KR20020032467A - Introduction of CMS traits into Mustard by Multi-cell fusion method - Google Patents

Introduction of CMS traits into Mustard by Multi-cell fusion method Download PDF

Info

Publication number
KR20020032467A
KR20020032467A KR1020020013354A KR20020013354A KR20020032467A KR 20020032467 A KR20020032467 A KR 20020032467A KR 1020020013354 A KR1020020013354 A KR 1020020013354A KR 20020013354 A KR20020013354 A KR 20020013354A KR 20020032467 A KR20020032467 A KR 20020032467A
Authority
KR
South Korea
Prior art keywords
fusion
cms
plants
callus
cell
Prior art date
Application number
KR1020020013354A
Other languages
Korean (ko)
Inventor
김혜진
Original Assignee
임학태
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임학태 filed Critical 임학태
Priority to KR1020020013354A priority Critical patent/KR20020032467A/en
Publication of KR20020032467A publication Critical patent/KR20020032467A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/005Methods for micropropagation; Vegetative plant propagation using cell or tissue culture techniques
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • A01H1/022Genic fertility modification, e.g. apomixis
    • A01H1/023Male sterility
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/002Culture media for tissue culture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/008Methods for regeneration to complete plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0025Culture media for plant cell or plant tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

PURPOSE: Provided is an introduction of CMS to a leaf mustard with a symmetric multi-cell fusion process based which supplements an asymmetric fusion process to obtain CMS objects so that it helps to develop inbred line with high fertility. CONSTITUTION: The introduction of CMS to the leaf mustard with the symmetric multi-cell fusion process based is characterized by fusing cabbages, broccolis and the leaf mustards by cell unit in a symmetric way to produce callus and differentiating again to transplant to a pot wherein the three fused materials are mixed to make one fused cell and CMS objects with various forms and the callus is differentiated again at 3% MS medium with 5mg/l of zeatin and 2mg/l of IAA added as a plant growth adjuster.

Description

대칭 다세포 융합 방법 개발에 의한 세포질웅성불임특성을 갓으로의 도입{Introduction of CMS traits into Mustard by Multi-cell fusion method}Introduction of cytoplasmic infertility characteristics to gat by developing symmetric multicellular fusion method {Introduction of CMS traits into Mustard by Multi-cell fusion method}

식물육종에서 재배작물의 형질을 개선하기 위한 수단으로 잡종방법을 널리 이용하고 있다. 재배작물에서 이러한 방법의 이용에 있어서 근본적인 이유는 재배작물에 바람직한 형질들이 부족하거나 gene pool에 다양성이 부족하다는 것이다. 현대 생명공학기술인 체세포잡종과 형질전환 방법들을 이용하여 유연관계가 멀거나 비슷한작물들에서 유용한 유전자들을 도입시킬 수 있다.In plant breeding, hybrid methods are widely used as a means for improving the traits of cultivated crops. The fundamental reason for the use of this method in crops is the lack of desirable traits in the crop or the lack of diversity in the gene pool. Somatic hybrids and transformation methods, modern biotechnologies, can be used to introduce useful genes in distant or similar crops.

세포나 원형질체 융합기술인 체세포잡종방법은 재래적인 육종방법과는 달리 몇 가지 특성이 있다.Somatic cell hybridization, a cell or protoplast fusion technique, has several characteristics, unlike conventional breeding methods.

첫째, 환전한 두개의 게놈의 조합이기에 이질 복이배체를 형성할 수 있다.First, it is a combination of two exchanged genomes, which can form heterologous diploids.

둘째, 비대칭적인 잡종생산을 위한 부분적 게놈의 전이 수여친으로 사용할 식물의 게놈을 방사성 조사로 여러개로 조각을 낸 후 수여진의 게놈과 융합하는 방법이다.Secondly, the genome of a plant to be used as a recipient of partial genome transfer for asymmetric hybrid production is fragmented by radioactive irradiation and fused with the awarded genome.

셋째, 공여친으로부터 핵을 받고 수여친으로부터 세포질을 받는 식의 융합방법이다.Third, it is a fusion method of receiving a nucleus from a donor and receiving cytoplasm from a donor.

이러한 대칭융합 방법이나 비대칭 융합방법으로 많은 체세포 잡종체들이 얻어졌으며 실질적으로 생산에 이용되고 있는 종들도 있다.Many somatic hybrids have been obtained by this symmetric fusion method or asymmetric fusion method, and some species are actually used for production.

원형질체 융합을 통한 특정형질의 도입은 활발하게 이루어져 왔고 지속적인 발전을 가져오고 있는 상태이지만 융합은 두 가지 종의 식물체만을 융합재료로 하여 실험이 수행되어져 왔다.The introduction of specific traits through protoplast fusion has been actively carried out and has brought about continuous development, but fusion has been experimented with only two kinds of plants as fusion materials.

식물육종의 주된 목적은 새로운 유전자형을 지닌 신품종을 만들어 내는 것이다. 가장 손쉬운 방법은 같은 종내에 존재하는 유전변이성을 찾아서 교배를 통해 유용한 형질을 원하는 품종 또는 육종계통으로 옮기는 것이다. 따라서 육종에 이용될 다양한 육종소재를 만드는 것이 품종육성에 가장 중요한 단계라고 할 수 있다. 육종에 이용할 수 있는 유전, 육종소재를 다양하게 하는 방법으로 종간 또는 속간교배를통한 새로운 유전자형을 창출하는 것이다. 일반적으로 식물종속간 잡종의 경우 서로간의 불화합성 때문에 잡종 식물체를 얻기가 어렵다. 간혹 배 또는 배주배양을 통해서 식물체를 살린다고 하더라도 불임일 확률이 높기에 육종소재로의 이용이 어렵다. 십자화과 채소의 경우 지난 수십년동안 종속간에 필요한 형질을 옮기는 유성 잡종 방법을 성공적으로 시도해 오고 있다. 그러나 속간 교잡의 경우 교배조합에 따라서 임성의 식물체를 얻기가 쉽지 않기 때문에 선진국의 경우 원형질체 융합을 통한 신품종 육성에 많은 연구를 수행하고 있다.The main purpose of plant breeding is to produce new varieties with new genotypes. The easiest way is to find genetic variability within the same species and transfer the useful traits to the desired breed or breeding line through breeding. Therefore, making various breeding materials to be used for breeding can be said to be the most important step in breeding. By varying the genetic and breeding materials available for breeding, new genotypes can be created through cross-breeding or interbreeding. In general, in the case of hybrids between plant species, it is difficult to obtain hybrid plants because of incompatibility with each other. Sometimes, even if the cultivation of plants through pears or baechu culture is likely to be infertile, it is difficult to use as a breeding material. Cruciferous vegetables have been successfully attempted for oily hybrids to transfer necessary traits between dependents over the last few decades. However, in the case of cross-breeding, it is not easy to obtain fertility plants according to the mating combination, so in advanced countries, many studies are being carried out to cultivate new varieties through protoplast fusion.

우리 나라는 전통적인 십자화과 채소 육종에 대해서는 다른 나라보다 앞서기 때문에 국내에서 많이 재배되고 있는 배추를 비롯한 다른 십자화과 채소에 원형질체 융합기술을 이용해서 우수한 육종소재를 더 많이 만들 수 있다면 신품종 육성의 가능성도 높을 뿐만 아니라 신품종 육성에 걸리는 시간도 많이 단축시킬 수 있다. 따라서 이 발명은 두 식물간의 융합에 비해 Multi-fusion방법을 이용하여 더 다양한 육종소재를 만들어 낼 수 있다는 가능성을 제시하여 주고 있다.Since Korea is ahead of other countries in traditional cruciferous vegetable breeding, if it is possible to produce more excellent breeding materials using protoplast fusion technology in other cruciferous vegetables, including Chinese cabbage, which is grown in Korea, there is a high possibility of developing new varieties. In addition, the time taken to foster new varieties can be greatly reduced. Therefore, the present invention suggests the possibility of producing more various breeding materials using the multi-fusion method than the fusion between two plants.

도1은 Multi-Fusion 방법으로 융합된 세포들이 분열하여 식물체로 재분화되는 과정이다.1 is a process in which cells fused by the Multi-Fusion method divide and re-differentiate into plants.

도2는 CMS 특정 프라이머를 이용한 PCR분석 방법에 의한 체세포 잡종식물체의 CMS 특성을 검정한 것이다.Figure 2 is a test of the CMS characteristics of somatic hybrid plants by PCR analysis method using a CMS specific primer.

도3은 Southern blot hybridization방법에 의한 체세포잡종식물체를 확인하고 세포질웅성불임특성의 도입을 확인한 것이다.Figure 3 confirms the somatic hybrid plants by Southern blot hybridization method and confirm the introduction of cytoplasmic sterility characteristics.

도4는 세포융합체의 염색체 관찰 사진이다.Figure 4 is a chromosome observation picture of the cell fusion.

도5는 세포융합의 모본인 배추, 브로콜리, 갓(왼쪽부터)의 형태를 비교한 것이다.Figure 5 compares the shape of the cabbage, broccoli, gat (from left) as a model of cell fusion.

도6은 Multi-Fusion으로 융합된 세포에서 재분화된 식물체들의 다양한 형태를 보여주는 것이다.6 shows various forms of plants redifferentiated in cells fused to Multi-Fusion.

도7은 세포융합의 모본인 브로콜리, 갓, 배추(왼쪽부터)의 엽형을 비교한 것이다.Figure 7 compares the lobe types of broccoli, gat, cabbage (from left), which are examples of cell fusion.

도8은 생산된 체세포잡종체들의 다양한 잎의 형태를 비교한 것이다.Figure 8 compares the shape of the various leaves of the somatic hybrids produced.

도9는 체세포잡종체와 브로콜리(왼쪽부터)의 추대, 개화습성을 비교한 것이다.9 is a comparison between the somatic cell hybrids and broccoli (from left), the sticking and flowering habits.

육성계통종자(inbred line) B. campestris(배추 kw67), B. oleracea(브로콜리 kw105), B. juncea(갓 kw68)을 원형질체 분리 및 대칭 융합을 위한 재료로 사용하였다. 분양 받은 종자는 70% 에탄올에 1분간 침지하여 1차 표면 소독 후 tween 20을 2∼3방울 첨가한 50%락스에 15분간 침지한 다음 멸균수로 3번 세척하였다. 소독된 종자를 고체 배지: MS배지(Murashige and Skoog medium), 3% Sucrose, 0.8% agar, pH5.6∼5.8에 파종하여 16시간 명상태와 8시간 암상태, 온도 25℃±1 조건의배양실에서 배양하였다. 배양 3∼7일이 지난 식물의 자엽과 하배축을 실험 재료로 사용하였다.Inbred line B. campestris (cabbage kw67), B. oleracea (broccoli kw105) and B. juncea (fresh kw68) were used as protoplast separation and symmetric fusion. Seeds sown were soaked in 70% ethanol for 1 minute and then sterilized for 15 minutes in 50% lactose with 2-3 drops of tween 20 after primary surface sterilization and then washed three times with sterile water. Sterilized seeds were sown in solid medium: MS medium (Murashige and Skoog medium), 3% Sucrose, 0.8% agar, pH5.6-5.8 and cultured in 16-hour light and 8-hour dark conditions and 25 ° C ± 1 conditions. Incubated at. Cotyledons and hypocotyls of plants 3 to 7 days old were used as experimental materials.

원형질체 분리는 기내에서 배양한 배추, 브로콜리, 갓의 자엽과 하배축을 이용하였다. 원형질체 분리 전에 자엽과 하배축을 전처리 용액에서 사방 0.5mm 크기로 잘라 주었다. 잘게 자른 자엽과 하배축을 전처리 용액에서 배양한 후 전처리 용액을 제거하고 효소 용액(1% cellulycin(w/v), 0.5% macerozyme(w/v), 0.4M mannitol, pH5.6∼5.8)으로 처리하였다. 효소용액 처리 후 50㎛체로 거르고, 원형질체를 1000rpm으로 10분 원심 분리하여 원형질체를 분리하였다. 분리된 원형질체를 새로운 원심분리 튜브에 넣고 세척용액 W5를 넣고 다시 1000rpm, 10분, 2회 반복 세척한 후 혈구 계산기로 원형질체 밀도를 조절하였다.Protoplast separation was carried out using incubated cabbage, broccoli, fresh cotyledons and hypocotyls. Cotyledon and hypocotyls were cut to 0.5mm in all directions from the pretreatment solution before protoplast separation. After culturing the cotyled cotyledons and hypocotyls in the pretreatment solution, the pretreatment solution was removed and treated with enzyme solution (1% cellulycin (w / v), 0.5% macerozyme (w / v), 0.4M mannitol, pH5.6 to 5.8). It was. After the enzyme solution treatment, the sieve was filtered to 50 µm, and the protoplasts were centrifuged at 1000 rpm for 10 minutes to separate the protoplasts. The separated protoplasts were placed in a new centrifuge tube, and the washing solution W5 was added and washed again at 1000 rpm for 10 minutes and twice, and then the protoplast density was adjusted with a hemocytometer.

세 가지 융합실험에 이용될 개체들의 원형질체는 최종 농도가 1×106개/㎖가 되도록 W5 용액으로 희석하고 융합 양친을 1:1:1의 비율로 잘 섞은 후 지름 6cm의 페트리 디쉬에 원형질체를 7방울씩 떨구어서 5분이 지난 후 같은 양의 35% polyethylene glycol(K8P배지, 35% PEG w/v, mol.wt 4000, 0.3M glucose, 50mM CaCl2·H2O)을 처리하였다. 5분 후 PEG 용액을 제거하고 배양배지로 두 번 세척한다.The protoplasts of the subjects to be used in the three fusion experiments were diluted with W5 solution so that the final concentration was 1 × 10 6 / ml, the fusion parents were well mixed in a 1: 1: 1 ratio, and the protoplasts were placed in a 6 cm diameter Petri dish. 5 minutes after dropping 7 drops were treated with the same amount of 35% polyethylene glycol (K8P medium, 35% PEG w / v, mol.wt 4000, 0.3M glucose, 50mM CaCl 2 · H 2 O). After 5 minutes the PEG solution is removed and washed twice with culture medium.

PEG를 처리한 원형질체에 0.4M glucose와 호르몬이 첨가된 k8p배지(0.4M glucose, 1mg/l 2.4-D, 1mg/l NAA, 0.5mg/l BAP, 0.2mg/l kinetin)를 25℃ 암상태인 항온기에서 배양하였다. 융합된 원형질체로부터 분열이 활발하게 시작될 때 0.1% agarose반고체 배지에 식물생장조절제를 1/4로 낮추어 옮겨주었다. 캘러스의 크기가 지름 1∼2mm정도 되었을 때 다시 호르몬이 첨가된 재분화 배지(3% MS배지, 5mg/l zeatin, 2mg/l IAA)에 옮겨 배양하였고, 캘러스는 2주에 한번씩 계대배양하여 그 결과 캘러스로부터 20%의 식물체가 재분화되었다. 캘러스의 배양조건들이 같았지만 식물체들이 재분화되어 나오는 상태는 아주 다양하였다. 어떤 캘러스에서 녹색의 싹이 형성되었으나 어떤 캘러스에서는 보라색 싹들이 형성되었다. 대부분 캘러스에서 multiple shoot이 형성되었다. 재분화된 식물체들은 식물생장조절제가 첨가되지 않은 MS 3%배지에 옮겨 주었다. 이 배지에서 식물체들은 정상적으로 발근하였다. 재분화된 식물체들은 외관상 정상적인 형태를 나타내었다(도1). 재분화된 줄기를 호르몬 무첨가 배지에 계대배양한 후 뿌리를 유도시켜 온실에 순화하였다.PEG-treated protoplasts were treated with k8p medium (0.4M glucose, 1mg / l 2.4-D, 1mg / l NAA, 0.5mg / l BAP, 0.2mg / l kinetin) containing 0.4M glucose and hormones at 25 ° C. The incubator was incubated. When cleavage started actively from the fused protoplasts, the plant growth regulator was reduced to 1/4 in 0.1% agarose semi-solid medium. When the callus was about 1 to 2 mm in diameter, it was transferred to hormone-added redistribution medium (3% MS medium, 5 mg / l zeatin, 2 mg / l IAA), and the callus was subcultured every two weeks. 20% of plants were regenerated from callus. Callus cultivation conditions were the same, but plants were re-differentiated. In some callus, green shoots were formed, but in some callus, purple shoots were formed. In most cases, multiple shoots were formed in callus. Replanted plants were transferred to MS 3% medium without plant growth regulators. Plants were normally rooted in this medium. Regenerated plants showed a normal appearance in appearance (FIG. 1). Subdivided stems were subcultured in hormonal-free medium, and then roots were induced and purified in the greenhouse.

재분화된 식물체를 분자생물학적 방법인 PCR 방법과 Southern blot hybridization방법으로 분석하여 세포질웅성불임성 도입을 검정하였고, 세포학적 방법으로는 염색체수를 관찰하여 융합여부를 확인하였다. 뿐만 아니라 재분화된 식물체를 온실에 순화하여 형태적 특성을 비교하고 융합여부를 확인하였다.The regenerated plants were analyzed by PCR and Southern blot hybridization method for molecular biology. As a result, cytoplasmic male infertility was assayed. In addition, the re-differentiated plants were purified in a greenhouse to compare the morphological characteristics and to confirm the fusion.

PCR방법을 위하여 Ogura CMS 특정 프라이머를 사용하였다. 무의 mitochondrial OrfB locus에서 제작된 특정 프라이머(KNU-3-A, KNU-3-B)들을 이용하였다. KNU-3-A의 시퀀스는 5′-GTCGTTATCGACCTCGCAAGG-3′이고, KNU-3-B의 시퀀스는 5′-GTCAAAGCAATTGGGTTCAC-3′이다. PCR 반응은 150ng의 DNA 1㎕, 25mM MgCl21.5㎕, 10× reaction buffer 2.5㎕, 10mM dNTP 0.5㎕, 5u/㎕ Taq polymerase 0.125㎕, 100pM/㎕ primer 0.1㎕, 증류수 19.275㎕를 넣고 잘 섞어 최종량을 25㎕로 맞춘 후같은 양의 미네랄 오일을 첨가하였다. DNA 증폭 조건은 94℃ 40초, 55℃ 1분, 72℃ 1분으로 30cycles을 실시한 후 마지막으로 72℃에서 10분간 유지시켰다. 96개의 식물체들을 PCR 방법으로 증폭시켜 확인한 결과 4개의 식물체에서만이 세포질 웅성불임특성을 지닌 특정밴드가 나타나지 않았을 뿐 나머지 개체들은 모두 500bp 위치에서 특정밴드가 나타나서 그 개체들이 세포질웅성불임특성을 지닌 개체들임을 확인할 수 있었다(도2).Ogura CMS specific primers were used for the PCR method. Specific primers (KNU-3-A, KNU-3-B) prepared from mitochondrial OrfB locus of radish were used. The sequence of KNU-3-A is 5'-GTCGTTATCGACCTCGCAAGG-3 'and the sequence of KNU-3-B is 5'-GTCAAAGCAATTGGGTTCAC-3'. For PCR reaction, add 1 μl of 150ng DNA, 1.5 μl of 25mM MgCl 2, 2.5 μl of 10 × reaction buffer, 0.5 μl of 10mM dNTP, 0.125 μl of 5u / μl Taq polymerase, 0.1 μl of 100pM / μl primer, and 19.275 μl of distilled water. The amount was adjusted to 25 μl and the same amount of mineral oil was added. DNA amplification conditions were performed 30 cycles at 94 ℃ 40 seconds, 55 ℃ 1 minutes, 72 ℃ 1 minutes and finally maintained at 72 ℃ 10 minutes. As a result of amplification of 96 plants by PCR method, only 4 plants did not show specific bands with cytoplasmic male infertility, but the remaining individuals showed specific bands at 500bp position. It could be confirmed (Fig. 2).

Southern blot hybridization 분석은 Ogura 특정 프라이머를 이용한 PCR반응물을 이용하였다. PCR 반응에서 얻어진 산물을 1% agarose 젤이 전기영동 시킨 다음 나일론 멤브레인에 옮긴 다음 hybridization과 detection으로 분석실험을 수행하였다. 샘플은 96개의 개체 중 13개를 무작위로 선발하였다. 융합재료를 포함하여 전체 16개중 CMS가 아닌 kw68번에는 아무런 DNA밴드양상도 보이지 않았으나 나머지 개체들에서는 모두 세포질 웅성불임특정 밴드가 나타났다. PCR 분석에서 뿐만 아니라 Southern blot hybridization 방법에 의한 CMS 특성이 확인된 것으로 보아 비록 개체들간에 형태적으로 갓과 비슷하게 보여도 체세포잡종식물체임을 확인할 수 있으며 CMS특성이 도입되었음을 확인할 수 있었다(도3).Southern blot hybridization analysis was performed using PCR reactions using Ogura specific primers. The product obtained in the PCR reaction was electrophoresed by 1% agarose gel and then transferred to a nylon membrane, and then assayed by hybridization and detection. Samples were randomly selected from 13 of 96 individuals. Among the 16 fusion materials, including the fusion material, no DNA bands were observed at kw68, but not at CMS, but the other groups showed cytoplasmic male sterility specific bands. As well as PCR analysis, CMS characteristics were confirmed by Southern blot hybridization method, so that even though the morphologically similar to Gad among individuals, it was confirmed that they were somatic hybrid plants and CMS characteristics were introduced (Fig. 3).

염색체 관찰을 위해 순화한 식물체의 뿌리 끝 부분을 잘라 실온에서 전처리로 mono-bromonaphthalene으로 1시간 처리한 다음 고정액(acetic acid : EtOH = 1 : 3)에 최소 24시간 고정시켰다. 증류수에 고정시킨 뿌리 끝을 세척한 다음 효소 용액(5% cellulysin, 1% pectolase, 10mM EDTA, pH4.5)을 처리하여 37℃ 항온 수조에 30분간 넣어두었다. 효소를 처리한 뿌리 끝을 증류수에 세척한 다음 슬라이드 글라스 위에 놓고 Acetic acid : EtOH=1 : 3 용액을 한 방울 떨어뜨리고 핀셋으로 잘 퍼지게 한 다음 자연건조 시켰다. 건조시킨 슬라이드를 다시 5% Geimsa염색용액에 10분간 염색하여 관찰하였다. 배추의 염색체는 2n=20, 브로콜리는 2n=18, 갓은 2n=36이다. 세 가지 식물체를 융합시켰을 때 염색체의 재조합 확률이 두 가지 세포를 융합하였을 때보다 더 복잡할 것이며 염색체수도 다양할 것이다.For chromosome observation, the roots of the purified plants were cut and treated with mono-bromonaphthalene for 1 hour as a pretreatment at room temperature and then fixed in a fixed solution (acetic acid: EtOH = 1: 3) for at least 24 hours. After washing the root end fixed in distilled water and treated with enzyme solution (5% cellulysin, 1% pectolase, 10mM EDTA, pH4.5) and placed in a 37 ℃ constant temperature water bath for 30 minutes. The roots of the enzyme-treated roots were washed in distilled water, placed on a slide glass, and a drop of Acetic acid: EtOH = 1: 3 solution was added to the well, followed by air tweezers, followed by air drying. The dried slides were again stained with 5% Geimsa dye solution for 10 minutes and observed. The chromosome of Chinese cabbage has 2n = 20, broccoli has 2n = 18 and freshly has 2n = 36. When the three plants are fused, the probability of recombination of the chromosomes will be more complex than when the two cells are fused, and the number of chromosomes will vary.

뿌리 끝 염색체 관찰로부터 체세포잡종식물체의 염색체는 일정하지 않고 36∼46개의 다양한 염색체 수를 관찰할 수 있었으나 포트에서 식물체의 형태는 브로콜리와 아주 흡사하였다(도4).From the root tip chromosome observation, the chromosome of somatic hybrids was not constant and the number of chromosomes of 36 to 46 was observed, but the shape of the plant in the pot was very similar to broccoli (Fig. 4).

형태적인 비교를 하기 위해 재분화된 식물체를 0.2mg/l의 NAA를 넣어서 발근시켜 원예상토에 옮겼다. 온실에서 생장한 식물체의 잎의 형태, 엽병의 형태 그리고 개화기를 비교하여 융합여부를 검정하였다. Multi-fusion을 이용한 갓과 배추, 브로콜리 사이의 융합체들은 형태상에서 아주 다양한 변이를 보여주었다. 식물체들은 외관상으로 갓에 가까운 것, 배추와 브로콜리의 중간형태를 나타낸 것, 완전한 브로콜리의 형태 이렇게 세 가지 형태를 나타냈다.For morphological comparison, the regenerated plants were rooted with 0.2 mg / l NAA and transferred to horticultural soils. The leaf morphology, foliar morphology, and flowering period of the plants grown in the greenhouse were compared and tested for convergence. The fusions between gad, cabbage and broccoli using multi-fusion showed a wide variety of variations in morphology. Plants appeared in three distinct forms: ones that were close to the fresh, the middle of the cabbage and broccoli, and the whole form of broccoli.

배추와 갓은 결구형이며 브로콜리는 배대 화기를 가지고 있는 가지 없는 긴 줄기형이지만 재분화된 식물체의 결구 양상을 관찰하여 보았을 때 비결구형이었으며 결구시 잎끝의 배열상태는 배추는 바깥쪽으로 굽은 형이며 갓은 포피형이었으며 융합체는 대부분이 비결구 상태를 나타냈다(도5, 도6). 엽형이 브로콜리에 가까운 특성을 지닌 것에서부터 갓에 가까운 것까지 매우 다양하였다. 엽병은 배추와 갓의 넓은 것과는 달리 브로콜리처럼 3원형이나 혹은 중간형이었으며 결각이 있는 엽형태와그리고 잎이 오글오글하게 주름이 많이 지어있는 형태들도 관찰되었다. 엽색은 갓처럼 짙은 녹색을 띠는 것도 있으며 브로콜리와 같은 색을 띠는 것, 그리고 중간색을 띠는 것으로 다양하였다. 옆형 뿐만 아니라 모용도 변이가 다양하여 갓에서 유래한 모용이 많은 것에서부터 브로콜리와 같이 모용이 없는 것까지 밀도에 있어서 다양한 변화를 가진 개체들도 절간 신장과 줄기의 직경으로 보야 브로콜리의 형질이 나타나는 것으로 판단되었다(도7, 도8).Chinese cabbage and gat are cabbage-shaped, and broccoli is a long stem without branch with a firearm, but it is non- cabbage-type when observing the pattern of the re-differentiated plant. It was foreskin and most of the fusion showed a non-frozen state (Figures 5 and 6). The lobes varied widely from those with broccoli-like properties to those with gat. The leaf disease, unlike the broad cabbage and gat, was tricircular or medium in shape, like broccoli, with etched lobes, and many leafy and wrinkled shapes. The leaf color was dark green like the lampshade, and the color was broccoli-like and medium. In addition to the lateral shape, there are many variations in hair usage, so that individuals with various changes in density, from many hair-derived hairs to hairless ones, such as broccoli, also exhibit broccoli's traits in terms of intercalar kidney and stem diameters. Judgment was made (Figs. 7 and 8).

체세포잡종식물체들은 9월 6일에 포트에 순화되어 유리온실에서 재배하였다. 자연적인 조건하에서 식물체들은 2개월이 되어 꽃대가 올라오기 시작하였다. 융합모본들인 배추, 브로콜리, 갓 중에서 브로콜리가 융합체들과 비슷하게 추대되었으나 배추와 갓은 추대되지 않는 상태로 보아 추대성은 브로콜리와 비슷한 것으로 보여진다. 그러나 꽃대가 올라오는 양상은 브로콜리와는 다르게 배추나 갓의 추대모양을 나타내고 있다. 브로콜리의 화기 정단부의 분지 양식은 불규칙적으로 작은 꽃덩이가 뭉쳐진 하나의 촘촘한 화총이지만 재분화된 식물체의 대부분은 끝이 분지되면서 총상화서를 가진 비대줄기이다(도9).Somatic hybrids were purified in pots on September 6 and grown in glass greenhouses. Under natural conditions, the plants began to climb for two months. Among the fusion models of Chinese cabbage, broccoli and gat, broccoli was similar to the fusions, but the cabbage and gat were not bolstered. However, the flower stalk rises differently from the broccoli, showing the shape of the cabbage or the freshly stalk. The branching form of the broccoli's apical tip is a dense firearm with irregular clusters of flowers, but most of the re-differentiated plants are branched stems with gunshot inflorescences (Fig. 9).

Multi-cell fusion 방법을 이용한 체세포잡종식물체의 생산은 두 가지 세포를 융합하였을 때보다 핵과 세포질의 유전자 재조합 확률이 높아지는 만큼 새로운 유전자원과 식물체를 창출하는데 아주 큰 의의가 있을 것으로 기대된다. 또한 기종의 세포질웅성불임성 개체를 얻기 위한 비대칭융합의 결점을 보완할 수 있는 서로 다른 다양한 융합 조함=ㅂ을 가능하게 하여 임성이 높은 계통의 개발이 가능하다.The production of somatic hybrid plants using the multi-cell fusion method is expected to be of great significance in creating new gene sources and plants as the probability of nuclear and cytoplasmic genetic recombination is higher than when two cells are fused. In addition, it is possible to develop a variety of high-fertility lines by enabling a variety of different fusion combinations that can compensate for the deficiencies of asymmetric fusion to obtain a cytoplasmic sterile individual of the model.

Claims (5)

배추, 브로콜리, 갓을 한쪽의 핵을 제거하는 비대칭 융합이 아닌 대칭 세포융합하여 융합된 세포에서 캘러스를 형성하고, 형성된 캘러스에서 식물체를 재분화시켜 포트에 이식하는 체세포잡종식물체의 생산 방법Method of producing somatic hybrid plants in which cabbage, broccoli, and gat are formed by symmetrical cell fusion rather than asymmetrical fusion to remove one nucleus, forming callus in fused cells, and regenerating plants from the formed callus 제 1항에 있어서, 종래에 사용되던 방법과 달리 세가지 융합재료를 융합하여 하나의 융합세포로 만들고, 다양한 형태적 특성을 지닌 체세포잡종식물체 및 세포질 웅성불임성 개체를 만드는 세포융합 방법The method of claim 1, unlike the conventional methods used to fuse the three fusion materials into a single fusion cell, cell fusion method of making somatic hybrid plants and cytoplasmic male sterile individuals having various morphological characteristics 제 1항에 있어서, 형성된 캘러스를 식물생장조절제인 5mg/l zeatin, 2mg/l IAA를 첨가한 3% MS 배지에서 식물체를 재분화 시킨것을 특징으로하는 체세포잡종식물체의 생산 방법The method of producing a somatic hybrid plant according to claim 1, wherein the formed callus is regenerated in 3% MS medium to which 5 mg / l zeatin and 2 mg / l IAA which are plant growth regulators are added. 제 3항에 있어서, 형성된 캘러스를 재분화 배지에서 2주 간격으로 계대배양하여 체세포잡종식물체를 생산하는 방법4. The method of claim 3, wherein the formed callus is subcultured at intervals of two weeks in regeneration medium to produce somatic hybrid plants. 제 1항에 의해 생산된 체세포잡종식물체Somatic hybrid plants produced by claim 1
KR1020020013354A 2002-03-12 2002-03-12 Introduction of CMS traits into Mustard by Multi-cell fusion method KR20020032467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020013354A KR20020032467A (en) 2002-03-12 2002-03-12 Introduction of CMS traits into Mustard by Multi-cell fusion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020013354A KR20020032467A (en) 2002-03-12 2002-03-12 Introduction of CMS traits into Mustard by Multi-cell fusion method

Publications (1)

Publication Number Publication Date
KR20020032467A true KR20020032467A (en) 2002-05-03

Family

ID=19719781

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020013354A KR20020032467A (en) 2002-03-12 2002-03-12 Introduction of CMS traits into Mustard by Multi-cell fusion method

Country Status (1)

Country Link
KR (1) KR20020032467A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046383A (en) * 1995-09-11 2000-04-04 Seminis Vegetable Seeds, Inc. Cytoplasmic male sterile Brassica oleracea plants which contain the polima CMS cytoplasm and are male sterile at high and low temperatures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046383A (en) * 1995-09-11 2000-04-04 Seminis Vegetable Seeds, Inc. Cytoplasmic male sterile Brassica oleracea plants which contain the polima CMS cytoplasm and are male sterile at high and low temperatures

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Journal of the Korean Breeding Society, Vol.27(3) pp.290-297, 1995 *
Kangwon National University College of Agriculture and Life Sciences, Ministry of Agriculture and Forestry, 2001, pp.179, Chapter 8 Introduction of Cytoplasmic Male Infertility Characteristics to Gat by Multi-fusion Method Development *
Korean Society for Plant Tissue Culture Spring Conference and Korea-Israel Plant Biotechnology Symposium pp.P5, 1998, Abstract *

Similar Documents

Publication Publication Date Title
CN107022562B (en) Method for site-directed mutagenesis of maize gene by using CRISPR/Cas9 system
Evans et al. Somatic hybrid plants of Nicotiana glauca and Nicotiana tabacum obtained by protoplast fusion
Guri et al. Interspecific somatic hybrid plants between eggplant (Solanum melongena) and Solanum torvum
CN109936977A (en) For carrying out the method and composition of genome editor by haploid induction
CN101142894A (en) Wild-rice distant hybridization high-efficient cultivating superior progeny method
Krens et al. Transfer of cytoplasm from new Beta CMS sources to sugar beet by asymmetric fusion: 1. Shoot regeneration from mesophyll protoplasts and characterization of regenerated plants
Arikita et al. Novel natural genetic variation controlling the competence to form adventitious roots and shoots from the tomato wild relative Solanum pennellii
Barceló et al. Isolation and culture of strawberry protoplasts and field evaluation of regenerated plants
CN113583099B (en) Method for cultivating alfalfa male sterile line and corresponding maintainer line and related biological material thereof
CN113604497B (en) Genetic transformation method of gramineous plants
CN112322632B (en) Gene LAM, application thereof, method for obtaining strawberry male sterile line and kit
Sulistyaningsih et al. Haploid induction from F 1 hybrids between CMS shallot with Allium galanthum cytoplasm and common onion by unpollinated flower culture
Kunitake et al. Production of interspecific somatic hybrid plants between Asparagus officinalis and A. macowanii through electrofusion
Ravi et al. Genome elimination by tailswap CenH3: in vivo haploid production in Arabidopsis thaliana
Begna Review on somatic hybridization and its role in crop improvement
CN105968178B (en) The application of rice Os RAD1 albumen and its encoding gene in regulation pollen fertility
CN107459564A (en) The application of rice ZYGO1 albumen and its encoding gene in pollen fertility is regulated and controled
Sandgrind et al. Establishment of an efficient protoplast regeneration and transfection protocol for field cress (Lepidium campestre)
CN116368230A (en) Method for producing genome-edited plants
KR20130106944A (en) Nwb-cms brassica oleracea having cytoplasmic male sterility and uses thereof
KR20020032467A (en) Introduction of CMS traits into Mustard by Multi-cell fusion method
CN107698671A (en) Rice P31cometThe application of albumen and its encoding gene in pollen fertility is regulated and controled
CN117604027B (en) Novel efficient genetic transformation method for pineapple
CN116555301B (en) SlMETS1 gene and application thereof in regulation and control of tomato growth and development
KR102453800B1 (en) Method for producing SlMS10 gene knock-out tomato plant using CRISPR/Cas9 system and male-sterile tomato plant produced by the same method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application