KR20020033849A - Method of manufacturing gateelectrode in semiconductor device - Google Patents

Method of manufacturing gateelectrode in semiconductor device Download PDF

Info

Publication number
KR20020033849A
KR20020033849A KR1020000063998A KR20000063998A KR20020033849A KR 20020033849 A KR20020033849 A KR 20020033849A KR 1020000063998 A KR1020000063998 A KR 1020000063998A KR 20000063998 A KR20000063998 A KR 20000063998A KR 20020033849 A KR20020033849 A KR 20020033849A
Authority
KR
South Korea
Prior art keywords
gate electrode
composite
doped polysilicon
metal silicide
film
Prior art date
Application number
KR1020000063998A
Other languages
Korean (ko)
Inventor
정성희
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1020000063998A priority Critical patent/KR20020033849A/en
Publication of KR20020033849A publication Critical patent/KR20020033849A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • H01L29/4975Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2 being a silicide layer, e.g. TiSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3215Doping the layers

Abstract

PURPOSE: A method for fabricating a gate electrode of a semiconductor device is provided to increase the density of a titanium silicide layer and to control generation of a void, by forcibly implanting silicon atoms into a composite titanium silicide layer. CONSTITUTION: A gate oxide layer(22) is formed on a semiconductor substrate(21). Doped polysilicon(23) is formed on the gate oxide layer. The composite titanium silicide layer is formed on the doped polysilicon. Silicon atoms are implanted into the composite metal silicide layer. A rapid thermal process is performed to crystallize the composite metal silicide layer into which the silicon atoms are ion-implanted. The crystallized composite metal silicide layer and the doped polysilicon are selectively patterned to form a gate electrode.

Description

반도체소자의 게이트전극 제조 방법{METHOD OF MANUFACTURING GATEELECTRODE IN SEMICONDUCTOR DEVICE}Method for manufacturing gate electrode of semiconductor device {METHOD OF MANUFACTURING GATEELECTRODE IN SEMICONDUCTOR DEVICE}

본 발명은 반도체소자의 제조 방법에 관한 것으로, 특히 실리사이드막을 이용하는 게이트전극의 산화 저항성(Oxidation resistance) 및 열적안정성(Thermalstability)을 개선시키도록 한 게이트전극의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of manufacturing a gate electrode to improve oxidation resistance and thermal stability of a gate electrode using a silicide film.

최근에 소자의 디자인룰이 감소함에 따라 텅스텐실리사이드(WSix)를 이용한 게이트전극 대신에 낮은 저항을 갖는 티타늄실리사이드(TiSi2), 코발트실리사이드 (CoSi2), 텅스텐(W)을 이용한 게이트전극을 이용하고 있다.Recently, as the design rule of the device is reduced, instead of the gate electrode using tungsten silicide (WSi x ), a gate electrode using titanium silicide (TiSi 2 ), cobalt silicide (CoSi 2 ), and tungsten (W) having low resistance is used. Doing.

특히, 텅스텐 게이트전극은 5.5μΩ·cm의 비저항으로 세가지 게이트물질 중 가장 낮은 저항을 보이지만 산화에 대한 위험성이 높아 공정의 집적도에는 많은 제약이 따르고, 18μΩ·cm의 비저항을 갖는 티타늄실리사이드 및 코발트실리사이드는 통상의 공정기술을 계속 사용할 수 있는 장점이 있지만 열공정에 따라 많은 단점을 보이고 있다.In particular, the tungsten gate electrode exhibits the lowest resistance among the three gate materials with a resistivity of 5.5 μΩ · cm, but it has a high risk of oxidation, which places a lot of restrictions on the integration of the process, and titanium silicide and cobalt silicide having a resistivity of 18 μΩ · cm There is an advantage that can continue to use the usual process technology, but shows a number of disadvantages according to the thermal process.

즉, 티타늄실리사이드는 좁은 라인(Narrow line)에서 막내에서 응집현상 (Agglomeration)이 발생됨은 물론 반응(Reactive)에 약한 열안정성(Thermal stability)이 저하되는 문제점이 있고, 코발트실리사이드는 코발트의 높은 확산 특성에 의한 트랜지스터의 특성 변화 가능성이 있다.That is, titanium silicide has a problem in that agglomeration occurs in a film in a narrow line, and thermal stability, which is weak in reaction, is lowered. Cobalt silicide has a high diffusion property of cobalt. There is a possibility of changing the characteristics of the transistor by

이러한 문제점을 해결하기 티타늄실리사이드와 도우프드 폴리실리콘의 계면(Interface)이 균일하게 유지되는 복합 티타늄실리사이드(Composite TiSi2)를 이용한다.In order to solve this problem, a composite titanium silicide (Composite TiSi 2 ) having a uniform interface between titanium silicide and doped polysilicon is used.

도 1은 종래기술에 따른 반도체소자의 게이트전극의 형성 방법을 간략히 나타낸 도면으로서, 반도체기판(11)상에 게이트산화막(12)을 형성한 후, 상기 게이트산화막(12)상에 도우프드 폴리실리콘(Doped polysilicon)(13)을 형성한 후, 상기도우프드 폴리실리콘(13)상에 복합 티타늄실리사이드(TiSix, x 〉2 )(14)을 증착한다. 이 때, 상기 복합 티타늄실리사이드(14) 증착시, 티타늄실리사이드 복합 타겟을 아르곤 스퍼터링(Ar sputtering)에 의해 증착한다.FIG. 1 is a view schematically illustrating a method of forming a gate electrode of a semiconductor device according to the related art. After forming a gate oxide film 12 on a semiconductor substrate 11, doped polysilicon is formed on the gate oxide film 12. After the doped polysilicon 13 is formed, a composite titanium silicide (TiSi x , x> 2) 14 is deposited on the doped polysilicon 13. At this time, when the composite titanium silicide 14 is deposited, the titanium silicide composite target is deposited by ar sputtering.

이어서, 상기 복합 티타늄실리사이드(14)의 결정화를 위한 급속열처리(RTP)를 실시한 후, 상기 복합 티타늄실리사이드(14) 및 도우프드 폴리실리콘(13)를 선택적으로 식각하여 게이트전극을 형성한다.Subsequently, after the rapid thermal treatment (RTP) for crystallization of the composite titanium silicide 14, the composite titanium silicide 14 and the doped polysilicon 13 are selectively etched to form a gate electrode.

그러나, 상술한 종래기술에서는 복합 티타늄실리사이드(14) 증착후 결정화를 위한 급속열처리후 복합 티타늄실리사이드(14)내에 보이드(Void)가 발생되는데, 상기 보이드는 복합 타겟을 스퍼터링한 후 티타늄실리사이드의 결정화를 위한 급속열처리동안에 티타늄(Ti)이 하부막인 도우프드 폴리실리콘(13)과 반응하여 발생하거나, 또는 복합 티타늄실리사이드(14) 자체의 밀도가 낮기 때문에 발생된다.However, in the above-described prior art, voids are generated in the composite titanium silicide 14 after rapid thermal treatment for crystallization after deposition of the composite titanium silicide 14, and the voids sputter the composite target and then crystallize the titanium silicide. Titanium (Ti) reacts with the doped polysilicon 13, which is a lower layer, during the rapid heat treatment, or because the composite titanium silicide 14 itself is low in density.

이러한 보이드로 인해 후속 게이트전극 식각 공정시, 반도체기판(11)에 핀홀(Pin hole)을 발생시키거나 열안정성을 크게 감소시켜 소자의 신뢰성을 저하시키는 문제점이 발생된다.Due to such voids, in the subsequent gate electrode etching process, pinholes are generated in the semiconductor substrate 11 or thermal stability is greatly reduced, thereby lowering the reliability of the device.

또한, 티타늄원자가 도우프드 폴리실리콘을 통과하여 게이트산화막까지 확산하므로써 게이트산화막, 예컨대 SiO2의 결함을 끊어 GOI(Gate Oxide Integrity)특성을 저하시키는 문제점이 있다.In addition, since titanium atoms diffuse through the doped polysilicon to the gate oxide layer, defects of the gate oxide layer, such as SiO 2 , are eliminated, thereby degrading GOI (Gate Oxide Integrity) characteristics.

본 발명은 상기 종래기술의 문제점을 해결하기 위해 안출한 것으로서, 금속실리사이드를 이용한 게이트전극 형성시 보이드로 인한 핀홀 발생 또는 열안정성 저하를 방지하는데 적합한 게이트전극의 제조 방법을 제공하는데 목적이 있다.The present invention has been made to solve the problems of the prior art, and an object of the present invention is to provide a method of manufacturing a gate electrode suitable for preventing pinhole generation or thermal stability deterioration due to voids when forming a gate electrode using a metal silicide.

도 1은 종래기술에 따라 제조된 게이트전극을 도시한 도면,1 is a view showing a gate electrode manufactured according to the prior art,

도 2a 내지 도 2b는 본 발명의 실시예에 따른 게이트전극의 제조 방법을 도시한 도면.2A to 2B illustrate a method of manufacturing a gate electrode according to an exemplary embodiment of the present invention.

*도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

21 : 반도체기판 22 : 게이트산화막21 semiconductor substrate 22 gate oxide film

23 : 도우프드 폴리실리콘 24 : 복합 티타늄실리사이드막23: doped polysilicon 24: composite titanium silicide film

25 : 실리콘부화-티타늄실리사이드막25 silicon hatching-titanium silicide film

상기의 목적을 달성하기 위한 본 발명의 게이트전극 제조 방법은 반도체기판상에 게이트산화막을 형성하는 단계; 상기 게이트산화막상에 도우프드 폴리실리콘을 형성하는 단계; 상기 도우프드 폴리실리콘상에 복합 금속실리사이드막을 형성하는 단계; 상기 복합 금속실리사이드막에 실리콘원자를 이온주입시키는 단계; 급속열처리를 실시하여 상기 실리콘원자가 이온주입된 복합 금속실리사이드막을 결정화시키는 단계; 및 상기 결정화된 복합 티타늄실리사이드막 및 상기 도우프드 폴리실리콘을 선택적으로 패터닝하여 게이트전극을 형성하는 단계를 포함하여 이루어짐을 특징으로 한다.The gate electrode manufacturing method of the present invention for achieving the above object comprises the steps of forming a gate oxide film on a semiconductor substrate; Forming doped polysilicon on the gate oxide film; Forming a composite metal silicide layer on the doped polysilicon; Ion implanting silicon atoms into the composite metal silicide layer; Performing a rapid heat treatment to crystallize the composite metal silicide film into which the silicon atoms are ion-implanted; And selectively patterning the crystallized composite titanium silicide layer and the doped polysilicon to form a gate electrode.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다.Hereinafter, the preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. .

도 2a 내지 도 2b는 본 발명의 실시예에 따른 게이트전극의 형성 방법을 도시한 도면이다.2A to 2B illustrate a method of forming a gate electrode according to an exemplary embodiment of the present invention.

도 2a에 도시된 바와 같이, 반도체기판(21)상에 게이트산화막(22)을 형성하고, 상기 게이트산화막(22)상에 도우프드 폴리실리콘(23)을 형성한 후, 도우프드폴리실리콘(23)의 표면을 습식케미컬(Wet chemical)로 처리한다. 계속해서, 상기 도우프드 폴리실리콘(23)상에 조성비 2.0(x=2.0)을 가지는 복합 티타늄실리사이드막(TiSi2)(24)을 형성한다.As shown in FIG. 2A, after the gate oxide film 22 is formed on the semiconductor substrate 21 and the doped polysilicon 23 is formed on the gate oxide film 22, the doped polysilicon 23 is formed. ) Surface is treated with wet chemical. Subsequently, a composite titanium silicide film (TiSi 2 ) 24 having a composition ratio of 2.0 (x = 2.0) is formed on the doped polysilicon 23.

이 때, 상기 도우프드 폴리실리콘(23) 형성시, 500℃∼700℃의 온도와 0.1Torr∼10Torr의 압력에서 SiH4또는 SiH2Cl2중 어느 하나와 PH3가스를 이용한다.At this time, when the doped polysilicon 23 is formed, any one of SiH 4 or SiH 2 Cl 2 and a PH 3 gas are used at a temperature of 500 ° C. to 700 ° C. and a pressure of 0.1 Torr to 10 Torr.

그리고, 상기 복합 티타늄실리사이드막(24) 형성시, 티타늄실리사이드 복합 타겟을 아르곤으로 스퍼터링하여 진행하되, 0Torr∼10Torr의 압력과 0℃∼400℃의 온도에서 이루어진다.When the composite titanium silicide film 24 is formed, the titanium silicide composite target is sputtered with argon to proceed, and is made at a pressure of 0 Torr to 10 Torr and a temperature of 0 ° C. to 400 ° C.

이어서, 상기 복합 티타늄실리사이드막(24)에 실리콘 소스를 포함하는 SiH4, SiF4, SiH2Cl2의 가스를 이용하여 실리콘원자(Si)를 강제로 주입시킨다.Subsequently, silicon atom (Si) is forcibly injected into the composite titanium silicide layer 24 using gases of SiH 4 , SiF 4 , and SiH 2 Cl 2 including a silicon source.

한편, 복합 타겟에서 원자의 크기가 작은 실리콘원자를 증가시키면 막의 밀도는 증가시킬 수 있지만, 타겟자체의 실리콘원자의 함량을 증가시킴에 따라 스퍼터링동안에 실리콘이 파티클형태로 복합 티타늄실리사이드막(24)내에 함유되게 되어 후속 게이트 식각 공정을 어렵게 하므로 실리콘 이온(Si)을 강제로 이온주입시킨다.On the other hand, increasing the atomic size of silicon atoms in the composite target increases the density of the film, but increases the content of the silicon atoms in the target itself, thereby increasing the content of silicon atoms in the composite titanium silicide film 24 in the form of particles during sputtering. Silicon ions (Si) are forcibly implanted since they become difficult to carry out subsequent gate etching processes.

상기와 같은 실리콘원자의 이온주입시, 후속 열처리 공정 및 산화공정에 소모될 실리콘양을 고려하여 이온 주입 공정을 진행하며, 실리콘원자의 도즈량(Dose)을 증가시켜 막내의 실리콘 함량을 증가시킬 수 있다.When ion implantation of silicon atoms as described above, the ion implantation process is carried out in consideration of the amount of silicon to be consumed in the subsequent heat treatment and oxidation process, and the silicon content in the film can be increased by increasing the dose of silicon atoms. have.

도 2b에 도시된 바와 같이, 600℃∼900℃의 온도와 0.1Torr∼760Torr의 압력의 질소(N2) 분위기에서 급속열처리(RTP)를 실시하여 상기 실리콘원자가 이온주입된 티타늄실리사이드막, 예컨대 실리콘부화-티타늄실리사이드막(25)을 결정화시킨다. 여기서, 복합 티타늄실리사이드막(24)과 실리콘부화-티타늄실리사이드막(25)의 특성이 다르므로 서로 다른 부호를 부여한다.As shown in FIG. 2B, a rapid thermal treatment (RTP) is carried out in a nitrogen (N 2 ) atmosphere at a temperature of 600 ° C. to 900 ° C. and a pressure of 0.1 Torr to 760 Torr, such as a silicon silicide film in which a silicon atom is ion-implanted, such as silicon. The hatching-titanium silicide film 25 is crystallized. Here, since the characteristics of the composite titanium silicide film 24 and the silicon-enriched titanium silicide film 25 are different, they are assigned different codes.

즉, 스퍼터링 과정에서 발생된 티타늄원자를 이온주입된 실리콘원자(Si)와 반응시키거나 실리콘부화-티타늄실리사이드막(24) 자체의 밀도를 증가시킨다.That is, the titanium atoms generated in the sputtering process are reacted with the silicon atoms (Si) implanted with ions or the density of the silicon-enriched titanium silicide layer 24 itself is increased.

도 2b에 도시된 바와 같이, 상기 결정화된 실리콘부화-티타늄실리사이드막 (25)상에 하드마스크(도시 생략)를 형성한 후, 먼저 하드마스크를 선택적으로 식각하고 계쏙해서 하드마스크를 이용하여 하부의 실리콘부화-티타늄실리사이드막(25), 도우프드 폴리실리콘(23)을 식각하여 게이트전극을 형성한다.As shown in FIG. 2B, after forming a hard mask (not shown) on the crystallized silicon-enriched titanium silicide layer 25, first, the hard mask is selectively etched and arranged to obtain a lower portion of the lower portion using a hard mask. A silicon electrode-titanium silicide layer 25 and doped polysilicon 23 are etched to form a gate electrode.

상술한 실시예에서는 티타늄실리사이드를 예로 설명하였으나, 복합 코발트실리사이드막을 이용하는 경우도 동일한 방법을 적용하므로, 도면은 생략한다.In the above-described embodiment, titanium silicide has been described as an example, but the same method applies to the case of using the composite cobalt silicide film, and thus the drawings are omitted.

자세히 설명하면, 반도체기판상에 게이트산화막을 형성하고, 상기 게이트산화막상에 도우프드 폴리실리콘을 형성한 후, 도우프드 폴리실리콘의 표면을 습식케미컬로 처리한다. 계속해서, 상기 도우프드 폴리실리콘상에 복합 코발트실리사이드막을 형성한다. 이 때, 상기 도우프드 폴리실리콘(23) 형성시, 500℃∼700℃의 온도와 0.1Torr∼10Torr의 압력에서 SiH4또는 SiH2Cl2중 어느 하나와 PH3가스를 이용한다. 그리고, 상기 복합 코발트실리사이드막 형성시, 코발트실리사이드 복합 타겟을 아르곤으로 스퍼터링하여 진행하되, 0Torr∼10Torr의 압력과 0℃∼400℃의 온도에서 이루어진다.In detail, a gate oxide film is formed on a semiconductor substrate, and a doped polysilicon is formed on the gate oxide film, and then the surface of the doped polysilicon is treated with a wet chemical. Subsequently, a composite cobalt silicide film is formed on the doped polysilicon. At this time, when the doped polysilicon 23 is formed, any one of SiH 4 or SiH 2 Cl 2 and a PH 3 gas are used at a temperature of 500 ° C. to 700 ° C. and a pressure of 0.1 Torr to 10 Torr. In the formation of the composite cobalt silicide film, the cobalt silicide composite target is sputtered with argon to proceed, and is made at a pressure of 0 Torr to 10 Torr and a temperature of 0 ° C. to 400 ° C.

이어서, 상기 복합 코발트실리사이드막에 실리콘 소스를 포함하는 SiH4, SiF4, SiH2Cl2의 가스를 이용하여 실리콘원자(Si)를 강제로 주입시킨다. 한편, 복합 타겟에서 원자의 크기가 작은 실리콘원자를 증가시키면 막의 밀도는 증가시킬 수 있지만, 타겟자체의 실리콘원자의 함량을 증가시킴에 따라 스퍼터링동안에 실리콘이 파티클형태로 복합 코발트실리사이드막내에 함유되게 되어 후속 게이트 식각 공정을 어렵게 하므로 실리콘 이온(Si)을 강제로 이온주입시킨다.Subsequently, silicon atom (Si) is forcibly injected into the composite cobalt silicide layer using gas of SiH 4 , SiF 4 , SiH 2 Cl 2 including a silicon source. On the other hand, increasing the atomic size of silicon atoms in the composite target can increase the density of the film, but as the content of silicon atoms in the target itself increases, the silicon is contained in the composite cobalt silicide film in the form of particles during sputtering. Since the subsequent gate etching process is difficult, silicon ions (Si) are forcibly implanted.

상기와 같은 실리콘원자의 이온주입시, 후속 열처리 공정 및 산화공정에 소모될 실리콘양을 고려하여 이온 주입 공정을 진행하며, 실리콘원자의 도즈량(Dose)을 증가시켜 막내의 실리콘 함량을 증가시킬 수 있다.When ion implantation of silicon atoms as described above, the ion implantation process is carried out in consideration of the amount of silicon to be consumed in the subsequent heat treatment and oxidation process, and the silicon content in the film can be increased by increasing the dose of silicon atoms. have.

계속해서, 600℃∼900℃의 온도와 0.1Torr∼760Torr의 압력의 질소(N2) 분위기에서 급속열처리(RTP)를 실시하여 상기 실리콘원자가 이온주입된 코발트실리사이드막, 예컨대 실리콘부화-코발트실리사이드막을 결정화시킨다. 즉, 스퍼터링 과정에서 발생된 티타늄원자를 이온주입된 실리콘원자(Si)와 반응시키거나 실리콘부화-코발트실리사이드막 자체의 밀도를 증가시킨다.Subsequently, rapid thermal treatment (RTP) is carried out in a nitrogen (N 2 ) atmosphere at a temperature of 600 ° C. to 900 ° C. and a pressure of 0.1 Torr to 760 Torr to form a cobalt silicide film in which the silicon atoms are ion-implanted, such as a silicon-enriched cobalt silicide film. Crystallize. That is, the titanium atom generated in the sputtering process is reacted with the ion implanted silicon atom (Si) or the density of the silicon-enriched cobalt silicide layer itself is increased.

이어서, 결정화된 실리콘부화-코발트실리사이드막, 도우프드 폴리실리콘을 식각하여 게이트전극을 형성한다.Subsequently, the crystallized silicon-enriched cobalt silicide film and the doped polysilicon are etched to form a gate electrode.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

상술한 바와 같은 본 발명의 게이트전극의 제조 방법은 복합 티타늄실리사이드에 실리콘 원자를 강제로 이온주입시키므로써 티타늄실리사이드막의 밀도를 증가시켜 보이드의 발생을 억제시킬 수 있다.In the method of manufacturing the gate electrode of the present invention as described above, by forcibly ion implanting silicon atoms into the composite titanium silicide, the density of the titanium silicide film can be increased to suppress the generation of voids.

또한, 이온주입된 실리콘 원자에 의해 티타늄실리사이드막의 산화저항성을 증가시키고, 티타늄실리사이드막의 그레인경계면(Grain boundary)에 실리콘이 석출되어 후속 열공정에서 그레인경계면의 이동을 방해하므로써 티타늄실리사이드막의 열안정성을 향상시킬 수 있는 효과가 있다.In addition, the ion-implanted silicon atoms increase the oxidation resistance of the titanium silicide film, and silicon precipitates at the grain boundary of the titanium silicide film, thereby impeding the movement of the grain boundary in subsequent thermal processes, thereby improving the thermal stability of the titanium silicide film. It can be effected.

그리고, 실리콘원자의 이온주입에 의해 막내의 실리콘 함량을 증가시키므로써 스퍼터링에 의한 티타늄원자의 게이트산화막으로의 확산을 방지하여 소자의 GOI특성을 개선시킬 수 있는 효과가 있다.In addition, by increasing the silicon content in the film by ion implantation of silicon atoms, it is possible to prevent the diffusion of titanium atoms into the gate oxide film by sputtering to improve the GOI characteristics of the device.

Claims (6)

반도체소자의 게이트전극 형성 방법에 있어서,In the method of forming a gate electrode of a semiconductor device, 반도체기판상에 게이트산화막을 형성하는 단계;Forming a gate oxide film on the semiconductor substrate; 상기 게이트산화막상에 도우프드 폴리실리콘을 형성하는 단계;Forming doped polysilicon on the gate oxide film; 상기 도우프드 폴리실리콘상에 복합 금속실리사이드막을 형성하는 단계;Forming a composite metal silicide layer on the doped polysilicon; 상기 복합 금속실리사이드막에 실리콘원자를 이온주입시키는 단계;Ion implanting silicon atoms into the composite metal silicide layer; 급속열처리를 실시하여 상기 실리콘원자가 이온주입된 복합 금속실리사이드막을 결정화시키는 단계; 및Performing a rapid heat treatment to crystallize the composite metal silicide film into which the silicon atoms are ion-implanted; And 상기 결정화된 복합 티타늄실리사이드막 및 상기 도우프드 폴리실리콘을 선택적으로 패터닝하여 게이트전극을 형성하는 단계Selectively patterning the crystallized composite titanium silicide layer and the doped polysilicon to form a gate electrode 를 포함하여 이루어짐을 특징으로 하는 게이트전극의 제조 방법.Method of manufacturing a gate electrode comprising a. 제 1 항에 있어서,The method of claim 1, 상기 복합 금속실리사이드막을 형성하는 단계는,Forming the composite metal silicide film, 금속실리사이드 복합 타겟을 아르곤으로 스퍼터링하여 이루어지는 것을 특징으로 하는 게이트전극의 제조 방법.A method of manufacturing a gate electrode, comprising sputtering a metal silicide composite target with argon. 제 1 항에 있어서,The method of claim 1, 상기 실리콘원자를 이온주입시키는 단계는,Ion implantation of the silicon atoms, 실리콘소스를 포함하는 SiH4, SiF4, SiH2Cl2가스를 이용하는 것을 특징으로 하는 게이트전극의 제조 방법.A method of manufacturing a gate electrode, comprising using SiH 4 , SiF 4 , SiH 2 Cl 2 gas containing a silicon source. 제 1 항에 있어서,The method of claim 1, 상기 복합 금속실리사이드를 결정화시키는 단계는,Crystallizing the composite metal silicide, 600℃∼900℃의 온도와 0.1Torr∼760Torr의 압력의 질소 분위기에서 이루어지는 것을 특징으로 하는 게이트전극의 제조 방법.A method for manufacturing a gate electrode, characterized in that the temperature is 600 ° C to 900 ° C and a nitrogen atmosphere of 0.1 Torr to 760 Torr. 제 1 항에 있어서,The method of claim 1, 상기 도우프드 폴리실리콘을 형성하는 단계는,Forming the doped polysilicon, 500℃∼700℃의 온도와 0.1Torr∼10Torr의 압력에서 SiH4또는 SiH2Cl2중 어느 하나의 가스와 PH2가스를 이용하는 것을 특징으로 하는 게이트전극의 제조 방법.A method for producing a gate electrode, comprising using either a gas of SiH 4 or SiH 2 Cl 2 and a PH 2 gas at a temperature of 500 ° C. to 700 ° C. and a pressure of 0.1 Torr to 10 Torr. 제 1 항에 있어서,The method of claim 1, 상기 복합 금속실리사이드막은 티타늄실리사이드막 또는 코발트실리사이드막 중 어느 하나의 금속실리사이드막인 것을 특징으로 하는 게이트전극의 제조 방법.The composite metal silicide film is a metal silicide film of any one of a titanium silicide film and a cobalt silicide film.
KR1020000063998A 2000-10-30 2000-10-30 Method of manufacturing gateelectrode in semiconductor device KR20020033849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000063998A KR20020033849A (en) 2000-10-30 2000-10-30 Method of manufacturing gateelectrode in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000063998A KR20020033849A (en) 2000-10-30 2000-10-30 Method of manufacturing gateelectrode in semiconductor device

Publications (1)

Publication Number Publication Date
KR20020033849A true KR20020033849A (en) 2002-05-08

Family

ID=19696153

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000063998A KR20020033849A (en) 2000-10-30 2000-10-30 Method of manufacturing gateelectrode in semiconductor device

Country Status (1)

Country Link
KR (1) KR20020033849A (en)

Similar Documents

Publication Publication Date Title
US6103609A (en) Method for fabricating semiconductor device
TWI255007B (en) Method of fabricating a semiconductor device having reduced contact resistance
US20050130380A1 (en) Semiconductor device structures including metal silicide interconnects and dielectric layers at substantially the same fabrication level
JPH08316321A (en) Formation of diffusion barrier film of semiconductor device
KR100456314B1 (en) Method for forming gate electrode in semiconductor deivce
JP3774088B2 (en) Fabrication of MOS devices
JP2003078027A (en) Method of manufacturing mos transistor of semiconductor element
US6570232B2 (en) Local interconnect structure for integrated circuit devices, source structure for the same, and method for fabricating the same
US6156632A (en) Method of forming polycide structures
KR100313943B1 (en) Method for forming gate of semiconductor device
KR20020033849A (en) Method of manufacturing gateelectrode in semiconductor device
KR100706823B1 (en) Method of simultaneously forming a diffusion barrier and a ohmic contact using titanium nitride
KR100528446B1 (en) Fabricating method of bit line contact in semiconductor device
US20010019159A1 (en) Local interconnect structure for integrated circuit devices, source structure for the same, and method for fabricating the same
KR20020033851A (en) Method of making gete electrode in semiconductor device
KR100846391B1 (en) Method for fabricating WSix gate in semiconductor device
KR100414229B1 (en) Method of simultaneously forming a diffusion barrier and a ohmic contact using titanium nitride
KR20030002867A (en) Method for fabricating semiconductor device
KR100458121B1 (en) Method for making silicide of semiconductor
JP3067433B2 (en) Method for manufacturing semiconductor device
KR100321720B1 (en) A method for forming gate electrode with tungsten polycide structure in MOS transistor
JPH04249358A (en) Semiconductor device and manufacture thereof
JPH08306778A (en) Fabrication of semiconductor device
KR19980060869A (en) Transistor Formation Method of Semiconductor Device
KR20000044660A (en) Method for forming silicon-rich silicide film

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination