KR20020017105A - Method for isolating semiconductor devices - Google Patents

Method for isolating semiconductor devices Download PDF

Info

Publication number
KR20020017105A
KR20020017105A KR1020000050201A KR20000050201A KR20020017105A KR 20020017105 A KR20020017105 A KR 20020017105A KR 1020000050201 A KR1020000050201 A KR 1020000050201A KR 20000050201 A KR20000050201 A KR 20000050201A KR 20020017105 A KR20020017105 A KR 20020017105A
Authority
KR
South Korea
Prior art keywords
trench
region
layer
active region
substrate
Prior art date
Application number
KR1020000050201A
Other languages
Korean (ko)
Inventor
황태근
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1020000050201A priority Critical patent/KR20020017105A/en
Publication of KR20020017105A publication Critical patent/KR20020017105A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: An isolation method for a semiconductor device is provided to reduce junction capacitance, by forming an additional buried insulation layer in the periphery of an isolation layer so that the size of a doping region is physically decreased and a source/drain junction area is reduced. CONSTITUTION: An isolation region and an active region are defined in a semiconductor substrate(31). The isolation region is eliminated to form a trench. An oxygen ion buried layer is formed in the active region adjacent to the trench. The oxygen ions are reacted with the semiconductor substrate to form a buried oxide layer(370) extending to the active region. The trench is filled with an insulation material.

Description

반도체장치의 소자격리방법{Method for isolating semiconductor devices}Device isolation method for semiconductor devices {Method for isolating semiconductor devices}

본 발명은 반도체장치의 소자격리방법에 관한 것으로서, 특히, 소자격리를 위한 반도체기판의 트렌치 주위에 산소 이온주입으로 매몰산화층을 형성한 다음 소자격리막을 완성하여 트랜지스터 소자 등의 불순물 확산영역 크기를 감소시키므로서 졍션 캐패시턴스를 감소시키고 소자특성을 개선하도록 한 반도체장치의 트렌치형 소자격리방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device isolation method of a semiconductor device. In particular, a buried oxide layer is formed by oxygen ion implantation around a trench of a semiconductor substrate for device isolation, and then a device isolation film is completed to reduce the size of an impurity diffusion region of a transistor device. The present invention relates to a trench type device isolation method of a semiconductor device, which reduces the junction capacitance and improves device characteristics.

반도체장치의 집적화가 거듭되면서 반도체장치의 상당한 면적을 점유하는 소자격리영역을 줄이기 위한 기술 개발이 활발히 진행되고 있다.As the integration of semiconductor devices continues, technology development for reducing the device isolation region occupying a considerable area of the semiconductor device is actively progressing.

소자격리를 위한 BOX(buried oxide)형 얕은트렌치소자격리(shallow trench isolation) 기술은 반도체기판에 트렌치를 형성하고 화학기상증착(Chemical VaporDeposition : 이하, CVD라 칭함) 방법으로 산화실리콘 또는 불순물이 도핑되지 않은 다결정실리콘을 매립한 구조를 갖는다. 그러므로, 버즈 비크가 발생되지 않아 활성영역의 손실이 전혀 없으며, 또한, 산화막을 메립하고 에치 백(etch back)하여 평탄한 표면을 얻을 수 있다.BOX (buried oxide) type shallow trench isolation technology for device isolation is provided by forming a trench in a semiconductor substrate and not doped with silicon oxide or impurities by chemical vapor deposition (CVD). Has a structure in which polycrystalline silicon is embedded. Therefore, no buzz beaking occurs, there is no loss of the active region, and a flat surface can be obtained by embedding and etching back the oxide film.

그러나, 소자 집적도의 증가에 반비례하여 소자 크기가 작아짐에 따라 소스/드레인을 형성하는 불순물 도핑영역의 도핑농도가 증가게 되어 졍션에서의 캐패시턴스가 증가하게 된다. 이는 소자의 고속동작을 곤란하게 만드는 원인이 된다.However, as the device size decreases in inverse proportion to the increase in device density, the doping concentration of the impurity doped region forming the source / drain increases, so that the capacitance in the junction increases. This causes the high speed operation of the device to be difficult.

도 1a 내지 도 1d는 종래 기술에 따른 얕은 트렌치를 이용한 소자격리방법을 도시하는 공정도이다.1A to 1D are process diagrams illustrating a device isolation method using a shallow trench according to the prior art.

도 1a를 참조하면, 반도체기판(11) 상에 열산화 방법으로 버퍼산화막(13)을 형성하고, 이 버퍼산화막(13) 상에 화학기상증착(Chemical Vapor Deposition : 이하, CVD라 칭함) 방법으로 질화실리콘을 증착하여 패드질화막(15)을 형성한다.Referring to FIG. 1A, a buffer oxide film 13 is formed on a semiconductor substrate 11 by a thermal oxidation method, and chemical vapor deposition (hereinafter referred to as CVD) is performed on the buffer oxide film 13. Silicon nitride is deposited to form a pad nitride film 15.

그리고, 패드질화막(15) 및 버퍼산화막(13)을 포토리쏘그래피 방법으로 반도체기판(11)이 노출되도록 순차적으로 패터닝하여 소자격리영역과 활성영역을 한정한다.The pad nitride film 15 and the buffer oxide film 13 are sequentially patterned to expose the semiconductor substrate 11 by a photolithography method to define the device isolation region and the active region.

도 1b를 참조하면, 잔류한 패드질화막(15)을 마스크로 사용하여 반도체기판(11)의 노출된 소자격리영역을 소정 깊이로 식각하여 트렌치(T1)를 형성한다. 상기에서 트렌치(T1)를 반응성이온식각(Reactive Ion Etching : 이하, RIE라 칭함)이나 플라즈마 식각 등으로 이방성 식각하여 형성한다.Referring to FIG. 1B, the trench T1 is formed by etching the exposed device isolation region of the semiconductor substrate 11 to a predetermined depth by using the remaining pad nitride film 15 as a mask. The trench T1 is formed by anisotropic etching by reactive ion etching (hereinafter referred to as RIE) or plasma etching.

도 1c를 참조하면, 패드질화막(15) 상에 산화실리콘을 트렌치를 채우도록 CVD 방법으로 증착한다. 그리고, 산화실리콘을 패드질화막(15)이 노출되어 화학-기계적연마(Chemical-Mechanical Polishing : 이하, CMP라 칭함) 방법 또는 RIE 방법으로 에치 백하여 트렌치 내에만 잔류되도록 한다. 이 때, 트렌치 내에 잔류하는 산화실리콘은 소자를 분리하는 필드산화막(17)이 된다.Referring to FIG. 1C, silicon oxide is deposited on the pad nitride film 15 by CVD to fill the trench. The silicon oxide is exposed to the pad nitride film 15 to be etched back by chemical-mechanical polishing (hereinafter referred to as CMP) method or RIE method so as to remain only in the trench. At this time, the silicon oxide remaining in the trench becomes a field oxide film 17 separating the elements.

도 1d를 참조하면, 패드질화막(15) 및 버퍼산화막(13)을 습식 식각 방법으로 순차적으로 제거하여 반도체기판(11)의 활성영역을 노출시킨다. 이 때, 필드산화막(17)의 반도체기판(11)의 표면 보다 높은 부분도 식각되어 단차가 감소된다.Referring to FIG. 1D, the pad nitride layer 15 and the buffer oxide layer 13 are sequentially removed by a wet etching method to expose the active region of the semiconductor substrate 11. At this time, a portion higher than the surface of the semiconductor substrate 11 of the field oxide film 17 is also etched to reduce the level difference.

그리고, 노출된 활성영역의 기판 표면에 게이트산화막(도시안함), 게이트(도시안함), 불순물 도핑영역(19)을 형성하여 트랜지스터 소자를 제작한다. 이때, 기판과 반대되는 도전형 불순물 이온주입 및 어닐링 등으로 형성되는 불순물 도핑영역(19)의 깊이는 이온주입시 결정되는 도핑 프로파일에 의하여 그 형성깊이(d1)가 결정된다.In addition, a gate oxide film (not shown), a gate (not shown), and an impurity doped region 19 are formed on the exposed surface of the substrate to fabricate a transistor device. At this time, the depth of the impurity doped region 19 formed by conducting impurity ion implantation, annealing, etc. opposite to the substrate is determined by the doping profile determined at the time of ion implantation.

따라서, 종래 기술에서는 졍션캐피시턴스의 크기에 영향을 미치는 도핑영역(19)의 확장을 물리적으로 제어하기가 곤란하다.Therefore, in the prior art, it is difficult to physically control the expansion of the doped region 19 which affects the magnitude of the junction capacitance.

상술한 종래의 반도체장치의 소자격리방법은 소자의 싸이즈가 감소함에 따른 도핑영역의 도핑농도 증가에 따른 졍션캐패시턴스의 증가를 방지하지 못하는 문제점이 있다.The device isolation method of the conventional semiconductor device described above has a problem in that it is not possible to prevent an increase in section capacitance caused by an increase in the doping concentration of the doped region as the device size decreases.

따라서, 본 발명의 목적은 소자격리를 위한 반도체기판의 트렌치 주위에 산소 이온주입으로 매몰산화층을 형성한 다음 소자격리막을 완성하여 트랜지스터 소자 등의불순물 확산영역 크기를 감소시키므로서 졍션 캐패시턴스를 감소시키고 소자특성을 개선하도록 한 반도체장치의 트렌치형 소자격리방법을 제공함에 있다.Accordingly, an object of the present invention is to form a buried oxide layer by implanting oxygen ions around the trench of the semiconductor substrate for device isolation, and then complete the device isolation film to reduce the capacitance capacitance and reduce the device capacitance by reducing the size of the impurity diffusion region of the transistor device. It is to provide a trench type device isolation method of a semiconductor device to improve the characteristics.

상기 목적을 달성하기 위해 본 발명에 따른 반도체장치의 소자격리방법은 소자격리영역과 소자활성영역이 정의된 반도체 기판의 상기 소자격리영역 부위를 제거하여 트렌치를 형성하는 제 1 단계와, 상기 트렌치에 인접하는 상기 기판의 소자활성영역에 산소이온 매몰층을 형성하는 제 2 단계와, 상기 산소이온과 상기 기판의 반도체를 반응시켜 상기 소자활성영역으로 확장된 매몰산화층을 형성하는 제 3 단계와, 상기 트렌치를 절연물질로 매립하는 제 4 단계를 포함하여 이루어진다.In order to achieve the above object, a device isolation method of a semiconductor device according to the present invention includes a first step of forming a trench by removing a portion of the device isolation region of a semiconductor substrate in which a device isolation region and a device active region are defined. A second step of forming an oxygen ion buried layer in an adjacent device active region of the substrate; and a third step of forming an buried oxide layer extended to the device active region by reacting the oxygen ions with a semiconductor of the substrate; And a fourth step of filling the trench with an insulating material.

도 1a 내지 도 1d는 종래 기술에 따른 반도체장치의 소자격리방법을 도시하는 공정단면도1A to 1D are process cross-sectional views showing a device isolation method of a semiconductor device according to the prior art.

도 2a 내지 도 2e는 본 발명에 따른 반도체장치의 소자격리방법을 도시하는 공정단면도2A to 2E are process cross-sectional views showing a device isolation method for a semiconductor device according to the present invention.

본 발명은 소자의 크기가 감소함에 따른 졍션캐패시턴스의 증가를 방지하기 위하여 소자격리막 주위에 별도의 매몰형 절연층을 형성하여 도핑영역 크기를 물리적으로 감소시킨다. 이때, 매몰형 절연층은 소자격리막 형성부위가 되는 트렌치의 저부 또는 측면에 산소 이온주입으로 이온매몰층을 형성한 후 산소이온과 기판의 실리콘을 반응시킨 산화실리콘으로 형성한다.The present invention physically reduces the size of the doped region by forming a separate buried insulating layer around the device isolating film in order to prevent the increase of the junction capacitance as the size of the device is reduced. At this time, the buried insulating layer is formed of silicon oxide reacted with oxygen ions and silicon of the substrate after the ion buried layer is formed on the bottom or side of the trench forming the device isolation film by oxygen ion implantation.

따라서, 트랜지스터의 소스/드레인영역인 불순물 확산영역의 형성영역을 감소시켜 졍션면적을 감소시키므로서 기생캐패시턴스인 졍션캐패시턴스를 감소시킨다.Therefore, by reducing the formation area of the impurity diffusion region, which is the source / drain region of the transistor, the section area is reduced and the capacitance of the parasitic capacitance is reduced.

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2e는 본 발명에 따른 반도체장치의 소자격리방법을 도시하는 공정단면도이다.2A to 2E are process cross-sectional views showing a device isolation method of a semiconductor device according to the present invention.

도 2a를 참조하면, 반도체기판(31) 상에 열산화 방법으로 버퍼산화막(33)을 형성하고, 이 버퍼산화막(33) 상에 화학기상증착(Chemical Vapor Deposition : 이하, CVD라 칭함) 방법으로 질화실리콘을 증착하여 패드질화막(35)을 형성한다.Referring to FIG. 2A, a buffer oxide film 33 is formed on a semiconductor substrate 31 by a thermal oxidation method, and chemical vapor deposition (hereinafter, referred to as CVD) is performed on the buffer oxide film 33. Silicon nitride is deposited to form a pad nitride film 35.

그리고, 패드질화막(35) 및 버퍼산화막(33)을 포토리쏘그래피 방법으로 반도체기판(31)이 노출되도록 순차적으로 패터닝하여 소자격리영역과 활성영역을 한정한다.The pad nitride film 35 and the buffer oxide film 33 are sequentially patterned to expose the semiconductor substrate 31 by a photolithography method to define the device isolation region and the active region.

도 2b를 참조하면, 잔류한 패드질화막(35)을 마스크로 사용하여 반도체기판(31)의 노출된 소자격리영역을 소정 깊이로 식각하여 트렌치(T2)를 형성한다. 상기에서 트렌치(T2)를 반응성이온식각(Reactive Ion Etching)이나 플라즈마 식각 등으로 이방성 식각하여 형성한다.Referring to FIG. 2B, the trench T2 is formed by etching the exposed device isolation region of the semiconductor substrate 31 to a predetermined depth by using the remaining pad nitride layer 35 as a mask. The trench T2 is formed by anisotropic etching by reactive ion etching or plasma etching.

그리고, 노출된 트렌치의 기판에 수직으로 산소이온주입을 실시하여 산소이온 매몰층(37)을 형성한다. 본 발명의 실시예에서는 트렌치(T2) 저면부의 기판부위에 산소이온매몰층을 형성하였지만, 다른 실시예로 경사이온주입(tilt ion implantation)으로 트렌치 측면에 산소이온매몰층을 형성할 수 있다.Oxygen ion implantation is then performed perpendicular to the exposed trench substrate to form the oxygen ion buried layer 37. In the exemplary embodiment of the present invention, the oxygen ion investment layer is formed on the substrate portion of the bottom portion of the trench T2. In another embodiment, the oxygen ion investment layer may be formed on the side of the trench by tilt ion implantation.

도 2c를 참조하면, 산소이온매몰층에 열처리를 실시하여 매몰산화층(370)을 활성영역 기판의 표면으로부터 소정깊이에 형성하고 동시에 트렌치 저면에도 형성한다. 따라서, 매몰산화층(370)이 후속공정에서 형성될 트랜지스터의 소스/드레인졍션영역까지 확장되므로 상대적으로 소스/드레인영역이 감소하게 되어 졍션캐패시턴스를 감소시킨다.Referring to FIG. 2C, an oxide ion buried layer is heat-treated to form a buried oxide layer 370 at a predetermined depth from the surface of the active region substrate and at the same time on the bottom of the trench. Therefore, the buried oxide layer 370 extends to the source / drain region of the transistor to be formed in a subsequent process, so that the source / drain region is relatively reduced, thereby reducing the junction capacitance.

그리고, 패드질화막(35) 상에 산화실리콘을 트렌치를 채우도록 CVD 방법으로 증착한다. 그리고, 산화실리콘을 패드질화막(35)이 노출되도록 화학-기계적연마(Chemical-Mechanical Polishing : 이하, CMP라 칭함) 방법 또는 RIE 방법으로 에치 백하여 트렌치 내에만 잔류되도록 한다. 이 때, 트렌치 내에 잔류하는 산화실리콘은 소자를 분리하는 필드산화막(39)이 된다.Then, silicon oxide is deposited on the pad nitride film 35 by CVD to fill the trench. Then, the silicon oxide is etched back by chemical-mechanical polishing (hereinafter referred to as CMP) method or RIE method so that the pad nitride film 35 is exposed to remain only in the trench. At this time, the silicon oxide remaining in the trench becomes a field oxide film 39 that separates the elements.

도 2d를 참조하면, 패드질화막 및 버퍼산화막을 습식 식각 방법으로 순차적으로 제거하여 반도체기판(31)의 활성영역을 노출시킨다. 이 때, 필드산화막(390)의 반도체기판(31)의 표면 보다 높은 부분도 식각되어 단차가 감소된다.Referring to FIG. 2D, the pad nitride layer and the buffer oxide layer are sequentially removed by a wet etching method to expose the active region of the semiconductor substrate 31. At this time, a portion higher than the surface of the semiconductor substrate 31 of the field oxide film 390 is also etched to reduce the level difference.

그리고, 노출된 활성영역의 기판 표면에 게이트산화막(도시안함), 게이트(도시안함), 소스/드레인용 불순물 도핑영역(41)을 형성하여 트랜지스터 소자를 제작한다. 이때, 기판과 반대되는 도전형 불순물 이온주입 및 어닐링 등으로 형성되는 불순물 도핑영역(41)의 깊이(d2)는 이온주입시 결정되는 도핑 프로파일에 의하여 그 형성깊이가 결정되는 대신 활성영역으로 침투한 매몰산화층(370)에 의하여 결정된다.Then, a gate oxide film (not shown), a gate (not shown), and a source / drain impurity doped region 41 are formed on the exposed surface of the substrate to fabricate a transistor device. At this time, the depth d2 of the impurity doping region 41 formed by conducting impurity ion implantation and annealing, which is opposite to the substrate, penetrates into the active region instead of the formation depth of the impurity doping region 41 determined by the ion implantation. It is determined by the buried oxide layer 370.

따라서, 본 발명의 실시예에서는 졍션캐피시턴스의 크기에 영향을 미치는 도핑영역(41)의 확장을 물리적으로 제어하기가 용이하다.Therefore, in the embodiment of the present invention, it is easy to physically control the expansion of the doped region 41 which affects the magnitude of the junction capacitance.

동일한 기술적 사상으로, 전기한 바와 같이, 매몰산화층을 트렌치 측면에 경사이온주입으로 선택적으로 형성하여도 동일한 결과를 가져온다.In the same technical concept, as described above, even if the buried oxide layer is selectively formed on the trench side by inclined ion implantation, the same result is obtained.

따라서, 본 발명은 소자격리막 주위에 별도의 매몰형 절연층을 형성하여 도핑영역 크기를 물리적으로 감소시키므로서 소스/드레인 졍션면적을 축소시켜 기생캐패시턴스인 졍션캐패시턴스를 감소시켜 소자의 고속동작을 개선하는 장점이 있다.Accordingly, the present invention reduces the source / drain junction area by physically reducing the doped region size by forming a separate buried insulating layer around the device isolation layer, thereby reducing the parasitic capacitance, which is the parasitic capacitance, to improve the high-speed operation of the device. There is an advantage.

Claims (5)

소자격리영역과 소자활성영역이 정의된 반도체 기판의 상기 소자격리영역 부위를 제거하여 트렌치를 형성하는 제 1 단계와,A first step of forming a trench by removing the device isolation region portion of the semiconductor substrate in which the device isolation region and the device active region are defined; 상기 트렌치에 인접하는 상기 기판의 소자활성영역에 산소이온 매몰층을 형성하는 제 2 단계와,A second step of forming an oxygen ion buried layer in the device active region of the substrate adjacent to the trench; 상기 산소이온과 상기 기판의 반도체를 반응시켜 상기 소자활성영역으로 확장된 매몰산화층을 형성하는 제 3 단계와,Reacting the oxygen ions with the semiconductor of the substrate to form a buried oxide layer extended to the device active region; 상기 트렌치를 절연물질로 매립하는 제 4 단계로 이루어진 반도체장치의 소자격리방법.And a fourth step of filling the trench with an insulating material. 청구항 1에 있어서,The method according to claim 1, 상기 산소이온 매몰층은 상기 반도체기판 표면과 소정의 각도로 경사지도록 산소 이온주입을 실시하여 형성하는 것이 특징인 반도체장치의 소자격리방법.And the oxygen ion buried layer is formed by implanting oxygen ions so as to be inclined at a predetermined angle with the surface of the semiconductor substrate. 청구항 1에 있어서,The method according to claim 1, 상기 매몰산화층은 상기 기판에 열을 공급하여 형성하는 것이 특징인 반도체장치의 소자격리방법.And the buried oxide layer is formed by supplying heat to the substrate. 청구항 1에 있어서,The method according to claim 1, 상기 산소이온 매몰층을 상기 트렌치에 의하여 노출된 상기 기판의 측면에 형성하는 것이 특징인 특징인 반도체장치의 소자격리방법.And forming the oxygen ion buried layer on the side surface of the substrate exposed by the trench. 청구항 1에 있어서,The method according to claim 1, 상기 산소이온 매몰층을 상기 트렌치의 저부 및 측면에 형성하는 것이 특징인 반도체장치의 소자격리방법.And depositing the oxygen ion buried layer in the bottom and side surfaces of the trench.
KR1020000050201A 2000-08-28 2000-08-28 Method for isolating semiconductor devices KR20020017105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000050201A KR20020017105A (en) 2000-08-28 2000-08-28 Method for isolating semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000050201A KR20020017105A (en) 2000-08-28 2000-08-28 Method for isolating semiconductor devices

Publications (1)

Publication Number Publication Date
KR20020017105A true KR20020017105A (en) 2002-03-07

Family

ID=19685686

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000050201A KR20020017105A (en) 2000-08-28 2000-08-28 Method for isolating semiconductor devices

Country Status (1)

Country Link
KR (1) KR20020017105A (en)

Similar Documents

Publication Publication Date Title
KR101316959B1 (en) Methods of providing electrical isolation and semiconductor structures including same
US6232202B1 (en) Method for manufacturing shallow trench isolation structure including a dual trench
US6069058A (en) Shallow trench isolation for semiconductor devices
KR100340878B1 (en) Method for fabricating soi device
US6245639B1 (en) Method to reduce a reverse narrow channel effect for MOSFET devices
US6420730B1 (en) Elevated transistor fabrication technique
KR100948939B1 (en) Ion implantation of silicon oxide liner to prevent dopant out-diffusion from source/drain extensions
KR100487657B1 (en) mos transistor with recessed gate and method of fabricating the same
KR100379336B1 (en) Fabrication method of isolation region for semiconductor devices
KR20040069515A (en) MOSFET having recessed channel and fabricating method thereof
KR20090040989A (en) Semiconductor device and method of manufacturing a semiconductor device
KR100246197B1 (en) Method for isolating semiconductor
KR20020017105A (en) Method for isolating semiconductor devices
KR100242526B1 (en) Method for isolating semiconductor device
JPH0729971A (en) Manufacture of semiconductor device
KR20020055147A (en) Method for manufacturing semiconductor device
KR100474588B1 (en) Device isolation method of semiconductor device
KR940006671B1 (en) Manufacturing method of semiconductor device having soi structure
KR0171978B1 (en) Method of manufacturing semiconductor device
KR100269623B1 (en) A method of isolating semiconductor devices
KR100589498B1 (en) Method of manufacturing semiconductor device
KR19990070373A (en) Device isolation method of semiconductor device
KR940006685B1 (en) Method of fabricating a semiconductor device of soi structure
KR100266028B1 (en) Semiconductor device and method for fabricating the same
KR20000015298A (en) Isolation method of semiconductor device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination