) 입상비료3)(wt.%)Granular fertilizer 3) (wt.%) 101101 5-10mm5-10mm 3030 2525 -- -- -- 102102 3030 -- 2020 103103 4545 -- 104104 6060 -- 105105 -- 55 106106 -- 1010 107107 -- 2020 108108 10-20mm10-20mm 3030 2525 -- -- -- 109109 3030 -- 2020 110110 4545 -- 111111 6060 -- 112112 -- 55 113113 -- 1010 114114 -- 2020

(주1) 물결합재비(%) : (혼합수)/(시멘트+혼화재) ×100 중량비(Note 1) Water binder ratio (%): (mixed water) / (cement + admixture) x 100 weight ratio

(주2) 혼화재 혼입률(%) : (혼화재)/(시멘트+혼화재) ×100 중량비(Note 2) Admixture mixing rate (%): (mixture) / (cement + admixture) × 100 weight ratio

(주3) 입상비료 혼입률 : (입상비료)/(시멘트) ×100 중량비(3) Granular fertilizer mixing rate: (Granular fertilizer) / (Cement) × 100 weight ratio

다음 표 2는 수지처리 입상비료의 용해율을 파악하기 위하여 증류수 및 해수 100㎖당 입상비료를 3g의 비율로 넣고, 침지후 60일, 120일, 180일에 대하여 용해율을 측정한 것이다.The following Table 2 is to determine the dissolution rate of the resin-treated granular fertilizer in the ratio of 3g of granular fertilizer per 100ml of distilled water and seawater, and measured the dissolution rate for 60 days, 120 days, 180 days after immersion.

수지처리 입상비료의 용해율 시험결과Test result of dissolution rate of granular fertilizer 침적수Immersion 비 료Fertilizer 용해율(wt.%)Dissolution rate (wt.%) 60일60 days 120일120 days 180일180 days 증류수Distilled water 질 소nitrogen 32.932.9 52.752.7 68.568.5 sign 22.122.1 24.924.9 27.027.0 해 수Sea water 질 소nitrogen 18.218.2 41.541.5 68.268.2 sign 17.817.8 22.322.3 24.924.9

수지처리 입상비료의 용해율 시험결과는 증류수의 경우가 해수의 경우보다 60일, 120일에서는 용해율이 높은 것으로 나타났으나 180일에서는 용해율의 차이가 미비하였다. 이러한 경향은 해수중에는 각종 염류가 녹아있기 때문에 짧은 기간에서는 입상비료의 코팅제로 쓰인 각종 수지성분과 염류사이의 화학반응에 의한 것이다.The dissolution rate test results of the resin-treated granular fertilizer showed that the dissolution rate of distilled water was higher in 60 days and 120 days than in the case of sea water, but the difference in dissolution rate was insufficient at 180 days. This tendency is due to the chemical reaction between the various resin components and salts used as coatings for granular fertilizers in the short term because various salts are dissolved in seawater.

다음의 표 3은 수지처리된 입상비료의 혼합방법 및 혼합시간에 따른 파괴율을 측정한 시험결과이다.Table 3 below is a test result of measuring the destruction rate according to the mixing method and mixing time of the resin-treated granular fertilizer.

수지처리 입상비료의 혼합방법에 따른 파괴율 시험결과Result of Fracture Rate Test by Mixing Method of Granular Resin Fertilizer 혼합방법Mixing method 비 료Fertilizer 파괴율(%)% Breakdown 1분1 minute 2분2 minutes 3분3 minutes A1) A 1) 질 소nitrogen 14.214.2 18.018.0 18.418.4 sign 1.51.5 4.34.3 6.86.8 B2) B 2) 질 소nitrogen 0.20.2 1.51.5 1.31.3 sign 0.40.4 1.71.7 1.81.8

(주1) 골재 및 비료만으로 혼합하는 방법(1) Mixing with aggregate and fertilizer only

(주2) 비료를 시멘트페이스트에 미리 혼입한 후 골재와 혼합하는 방법(Note 2) Mixing fertilizer with cement paste and mixing with aggregate

수지처리 입상비료의 혼합방법에 따른 파괴율 시험결과를 고찰하여 보면, 혼합시간이 증가함에 따라 파괴율은 증가하였으며 A방법에서는 질소계 비료가 인계 비료에 비하여 파괴율이 컸으며, B방법에서는 비료 차이에 따른 파괴율의 차이는 미비하였다. 종합적으로 B방법이 A방법에 비하여 파괴율이 작았으며, 이러한 경향은 유동성을 부여한 B방법이 유효했던 것으로 판단된다.According to the results of the mixing rate test of the resin-treated granular fertilizer, the destruction rate increased with increasing mixing time. In the method A, the nitrogen-based fertilizer was higher than the phosphorus-based fertilizer. The difference of the failure rate according to the difference was insignificant. Overall, the method B had a lower breakdown rate than the method A, and this tendency seems to be valid for the method B with fluidity.

다음의 표 4는 해수에 침지한 수지처리 입상비료를 이용한 포러스콘크리트의 비료성분 용출량을 측정한 시험결과이다.Table 4 below is a test result of measuring the fertilizer component elution amount of the porous concrete using the resin-treated granular fertilizer immersed in seawater.

수지처리 입상비료를 이용한 포러스콘크리트의 비료성분 용출량 시험결과Fertilizer Elution Test Result of Porous Concrete Using Resin Granulated Fertilizer 배합번호Formulation Number 침적일수Deposition days 용 출 량Dissolution amount 암모니아 농도(㎖)Ammonia Concentration (ml) 인산 농도(㎖)Phosphoric Acid Concentration (ml) 101101 00 0.10.1 0.010.01 3030 0.10.1 0.010.01 9090 0.20.2 0.020.02 102102 00 9.89.8 0.110.11 3030 58.058.0 0.100.10 9090 71.171.1 0.110.11 103103 00 10.110.1 0.100.10 3030 59.659.6 0.130.13 9090 77.277.2 0.120.12 104104 00 9.49.4 0.120.12 3030 60.160.1 0.140.14 9090 75.375.3 0.140.14 105105 00 11.311.3 0.120.12 3030 68.268.2 0.120.12 9090 79.379.3 0.130.13 106106 00 12.312.3 0.140.14 3030 66.766.7 0.140.14 9090 80.180.1 0.150.15 107107 00 15.315.3 0.160.16 3030 71.371.3 0.160.16 9090 79.279.2 0.180.18

수지처리 입상비료를 이용한 포러스콘크리트를 해수에 침지시 비료의 용출량 시험결과를 고찰하여 보면, 비료를 혼입하지 않았을 경우 암모니아 용출량은 0.1∼0.2㎖, 인산용출량은 0.01∼0.02㎖로 나타나 극히 작은 것으로 나타났으며, 비료를 혼입한 경우에서는 암모니아 용출량은 9.4∼80.1㎖, 인산용출량은 0.10∼0.18㎖로 나타나 혼입하지 않았을 경우에 비하여 상당히 크게 나타났다. 따라서 수지처리 입상비료를 포러스콘크리트에 혼입하면 착상된 식물에 원활한 영양분 공급에 유효할 것으로 판단된다. 또한 혼화재 혼입률 및 종류에 따른 비료 성분의 용출량의 차이는 미비한 것으로 나타났다. 또한 침적일수가 경과함에 따라 비료성분이 점차적으로 용출되는 것을 확인할 수 있었다.When the ferrous concrete using resin-treated granular fertilizer was immersed in seawater, the dissolution test result of fertilizer was found to be 0.1 ~ 0.2ml and phosphoric acid dissolution rate was 0.01 ~ 0.02ml without fertilizer. In the case of fertilizer incorporation, the ammonia elution amount was 9.4-80.1mL and the phosphoric acid elution amount was 0.10 ~ 0.18mL, which was considerably larger than in the case of no fertilization. Therefore, when granulated resin-treated fertilizer is added to the porous concrete, it is considered to be effective for supplying nutrients to the planted plant. In addition, the difference in the dissolution amount of the fertilizer components according to the admixture content and type of admixture was found to be insignificant. In addition, it was confirmed that the fertilizer component is gradually eluted as the days of immersion.

다음의 표 5는 해수에 침지한 수지처리 입상비료를 이용한 포러스콘크리트의 알칼리 용출량(pH)을 측정한 시험결과이다.Table 5 below is a test result of measuring alkali elution (pH) of porous concrete using resin-treated granular fertilizer immersed in seawater.

알칼리 용출량(pH) 시험결과Alkali elution (pH) test result 배합번호Formulation Number 알칼리 용출량(pH)Alkali elution (pH) 0일0 days 30일30 days 90일90 days 101101 10.910.9 10.610.6 10.210.2 102102 10.510.5 10.310.3 10.110.1 103103 10.310.3 9.99.9 9.49.4 104104 9.79.7 9.09.0 7.67.6 105105 10.410.4 9.89.8 9.19.1 106106 10.210.2 9.89.8 8.88.8 107107 9.99.9 9.49.4 8.58.5

해수에 침지한 포러스콘크리트의 알칼리 용출량(pH) 결과를 고찰하여 보면, 침적일수가 증가함에 따라 알칼리 용출량은 감소하는 경향을 나타냈다. 이러한 경향은 시간이 경과함에 따라 해수중에 녹아있는 CO2에 의하여 공시체가 중성화됨에 따라 알칼리 용출량(pH)이 감소한 것으로 판단된다. 또한 혼화재의 혼입량이 증가함에 따라 알칼리 용출량(pH)은 감소하였으며, 이러한 경향은 혼화재가 유리석회와 포졸란 반응을 일으키고, 내부 미세공극이 치밀해져 유리석회의 용출을 억제시켰기 때문으로 판단된다. 따라서 적정량의 혼화재 사용은 포러스콘크리트의 중성화를 촉진시켜 식물 및 생물의 생육에 유효할 것으로 판단된다.As a result of examining the alkali elution amount (pH) of the porous concrete immersed in seawater, the alkali elution amount tended to decrease as the number of deposition days increased. This trend seems to be due to the decrease in alkali elution (pH) as the specimen is neutralized by CO 2 dissolved in sea water over time. Also, as the amount of admixture increased, the alkali elution amount (pH) decreased, which is believed to be due to the admixture causing glass lime and pozzolanic reactions and the internal micropores to be dense, thereby inhibiting dissolution of glass lime. Therefore, the use of an appropriate amount of admixture is expected to be effective for the growth of plants and organisms by promoting the neutralization of the porous concrete.

다음의 표 6은 재령 28일에서 수지처리 입상비료를 이용한 포러스콘크리트의 압축강도 시험결과이다.Table 6 below shows the compressive strength test results of the porous concrete using resin granulated fertilizer at 28 days of age.

압축강도 시험결과Compressive Strength Test Results 배합번호Formulation Number 압축강도(kgf/cm2)Compressive strength (kgf / cm 2 ) 배합번호Formulation Number 압축강도(kgf/cm2)Compressive strength (kgf / cm 2 ) 101101 191191 108108 140140 102102 178178 109109 148148 103103 186186 110110 154154 104104 180180 111111 150150 105105 194194 112112 148148 106106 225225 113113 168168 107107 208208 114114 162162

압축강도 시험결과를 고찰하여 보면 5∼10mm의 쇄석을 사용한 경우에는 178∼ 225 kg/cm2, 10∼20mm의 쇄석을 사용한 경우에는 140∼168kgf/cm2의 강도를 발현하였다. 또한 혼화재 사용에 따른 강도특성은 골재 크기에 상관없이 실리카흄 10%에서 가장 큰 압축강도를 나타냈으며, 혼화재를 사용하지 않은 경우에 비하여 18∼20%의 강도증진을 나타냈다. 이는 실리카흄을 혼입함에 따라 포졸란 반응 및 콘크리트 내부의 미세공극이 충진되어 공시체가 밀실해져 강도가 증진된 것으로 판단된다.The results of compressive strength test showed that 178-225 kg / cm 2 when 5-10 mm crushed stone was used and 140-168 kgf / cm 2 when 10-20 mm crushed stone was used. In addition, the strength characteristics according to the use of admixtures showed the greatest compressive strength at 10% of silica fume regardless of the aggregate size. As the silica fume is mixed, the pozzolanic reaction and the fine pores inside the concrete are filled, and thus the specimen is closed and the strength is improved.

다음의 표 7은 수지처리 입상비료를 혼입한 포러스콘크리트의 육상식물에 대한 식생능력을 평가하기 위하여 재령별 초장의 생육상태를 측정한 결과이다.Table 7 below shows the results of measuring the growth status of grass height by age to evaluate the vegetation capacity of terrestrial plants mixed with resin-treated granular fertilizer.

육상식물에 대한 식생능력 측정결과Vegetation capacity measurement results for terrestrial plants 배합번호Formulation Number 초장(cm)Extra long (cm) 배합번호Formulation Number 초장(cm)Extra long (cm) 재령30일30 days 재령90일90 days of age 재령30일30 days 재령90일90 days of age 101101 8.28.2 12.012.0 108108 16.216.2 24.524.5 102102 10.810.8 15.115.1 109109 18.718.7 27.227.2 103103 11.211.2 16.916.9 110110 18.418.4 26.026.0 104104 10.510.5 16.616.6 111111 18.018.0 28.128.1 105105 9.99.9 14.614.6 112112 17.717.7 26.526.5 106106 10.510.5 16.716.7 113113 19.019.0 28.028.0 107107 10.410.4 16.216.2 114114 18.218.2 27.327.3

식생능력 측정결과를 고찰하여 보면, 골재입도가 5∼10mm의 경우 비료를 혼입한 것이 비료를 혼입하지 않은것에 비하여 초장이 3.1∼4.9cm 더 컸으며, 10∼20mm의 경우에서는 비료를 혼입한 것이 혼입하지 않은것에 비하여 초장이 1.5∼3.6cm 더 크게 나타나, 골재 크기에 관계없이 비료를 혼입한 경우가 식생능력이 향상되는 것으로 나타났다.The results of the measurement of vegetation capacity showed that when the aggregate particle size was 5 ~ 10mm, the fertilizer was mixed with 3.1 ~ 4.9cm longer than the fertilizer, and the fertilizer was mixed when 10 ~ 20mm. The height of the shoots was 1.5 ~ 3.6cm larger than that of no mixing, and the fermentation of fertilizer was improved regardless of the aggregate size.

다음의 사진 1, 2는 수지처리 입상비료를 혼입한 포러스공시체와 혼입하지 않은 포러스공시체를 해수에 4개월동안 침지한후 꺼내어 수중 식·생물의 부착 및 생육상태 촬영한 사진이다.The following photographs 1 and 2 are photographs of the porous specimens mixed with the resin-treated granular fertilizer and the porous specimens not mixed with them, after being immersed in seawater for 4 months, and taken out, and attached to the food and organisms in the water.

(사진1)(Photo 1)

수지처리 입상비료를 혼입하지 않은 포러스콘크리트Porous concrete without resinous granular fertilizer

(사진2)(Photo 2)

수지처리 입상비료를 혼입한 포러스콘크리트Porous concrete with resin-treated granular fertilizer

사진 1은 수지처리 입상비료를 혼입하지 않은 포러스공시체의 사진이며, 사진2는 수지처리 입상비료를 혼입한 포러스공시체의 사진이다. 이를 관찰하여보면 비료를 혼입했을 경우가 조류의 부착 및 생육이 양호하였다. 따라서 수지처리 입상비료를혼입한 포러스콘크리트는 환경오염에 의한 생태계 파괴지역의 조기 환경복원에 유효할것으로 판단된다.Photograph 1 is a photograph of the porous specimen not mixed with resinous granular fertilizer, and photograph 2 is a photograph of the porous specimen mixed with resinous granular fertilizer. Observation of this resulted in good fertilization and growth of algae. Therefore, porous concrete mixed with resin-treated granular fertilizer is expected to be effective for the early restoration of environmentally damaged areas due to environmental pollution.

상술한 바와 같이 본 발명은 수지처리 입상비료를 이용한 포러스콘크리트를 하천호안 및 연안수역의 수중구조물 및 호안블록등에 적용함으로써 환경오염의 방지는 물론 생태계 피해지역에 식물의 조기 생장과 식생기반을 확보하여 식물연쇄에 의한 환경복원 효과가 있는 것이다.As described above, the present invention is applied to the porous concrete using resin-treated granular fertilizer to the underwater structures and shore blocks of river shores and coastal waters to prevent environmental pollution as well as to secure early growth and vegetation base of plants in ecosystem damage areas. There is an environmental restoration effect by the plant chain.

Claims (3)

수지처리 입상비료를 이용한 고기능 식생용 포러스콘크리트의 제조시 비중 3.14∼3.16인 보통 포틀랜트시멘트와 입도범위 5∼10mm, 10∼20mm의 비중 2.65∼2.75인 부순돌과 산업부산물로서 비중 2.8∼3.0의 고로슬래그, 비중 2.1∼2.2의 실리카흄과 고성능 AE감수제 및 수지처리된 입상비료를 사용하며 배합설계는 물결합재비를 20∼30%, 공극률을 20∼30%로 하며, 제조순서는 시멘트, 산업부산물, 물, AE감수제를 투입하여 1분간 혼합한 다음 수지처리된 입상비료를 투입하여 1분간 혼합한후 골재를 투입하여 2분간 혼합하여 성형하는 것을 특징으로 하는 제조방법When manufacturing high performance vegetal concrete for resinous granular fertilizer, ordinary portant cement with specific gravity of 3.14 ~ 3.16, crushed stone with particle size range of 5 ~ 10mm, 10 ~ 20mm, 2.65 ~ 2.75 and industrial by-product as specific gravity of 2.8 ~ 3.0 Blast furnace slag, silica fume with specific gravity 2.1-2.2, high performance AE water reducing agent and resin-treated granular fertilizer are used. The mixing design has water binder ratio of 20-30% and porosity 20-30%. After mixing for 1 minute by adding water and AE water reducing agent, and then adding the granulated fertilizer treated with resin and mixing for 1 minute, the aggregate is added and mixed for 2 minutes to form. 제 1항에 있어서,The method of claim 1, 고기능 식생용 포러스콘크리트에 혼입되는 수지처리 입상비료는 크기가 0.7∼3.0mm이고 질소분이 45∼47%인 질소계 비료와 구용성인산 15∼17%인 인산 비료를 점도 40,000∼60,000인 초산비닐과 중합수지에멀션의 혼합수지로 1차 코팅 처리하고, 점도 50,000∼100,000인 특수아크릴 수지로 2차 코팅 처리하며, 총 코팅처리 두께는 70∼75㎛로 한 것을 시멘트 중량의 5∼20%를 포러스콘크리트에 혼입하는 것을 특징으로 하는 제조방법Resin-treated granular fertilizers incorporated into high-functional vegetation concrete are 0.7-3.0mm in size, nitrogen-based fertilizers with 45-47% nitrogen and phosphate fertilizers with 15-17% soluble phosphoric acid. Primary coating treatment with mixed resin of polymerized resin emulsion, secondary coating treatment with special acrylic resin with viscosity of 50,000 to 100,000, and total coating thickness of 70 ~ 75㎛ for 5 ~ 20% of cement weight Manufacturing method characterized in that it is incorporated into 제1항에 있어서The method of claim 1 수지처리 입상비료를 이용한 고기능 식생용 포러스콘크리트의 제조시 혼화재는 산업부산물인 고로슬래그, 실리카흄을 각각 시멘트 중량비로 30∼60%, 5∼20%로 혼입하고, 시멘트 페이스트의 유동성과 내구성을 높이기 위하여 고성능 AE감수제를 시멘트 중량비로 1.0∼3.0% 혼입하는 것을 특징으로 하는 제조방법In the preparation of high functional vegetal concrete using resin-treated granular fertilizer, the admixture is mixed with industrial by-products blast furnace slag and silica fume at 30 to 60% and 5 to 20%, respectively, in order to increase the fluidity and durability of cement paste. Manufacturing method characterized in that the high-performance AE water reducing agent is mixed 1.0 to 3.0% by weight of cement
KR1020020021407A 2002-04-19 2002-04-19 Manufacturing Methods of High Performance Planting Porous Concrete Utilizing Resined Granular Fertilizer KR100356460B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020021407A KR100356460B1 (en) 2002-04-19 2002-04-19 Manufacturing Methods of High Performance Planting Porous Concrete Utilizing Resined Granular Fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020021407A KR100356460B1 (en) 2002-04-19 2002-04-19 Manufacturing Methods of High Performance Planting Porous Concrete Utilizing Resined Granular Fertilizer

Publications (2)

Publication Number Publication Date
KR20020035545A true KR20020035545A (en) 2002-05-11
KR100356460B1 KR100356460B1 (en) 2002-10-19

Family

ID=19720426

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020021407A KR100356460B1 (en) 2002-04-19 2002-04-19 Manufacturing Methods of High Performance Planting Porous Concrete Utilizing Resined Granular Fertilizer

Country Status (1)

Country Link
KR (1) KR100356460B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483166B1 (en) * 2002-05-21 2005-04-14 (주)한맥기술 Construction for under ground concrete structure
KR100724340B1 (en) * 2005-09-07 2007-06-04 쌍용양회공업(주) Low price special cement for solidofication of wastes
KR20150118444A (en) * 2014-04-14 2015-10-22 한국신발피혁연구원 Thermoplastic elastomer composition of enhancing abrasion resistance, marking preventing function, tear strength and net weight using the supercritical injection foaming molding and method for manufacturing thereof
CN108658518A (en) * 2018-07-05 2018-10-16 河北盛冀建材科技有限公司 A kind of pervious concrete
CN115259749A (en) * 2022-08-10 2022-11-01 郑州大学 Polymer-based plant-growing concrete and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483166B1 (en) * 2002-05-21 2005-04-14 (주)한맥기술 Construction for under ground concrete structure
KR100724340B1 (en) * 2005-09-07 2007-06-04 쌍용양회공업(주) Low price special cement for solidofication of wastes
KR20150118444A (en) * 2014-04-14 2015-10-22 한국신발피혁연구원 Thermoplastic elastomer composition of enhancing abrasion resistance, marking preventing function, tear strength and net weight using the supercritical injection foaming molding and method for manufacturing thereof
CN108658518A (en) * 2018-07-05 2018-10-16 河北盛冀建材科技有限公司 A kind of pervious concrete
CN115259749A (en) * 2022-08-10 2022-11-01 郑州大学 Polymer-based plant-growing concrete and preparation method thereof
CN115259749B (en) * 2022-08-10 2023-09-22 郑州大学 Polymer-based vegetation concrete and preparation method thereof

Also Published As

Publication number Publication date
KR100356460B1 (en) 2002-10-19

Similar Documents

Publication Publication Date Title
KR101779935B1 (en) Development of coating materials for concrete protection using bacteria slime
WO2021109994A1 (en) Ecological concrete and preparation method, and high-durability marine concrete structure construction method
KR101367790B1 (en) Echo-functional and low-alkali compositions for concrete forming
CN111270647B (en) Service ocean breakwater ecologization method
WO2021109986A1 (en) Mortar for inducing adhesion of sessile organism and preparation method therefor, and servicing breakwater restoration method
ES2904613T3 (en) Cement-free porous substrate for plant germination and growth made from alkali-activated pozzolans
CN111253125B (en) Green concrete for inducing adhesion of marine periphyton and preparation method thereof
Sun et al. Ecological pervious concrete in revetment and restoration of coastal Wetlands: A review
CN111302727A (en) Underwater ecological restoration method for service breakwater
KR100840602B1 (en) Manufacturing method of concrete for purifying water
KR100356375B1 (en) Manufacturing Methods of Planting Porous Concrete Utilizing Cement Coated Granular Fertilizer and Recycled Aggregate and Crushed Aggregate
CN111321699B (en) Construction method of marine ecological engineering of waste concrete
CN111270648B (en) Construction method of ecological riprap breakwater
KR100356460B1 (en) Manufacturing Methods of High Performance Planting Porous Concrete Utilizing Resined Granular Fertilizer
CN111268958A (en) Fiber-reinforced ecological concrete and preparation method thereof
KR101429463B1 (en) Composition for Concrete Block
CN110984405A (en) Ecological anti-corrosion method for serving marine reinforced concrete engineering
CN108423784B (en) Method for controlling phosphorus element pollution of water body by using desulfurized gypsum
CN111268959B (en) Concrete for inducing adhesion of marine periphyton and promoting growth and preparation method thereof
KR101863044B1 (en) Greening Soil Stabilizer and Greening Method
US20220307213A1 (en) Construction method for ecological riprap breakwater, induced cement-based coating and preparation method thereof
JP2001104993A (en) Nitrate nitrogen denitrifying composition and production thereof
US20220354095A1 (en) Marine ecological engineering construction method, asphalt cement-based coating, and preparation method thereof
CN111268954A (en) Oyster attaching base of lightweight concrete and preparation method thereof
KR101743733B1 (en) Manufacturing method of self cleaning and self growth lawn block based on microbes adsorption

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110830

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20120806

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20151102

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160825

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170822

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee