KR20020017716A - Equipment for CRS Consolidation Test - Google Patents
Equipment for CRS Consolidation Test Download PDFInfo
- Publication number
- KR20020017716A KR20020017716A KR1020000051222A KR20000051222A KR20020017716A KR 20020017716 A KR20020017716 A KR 20020017716A KR 1020000051222 A KR1020000051222 A KR 1020000051222A KR 20000051222 A KR20000051222 A KR 20000051222A KR 20020017716 A KR20020017716 A KR 20020017716A
- Authority
- KR
- South Korea
- Prior art keywords
- sample
- housing
- crs
- porous
- plate
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
- G01N3/10—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
- G01N3/12—Pressure testing
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D1/00—Investigation of foundation soil in situ
- E02D1/02—Investigation of foundation soil in situ before construction work
- E02D1/022—Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil
- E02D1/025—Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil combined with sampling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0019—Compressive
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Civil Engineering (AREA)
- Physics & Mathematics (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Soil Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
본 발명은 연약지반 위에 도로, 교량, 건축물 등의 구조물을 시공할 때 지반 개량을 하기 위하여 연약지반의 점성토를 채취하여 압밀시험을 하는 것으로서, 특히 연약지반 현장의 상황을 좀더 정확하게 모사할 수 있는 방사방향 배수가 가능한 CRS(Constant Rate of Strain) 압밀장치에 관한 것이다.The present invention is to conduct a consolidation test by collecting the viscous soil of the soft ground in order to improve the ground when constructing structures such as roads, bridges, buildings, etc. on the soft ground, in particular radiation that can more accurately simulate the situation of the soft ground site It relates to a constant rate of strain (CRS) consolidation apparatus capable of directional drainage.
토목공학분야 특히 지반공학분야에서 구조물을 시공하는 경우, 연약지반 위에 구조물이 놓이게 되는 경우가 많다. 여기서 연약지반은 주로 점성토 지반을 말하는데, 이 점성토 지반에 있어서는 그 위에 바로 구조물을 시공하게 되면 장기적으로 허용침하량을 넘어서는 과대침하 또는 부등침하가 발생하여 구조물에 악영향을 미치게 되며 결국은 구조물의 붕괴를 발생시키게 된다. 따라서 이러한 지반에 구조물을 시공하기 위해서는 지반의 개량이 우선적으로 선행되어야 한다.When constructing structures in the field of civil engineering, especially in geotechnical engineering, structures are often placed on soft ground. In this case, soft ground mainly refers to cohesive soil, and if the structure is constructed directly on it, overlying or uneven settlement over the long-term allowable settlement will occur, which will adversely affect the structure and eventually cause the structure to collapse. Let's go. Therefore, in order to construct a structure on such ground, improvement of the ground must be preceded first.
이러한 지반의 개량을 위하여 먼저 현장 또는 실내실험을 통하여 점성토의 압축 특성 등을 조사하게 되는데, 이 때 실험실에서 실시하는 시험이 압밀시험이며, 지반 공학분야에서 가장 널리 수행되는 시험 중에 하나이다.In order to improve the ground, first, the compressive characteristics of clay soil are investigated through field or indoor experiments. At this time, the laboratory test is the consolidation test, which is one of the most widely conducted tests in the field of geotechnical engineering.
종래 널리 쓰이고 있는 압밀장치로는 연직방향방향으로 배수되는 연직방향CRS(Constant Rate of Strain) 압밀시험 장치가 있다.Conventionally widely used consolidation apparatus is a vertical direction constant rate of strain (CRS) consolidation test apparatus drained in the vertical direction.
즉, 종래 압밀장치는 도 1에서 도시하는 바와 같이, 내부에 점성토인 시료(T)를 넣을 수 있는 공간을 형성하고 에어홀(1a)을 구비하는 하우징(1)과, 상기 하우징의 상부와 하부에 가압수관(6)을 통하여 가압수를 넣어 시료를 포화시키는 가압부(2)와, 압밀되는 시료의 상태(시료 하부의 수압)를 하부에서 측정할 수 있도록 구비하는 간극수압계(2a)와, 상기 하우징(1) 내부 공간의 시료(T) 상부에 설치하여 시료의 수분을 빨아들이는 흡수성판(3)과, 상기 흡수성판(3) 상부에 설치하고 통수공(4a)들이 상하 방향으로 뚫려 있는 로딩판(4)과, 상기 하우징(1)의 상부를 관통하여 로딩판(4)을 압착시켜 주며 로드셀을 구비하고 있는 로딩바(5)로 구성하고 있다.That is, in the conventional compaction apparatus, as shown in FIG. 1, a housing 1 having a space in which viscous soil sample T can be placed therein and having an air hole 1a, and upper and lower portions of the housing A pressurizing section 2 for saturating the sample by inserting the pressurized water through the pressurized water pipe 6, and a pore water pressure gauge 2a provided to measure the state of the sample (water pressure at the lower part of the sample) to be condensed therefrom; And an absorbent plate 3 installed on an upper portion of the sample T in the inner space of the housing 1 to suck moisture from the sample, and an upper portion of the absorbent plate 3 installed in the upper portion of the absorbent plate 3. It consists of a loading plate (4) that is bored, and a loading bar (5) which penetrates the upper portion of the housing (1) and compresses the loading plate (4) and includes a load cell.
이와 같이 구성하고 있는 종래 압밀장치는 시공하고자 하는 연약지반의 시료를 채취하여 하우징(1) 내부에 넣은 후, 가압수관(6)을 통하여 하우징 내부에 가압수를 가압한다. 이 때 가압수를 가압해 넣는 이유는 시료(T) 속에 포함되어 있는 미세한 공기방울들을 가압수로 용해시켜 공기를 제거하기 위함이다. 그리고 로딩바(5)에 하중을 가중시키면 시료가 압착되면서 시료에 포함되어 있는 수분이 흡수성판(3)에 1차로 흡수되고 다시 통수공들이 뚫려 있는 로딩판(4)을 통하여 상부 연직방향으로 배수된다. 일정한 속도로 로딩바(5)를 누르면서 하중을 가하면 시료에 일정 속도의 변형이 발생하는데, 이 때 시료 상부의 응력, 하부의 간극수압 및 변위 등을 측정하여 해석을 하게 된다.In the conventional consolidation apparatus configured as described above, the sample of the soft ground to be constructed is collected and put into the housing 1, and then pressurized water is pressed into the housing through the pressurized water pipe 6. The reason for pressurizing the pressurized water at this time is to remove air by dissolving the fine air bubbles contained in the sample T with the pressurized water. When the load is applied to the loading bar 5, the sample is compressed and moisture contained in the sample is primarily absorbed by the absorbent plate 3 and drained in the upper vertical direction through the loading plate 4 through which the holes are drilled. . When the load is applied while pressing the loading bar 5 at a constant speed, a deformation of the sample occurs at a constant speed. At this time, the stress of the upper part of the sample, the pore water pressure and the displacement of the lower part are measured and analyzed.
상기와 같이 시료를 시험하는 종래의 것은 시료 시험기간을 단축할 수 있고하우징 내부에 가압수를 가압시킴으로 시료를 최대한 포화시킬 수 있으며 많은 데이타를 연속적으로 얻을 수 있는 장점을 가지는 것이 사실이나, 로딩판(4)의 통수공(4a)들이 상하 연직방향으로 뚫려져 있어 배수가 연직방향으로 배수될 수밖에 없다. 연직방향으로 배수되는 경우 실제 지반 개량시 방사방향으로 배수되는 현장 상황을 재현할 수가 없으므로 정확한 데이타를 얻기 어려운 문제가 있다.The conventional test of the sample as described above can shorten the test period of the sample and saturate the sample as much as possible by pressurizing the pressurized water inside the housing. Passing holes (4a) of (4) are drilled in the vertical direction up and down, the water is forced to drain in the vertical direction. When drained in the vertical direction, it is difficult to obtain accurate data because it is impossible to reproduce the site situation drained in the radial direction when the actual ground is improved.
이에 본 발명의 목적은 연직방향으로 배수되게 되는 종래의 것괴는 달리, 현장 상황에 가깝게 방사방향으로 배수되게 함으로서 현장 상황을 보다 더 정확하게 모사할 수 있는 방사방향 배수가 가능한 CRS 압밀장치를 제공하는데 있다.Accordingly, an object of the present invention is to provide a CRS consolidation apparatus capable of radial drainage that can more accurately simulate the field situation by allowing the drainage to be radially close to the site situation, unlike the conventional one that is drained in the vertical direction. .
도 1은 종래 연직방향으로 배수되는 압밀장치의 단면도1 is a cross-sectional view of a conventional compaction apparatus drained in the vertical direction
도 2는 본 발명에 따른 압밀장치의 단면도Figure 2 is a cross-sectional view of the compaction apparatus according to the present invention
도 3은 본 발명으로서 도 2의 부분상세도Figure 3 is a partial detailed view of Figure 2 as the present invention
도 4는 본 발명에 따른 압밀장치의 사용상태도Figure 4 is a state of use of the compaction apparatus according to the present invention
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
10:하우징 11:하부판10: housing 11: bottom plate
12:측벽판 13:상부판12: side wall plate 13: upper plate
14:에어홀 15:체결로드14: Air hole 15: Fastening rod
16:변위측정기 20:가압부16: displacement measuring instrument 20: pressure unit
21:가압수관 22:간극수압기21: pressure water pipe 22: pore water pressure
30:로딩판 40:로딩바30: loading plate 40: loading bar
41:로드셀 50:방사배수부41: load cell 50: radiation drainage
51:다공압밀링 51a:통수공51: porous milling 51a: water hole
51b:돌출턱 52:흡수성판51b: protrusion 52: absorbent plate
53:고무링 54:보조통53: rubber ring 54: auxiliary cylinder
60:로딩프레임 61:상부지지대60: loading frame 61: upper support
62:하부판 63:받침대62: bottom plate 63: stand
T:시료T: Sample
이하, 본 발명의 기술적 구성을 상세히 설명하면 다음과 같다.Hereinafter, the technical configuration of the present invention in detail.
본 발명의 방사배수형 압밀장치는 내부에 시료를 넣을 수 있는 공간을 형성하고 에어홀을 구비하는 하우징과, 상기 하우징의 상부와 하부를 통하여 가압수를 넣어 시료를 포화시키는 가압부와, 압밀되는 시료의 상태(시료 하부 중앙의 수압)를 측정할 수 있도록 구비하는 간극수압 측정부와, 상기 하우징 내부 공간의 시료 상부에 설치하는 로딩판과, 상기 하우징의 상부를 관통하여 로딩판을 압착시켜 주는 로딩바로 구성하는 것에 있어서는 종래의 기술적 개념과 별 다를 바가 없다.The radiation drainage consolidation apparatus of the present invention forms a space for putting a sample therein, a housing having an air hole, a pressurizing portion for saturating the sample by putting pressurized water through upper and lower portions of the housing, A pore water pressure measuring part provided to measure the state of the sample (water pressure at the center of the lower part of the sample), a loading plate installed on the upper part of the sample in the inner space of the housing, and a loading plate pressed through the upper part of the housing The configuration of the loading bar is not different from the conventional technical concept.
다만, 본 발명은 상기 시료가 내장되는 하우징 하부 내주벽에 시료에 함유되어 있는 수분을 방사방향으로 배수시켜 주는 방사배수부를 구비함을 본 발명의 기본적인 기술적 사상으로 하는 것이다.However, the present invention is to have a basic technical idea of the present invention is provided with a radiation drainage portion for draining the water contained in the sample in the radial direction on the inner peripheral wall of the lower housing housing.
이하, 첨부도면들에 도시하는 대표적인 실시예를 통하여 본 발명을 보다 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to exemplary embodiments shown in the accompanying drawings.
본 발명의 실시예는, 도 2에서 도시하는 바와 같이, 내부에 시료(T)를 넣을 수 있는 공간을 형성하고 에어홀(14)을 구비하는 하우징(10)과, 상기 하우징의 상부와 하부를 통하여 가압수를 가하는 가압부(20)와, 방사방향으로 압밀되는 시료의 상태(시료 하부 중앙에서의 수압)를 측정할 수 있도록 구비하는 간극수압 측정부(20a)와, 상기 하우징(10) 내부 공간의 시료(T) 상부에 설치하는 로딩판(30)과, 상기 하우징(10)의 상부를 관통하여 로딩판(30)을 압착시켜 주는 로딩바(40)와, 상기 하우징(10) 하부 내주벽에 시료에 함유되어 있는 수분을 방사방향으로 배수시켜 주는 방사배수부(50)로 구성하되,In the embodiment of the present invention, as shown in FIG. 2, the housing 10 having a space for the sample T therein and having an air hole 14, and the upper and lower portions of the housing Pressurizing section 20 to apply pressurized water through, pore water pressure measuring section 20a provided to measure the state of the sample (water pressure at the center of the lower part of the sample) condensed in the radial direction, and inside the housing 10 A loading plate 30 installed above the sample T in the space, a loading bar 40 for pressing the loading plate 30 through the upper portion of the housing 10, and an inner circumferential wall below the housing 10. It consists of a radiation drainage portion 50 for draining the water contained in the sample in the radial direction,
상기 방사배수부(50)는 하우징(10) 하부 내주면 둘레에 설치되고 측방향으로 통수공(51a)들이 뚫려있는 다공압밀링(51)과, 상기 다공압밀링(51)의 내주면에 설치되고 시료에 함유되어 있는 수분을 직접 흡수(吸水)하여 주는 흡수성판(52)으로 구성된다는 점에서 본 발명의 기본적인 기술적 사상을 구현하는 것이다.The radiation drainage part 50 is installed around the lower inner circumferential surface of the housing 10 and has a through-hole milling 51 in which the through-holes 51a are drilled in the lateral direction, and is installed on the inner circumferential surface of the porous press-milling 51 and the sample. It is to implement the basic technical idea of the present invention in that it is composed of an absorbent plate 52 which directly absorbs water contained in the water.
본 발명을 구성하는 구성요소들을 구체적으로 살펴보면 하우징(10)은 내부에 공간을 형성하는 원통형이다. 도 2에서와 같이 하부판(11) 원통형의 측벽판(12), 상부판(13)으로 이루어진다. 이 3구조부들은 종래와 같이 서로 분리되고 체결로드(15)들로 조립된다.Looking at the components constituting the present invention in detail, the housing 10 is cylindrical to form a space therein. As shown in FIG. 2, the lower plate 11 includes a cylindrical side wall plate 12 and an upper plate 13. These three structures are separated from each other and assembled into the fastening rods 15 as in the prior art.
이렇게 조립된 상태에서 가압수관(21)을 통하여 하우징(10) 내부에 물을 채워 넣게 되면 이때 하우징(10) 내부의 공기는 하우징 상부판(13)에 형성된에어홀(14)을 통하여 빠져 나간다. 가압부(20)는 하우징(10) 상부와 하부로 연결된 가압수관(21)을 통하여 가압수를 가압하여 넣고 간극수압 측정부(20a)에서는 시료(T)가 압밀됨에 따라 시료의 간극수압을 측정하여 주는 간극수압기(22)가 설치된다는 점에서 종래와 같이 크게 다를 바가 없다.When the water is filled in the housing 10 through the pressurized water pipe 21 in this assembled state, the air in the housing 10 exits through the air hole 14 formed in the housing upper plate 13. The pressurizing part 20 pressurizes the pressurized water through the pressurized water pipe 21 connected to the upper part and the lower part of the housing 10, and measures the pore water pressure of the sample as the sample T is consolidated in the pore water pressure measuring part 20a. The pore pressure receiving device 22 is not significantly different from the conventional one in that it is installed.
로딩판(30)은 도 2에서와 같이, 시료(T) 상부에 직접 눌러주는 구조부로써 연직방향으로 밀폐된 것으로 도시하고 있으나, 종래와 같이 연직방향으로 통수공들이 뚫릴 수도 있다. 이 때 로딩판 하부에는 수분을 빨아 들이는 흡수성판을 종래와 같이 배치할 수도 있다. 이는 시료에 함유되어 있는 수분이 방사 방향 뿐만 아니라 연직방향으로도 배수되게 함으로써 압밀시간을 보다 더 단축할 수 있는 장점을 갖는다.The loading plate 30 is shown as hermetically closed in the vertical direction as a structure that presses directly on the upper portion of the sample (T), as shown in FIG. 2, but may pass through holes in the vertical direction as in the prior art. At this time, the absorbent plate for sucking moisture may be disposed in the lower portion of the loading plate as in the prior art. This has the advantage that the condensation time can be further shortened by allowing the water contained in the sample to drain not only in the radial direction but also in the vertical direction.
로딩바(40)는 하중을 로딩판(30)에 전달하는 구조부로서 도 2에서와 같이, 하우징(10)의 상부 중앙을 관통하여 로딩판(30)에 연결되는 것으로 기능적으로는 종래의 것과 크게 다를 바가 없으나, 다만 실리콘 그리스가 함유된 볼베어링을 사용하며 마찰을 줄였고 실험시에는 이를 체크하여 보정할 수 있다. 또한 로드셀(41)이 하우징(10) 외부에 부착되어 있다(도4참조).Loading bar 40 is a structure that transmits the load to the loading plate 30, as shown in Figure 2, through the upper center of the housing 10 is connected to the loading plate 30 functionally different from the conventional one There is no bar, but the ball bearing containing silicon grease is used to reduce the friction and it can be checked and corrected during the experiment. In addition, the load cell 41 is attached to the outside of the housing 10 (see Fig. 4).
방사배수부(50)는 본 발명의 핵심적인 기술 사항으로서 도 2 및 도 3에서와 같이, 하우징(10) 하부 내주면 둘레에 설치되고 측방향으로 통수공(51a)들이 뚫려있는 다공압밀링(51)과, 상기 다공압밀링(51)의 내주면에 설치되고 시료에 함유되어 있는 수분을 직접 흡수(吸水)하여 주는 합성수지제 흡수성판(52)으로 구성된다.Radiation drainage portion 50 is a key technical matter of the present invention, as shown in Figures 2 and 3, is installed around the inner circumferential surface of the lower housing 10 and the porous milling 51 through which the through holes 51a are drilled in the lateral direction. And a synthetic resin absorbent plate 52 which is provided on the inner circumferential surface of the porous compacting mill 51 and directly absorbs the moisture contained in the sample.
여기서, 다공압밀링(51)은 하부 외측에 돌출턱(51)이 형성되고, 내주면의 하부에는 직경이 상부보다 크게 형성되어 흡수성판(52)이 꼭 맞게 끼워질 수 있게 형성된다. 또한, 다공압밀링(51)의 하단부와 상기 하우징(10)의 하부판(11) 사이에 홈을 형성시켜 고무링(53)을 삽입하여 수밀성을 증대시킨다(도3참조).Here, the porous compression mill 51 has a protruding jaw 51 formed on the lower outer side, and a lower diameter of the inner circumferential surface is formed larger than the upper portion so that the absorbent plate 52 can be fitted snugly. In addition, a groove is formed between the lower end of the porous compression ring 51 and the lower plate 11 of the housing 10 to insert the rubber ring 53 to increase watertightness (see FIG. 3).
따라서 흡수성판(52) 내부에 내장되는 시료(T)가 로딩판(30)에 의해 압밀되면 시료의 수분이 흡수성판(52)이 있는 방사방향으로 배수된다. 그리고 흡수성판(52)에 흡수된 물은 다공압밀링(51)의 통수공(51a)을 통하여 하우징 내부공간으로 이동된다.Therefore, when the sample T embedded in the absorbent plate 52 is consolidated by the loading plate 30, the moisture of the sample is drained in the radial direction in which the absorbent plate 52 is located. The water absorbed by the absorbent plate 52 is moved to the inner space of the housing through the water passage 51a of the porous milling 51.
한편, 하우징(10)의 내주면에 밀착되는 보조통(54)을 부가적으로 설치할 수 있다. 이 보조통(54)은 다공압밀링(51)을 눌러 줌으로써 이를 지지시켜 주면서 수밀성을 증대시켜 주는 역할을 하게 된다. 이때 보조통(54)의 하단부가 다공압밀링(51)의 하단부 외측으로 형성된 돌출턱(51)에 얹혀지고 다공압밀링(51)과는 미세한 간극을 형성하여 통수공(51a)들을 통하여 배수된 물을 하우징 내부 공간으로 빠져 나갈 수 있게 하여 준다.On the other hand, the auxiliary cylinder 54 in close contact with the inner peripheral surface of the housing 10 can be additionally installed. The auxiliary cylinder 54 serves to increase the watertightness while supporting it by pressing the porous compact ring 51. At this time, the lower end of the auxiliary cylinder 54 is placed on the protruding jaw 51 formed to the outside of the lower end of the porous pressing ring 51 and formed a minute gap with the porous pressing mill 51 and drained through the water holes 51a. Allow water to escape into the interior of the housing.
한편, 통수공(51a)들을 통하여 배수된 물이 하우징(10) 내부 공간으로 빠지게 하는 다른 방법으로는 도면으로 도시하지 않았으나, 다공압밀링(51)의 외주면에 상하 방향으로 수로홈들을 등간격으로 형성할 수도 있고, 또 다른 방법으로는 보조통(54)의 내주면에 상하 방향으로 수로홈들을 등간격으로 형성할 수도 있다. 다공압밀링(51)의 외주면 혹은 보조통(54)의 내주면에 상하 방향으로 수로홈들을 형성시킴으로 시료의 물은 수로홈들을 통하여 위쪽 하우징 내부 공간으로 빠져 나가게 하면서 다공압밀링(51)과 보조통(54) 간을 서로 밀착시켜 견고하게 지지시킬 수 있는 장점을 갖는다.On the other hand, although not shown in the drawings as another way to drain the water drained through the through holes 51a into the interior space of the housing 10, the channel grooves at equal intervals in the vertical direction on the outer peripheral surface of the porous milling 51 Alternatively, as another method, the channel grooves may be formed at equal intervals in the vertical direction on the inner circumferential surface of the auxiliary cylinder 54. By forming the channel grooves in the vertical direction on the outer circumferential surface of the porous compression mill 51 or the inner circumferential surface of the auxiliary cylinder 54, the water of the sample passes through the channel grooves into the upper housing internal space while passing through the water passage grooves. (54) It has the advantage that the liver can be held in close contact with each other firmly.
도 4는 본 발명의 압밀장치의 사용상태를 나타내는 것이다. 즉, 본 압밀장치를 로딩프레임(60) 내부에 설치한다. 로딩바(40)를 로딩프레임(60) 상부지지대(61) 하면에 지지시키고 로딩프레임의 하부판(62)에 설치되는 받침대(63)를 모터로 상승시키면 로딩바(40)를 통하여 로딩판(30)이 시료(T)를 압밀하게 되는 것이다. 이는 종래의 것과 크게 다를 바가 없다.4 shows a state of use of the compaction apparatus of the present invention. That is, the consolidation apparatus is installed in the loading frame 60. When the loading bar 40 is supported on the lower surface of the upper support 61 of the loading frame 60 and the pedestal 63 installed on the lower plate 62 of the loading frame is lifted by a motor, the loading plate 30 is loaded through the loading bar 40. The sample T is consolidated. This is not much different from the conventional one.
이와 같은 본 발명의 방사방향 배수가 가능한 압밀장치는 하우징(10) 내부 공간에 방사배수부(50)를 구비하여 시료의 수분을 방사방향으로 배수시켜 줌으로써 현장 상황을 보다 더 정확하게 모사할 수 있는 효과를 갖는다.Such a condensation apparatus capable of radial drainage of the present invention has a radial drainage portion 50 in the inner space of the housing 10 to drain the moisture of the sample in the radial direction to more accurately simulate the field situation. Has
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0051222A KR100392143B1 (en) | 2000-08-31 | 2000-08-31 | Equipment for CRS Consolidation Test |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0051222A KR100392143B1 (en) | 2000-08-31 | 2000-08-31 | Equipment for CRS Consolidation Test |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020017716A true KR20020017716A (en) | 2002-03-07 |
KR100392143B1 KR100392143B1 (en) | 2003-07-22 |
Family
ID=19686464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2000-0051222A KR100392143B1 (en) | 2000-08-31 | 2000-08-31 | Equipment for CRS Consolidation Test |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100392143B1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100595049B1 (en) * | 2005-02-04 | 2006-06-30 | 서흥석 | Geotextile tester |
KR100764243B1 (en) * | 2006-07-21 | 2007-10-08 | 고려대학교 산학협력단 | Consolidation cell with horizontal drain and measuring elastic wave and apparatus for testing consolidation characteristics therewith |
KR100855869B1 (en) * | 2006-12-13 | 2008-09-01 | 한국수자원공사 | Large scale oedometer |
CN102507336A (en) * | 2011-11-11 | 2012-06-20 | 北京交通大学 | Rotatable power and liquid supply ground triaxial testing machine |
CN102636393A (en) * | 2012-05-17 | 2012-08-15 | 北京交通大学 | Three-motor synchronized drive rotating geotechnical testing machine |
CN104596865A (en) * | 2014-12-30 | 2015-05-06 | 长沙理工大学 | Manual stress control type triaxial compressor |
CN105784495A (en) * | 2016-05-23 | 2016-07-20 | 安徽理工大学 | Device for measuring lateral pressure coefficient and Poisson's ratio of geotechnical material |
CN107655759A (en) * | 2017-08-29 | 2018-02-02 | 天津大学 | A kind of consolidation testing device for simulating flux and reflux |
CN109030386A (en) * | 2018-06-13 | 2018-12-18 | 袁静 | A kind of soil property detection box for teaching |
CN109443919A (en) * | 2018-11-21 | 2019-03-08 | 郑州大学 | A kind of radial consolidation experimental rig and application method |
-
2000
- 2000-08-31 KR KR10-2000-0051222A patent/KR100392143B1/en not_active IP Right Cessation
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100595049B1 (en) * | 2005-02-04 | 2006-06-30 | 서흥석 | Geotextile tester |
KR100764243B1 (en) * | 2006-07-21 | 2007-10-08 | 고려대학교 산학협력단 | Consolidation cell with horizontal drain and measuring elastic wave and apparatus for testing consolidation characteristics therewith |
KR100855869B1 (en) * | 2006-12-13 | 2008-09-01 | 한국수자원공사 | Large scale oedometer |
CN102507336A (en) * | 2011-11-11 | 2012-06-20 | 北京交通大学 | Rotatable power and liquid supply ground triaxial testing machine |
CN102636393A (en) * | 2012-05-17 | 2012-08-15 | 北京交通大学 | Three-motor synchronized drive rotating geotechnical testing machine |
CN104596865A (en) * | 2014-12-30 | 2015-05-06 | 长沙理工大学 | Manual stress control type triaxial compressor |
CN105784495A (en) * | 2016-05-23 | 2016-07-20 | 安徽理工大学 | Device for measuring lateral pressure coefficient and Poisson's ratio of geotechnical material |
CN107655759A (en) * | 2017-08-29 | 2018-02-02 | 天津大学 | A kind of consolidation testing device for simulating flux and reflux |
CN109030386A (en) * | 2018-06-13 | 2018-12-18 | 袁静 | A kind of soil property detection box for teaching |
CN109443919A (en) * | 2018-11-21 | 2019-03-08 | 郑州大学 | A kind of radial consolidation experimental rig and application method |
Also Published As
Publication number | Publication date |
---|---|
KR100392143B1 (en) | 2003-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102628767B (en) | Device and method for testing mechanical properties of pile-soil contact surface | |
KR100392143B1 (en) | Equipment for CRS Consolidation Test | |
CN106290006B (en) | A kind of experimental rig measuring shear strength parameter variation in soft clay consolidation process | |
CN105784444A (en) | Indoor apparatus and method for producing hollow cylindrical remolded clay specimen by compressing | |
JP4345942B2 (en) | Horizontal consolidation test equipment for ground materials | |
CN106546710B (en) | Test device for measuring self-sealing and healing characteristics of engineering barrier system | |
CN104020092B (en) | One kind consolidation pore water pressure combined test device and method | |
CN112461687B (en) | Working condition adjusting device and method for Hopkinson bar sandy soil dynamic compression test | |
CN105300756B (en) | A kind of devices and methods therefor for the sample preparation for directly testing loess tensile strength | |
JP3978411B2 (en) | Permeability test equipment | |
JP4260997B2 (en) | Method and apparatus for consolidation test of ground material | |
CN205426613U (en) | Indoor hollow cylinder remolds clay sample compression preparation facilities | |
CN109443988B (en) | Testing instrument and testing method for rheological property of coarse-grained soil | |
CN106525534A (en) | Water-absorbing device for cold-recycling test of gyratory compactor and test method | |
Anderson et al. | A clay calibration chamber for testing field devices | |
KR200329959Y1 (en) | Compaction Mold for Large Cyclic Triaxial Testing Apparatus | |
CN113373989B (en) | Foundation slip casting expansion tester | |
RU2718800C1 (en) | Instrument for soil compression tests | |
KR100908314B1 (en) | A test equipment for plastic board drain | |
RO133362A0 (en) | Double-acting oedometer with frontal device for gradual loading of a sample | |
CN108385737A (en) | A kind of vacuum preloading soft groundsill reinforcing sunykatuib analysis instrument and test method | |
CN208270333U (en) | Measure any depth soil layer side friction device | |
RU2275628C2 (en) | Method and device for ground shearing test performing along with pore pressure determination | |
RO133293A2 (en) | Device for determining mechanical characteristics of soils by axially symmetrical compression tests, process for testing in sampling nozzle, process for testing the samples and process one/two for providing sample shapes | |
CN216160634U (en) | Test piece barrel for geotechnical expansion test |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120702 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20130708 Year of fee payment: 11 |
|
LAPS | Lapse due to unpaid annual fee |