KR20020016188A - Method of low thermal expansion alloys for precision machine tools - Google Patents

Method of low thermal expansion alloys for precision machine tools Download PDF

Info

Publication number
KR20020016188A
KR20020016188A KR1020000049360A KR20000049360A KR20020016188A KR 20020016188 A KR20020016188 A KR 20020016188A KR 1020000049360 A KR1020000049360 A KR 1020000049360A KR 20000049360 A KR20000049360 A KR 20000049360A KR 20020016188 A KR20020016188 A KR 20020016188A
Authority
KR
South Korea
Prior art keywords
weight
machine tools
carbides
thermal expansion
precision machine
Prior art date
Application number
KR1020000049360A
Other languages
Korean (ko)
Inventor
이재현
이찬규
허민선
Original Assignee
이재현
최영휴
대한민국 (창원대학 공작기계기술연구센터)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이재현, 최영휴, 대한민국 (창원대학 공작기계기술연구센터) filed Critical 이재현
Priority to KR1020000049360A priority Critical patent/KR20020016188A/en
Publication of KR20020016188A publication Critical patent/KR20020016188A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A method for manufacturing a low thermal expansion invar alloy for precision machine tools is provided to manufacture an invar alloy in which mechanical characteristics such as strength, hardness and aging are improved so as to use the invar alloy as a material for the precision machine tools. CONSTITUTION: The method for manufacturing a low thermal expansion invar alloy for precision machine tools comprises the processes of manufacturing an ingot in a vacuum induction melting furnace using a raw material comprising 0.35 wt.% of C having a purity of 99.9 wt.%, 38 wt.% of Ni, 0.5 wt.% of Co, 2 wt.% of Mo, 1 wt.% of Cr, 0.27 wt.% of Mn, 0.48 wt.% of Si, 0.1 wt.% of Ti, maximum 5 wt.% of S and a balance of Fe; hot forging the heated ingot after heating the ingot to 1100 deg.C; manufacturing wire rods of 12 ψ by hot rolling the heated processed material after heating to 1100 deg.C a processed material which is manufacture by grinding the resulting material so as to remove defects formed on the surface of the hot rolled material; performing solution treatment on the wire rods at 1300 deg.C; and carrying out aging treatment on the solution treated wire rods at 800 deg.C for 2 hours.

Description

정밀공작기계용 저열팽창 인바합금 제조방법{Method of low thermal expansion alloys for precision machine tools}Method of manufacturing low thermal expansion inva alloy for precision machine tools {Method of low thermal expansion alloys for precision machine tools}

본 발명을 정밀공작기계용 저열팽창 인바합금에 관한 것으로, 더욱 상세하게는, 99.9중량%의 순도를 가진 철(Fe), 탄소(C),니켈(Ni), 코발트(Co), 몰리브텐(Mo), (탄소)C, 크롬(Cr), 망간(Mn), 티탄(Ti)를 원재료로 하여 진공유도용해로에서 주괴(Ingot)를 제조하고, 1100℃까지 가열한 후 열간단조가공을 수행한 후, 상기 가공재료의 표면결함제거를 위한 연삭작업을 수행하여 가공재료를 1100℃까지 가열한 후 열간 압연을 통하여 12ψ의 선재를 만들어 1100, 1200, 1300℃에서 각각 1시간씩 용체화 처리를 하고, 500, 600, 700, 800℃에서 각각 2시간씩 시효처리를 하여 제조함으로써, 티탄(Ti)계 탄화물이 형성되어 결정립 미세화에 영향을 주게 됨으로써, 공작기계의 정밀도를 높이고, 내구성을 향상시킬 수 있는 인바합금을 국산화 하여 기업의 산업 기술력을 향상시키며, 국제 경쟁력을 갖출 수 있도록 하는 정밀공작기계용 저열팽창 인바합금을 제공한다.The present invention relates to a low thermal expansion inva alloy for precision machine tools, and more particularly, iron (Fe), carbon (C), nickel (Ni), cobalt (Co), molybdenum having a purity of 99.9% by weight. Ingots are prepared in a vacuum induction furnace using (Mo), (carbon) C, chromium (Cr), manganese (Mn), and titanium (Ti) as raw materials, and heated to 1100 ° C, followed by hot forging. After that, the grinding work is performed to remove the surface defects of the processed material, and the processed material is heated to 1100 ° C., followed by hot rolling to form a wire of 12ψ, followed by solution treatment at 1100, 1200, and 1300 ° C. for 1 hour. By aging at 500, 600, 700, and 800 ° C. for 2 hours, titanium (Ti) carbides are formed to affect grain refinement, thereby increasing the precision of machine tools and improving durability. Localization of invar alloy to improve the industrial technology of enterprises, It provides a low thermal expansion Invar alloy precision machine tools to help equip the force.

일반적으로 인바합금은 1896년 Guillaume가 Fe-36중량%Ni 합금이 상온부근에서 약 1.2×10-6/℃ 이하의 작은 열팽창계수(α)를 나타내는 특성을 발견한 이래 정밀계측기, 저열팽창이 요구되는 전자 부품, 송전선 등 다양한 적용이 시도되고 있다.Invar alloys generally require precision measuring instruments and low thermal expansion since Guillaume discovered that the Fe-36 wt% Ni alloy exhibited a small coefficient of thermal expansion (α) of about 1.2 × 10 -6 / ° C or less near room temperature. Various applications such as electronic components and power transmission lines have been attempted.

특히 정밀기계 분야에서 기계 가공의 정밀도를 향상하기 위하여 공작기계 부품에 열팽창이 낮은 인바합금을 적용하는 연구가 활발히 진행 중에 있으며, 정밀 공작기계의 CNC M/C의 spindle housing, wire cutting M/C의 arm, CNC Machine에 장착된 main spindle, head stock body 등 기계 가공의 정밀도에 직접적인 영향을 주는 부품에 인바합금이 적용되고 있다.In particular, in order to improve the precision of machining in the field of precision machinery, the research on applying Invar alloy with low thermal expansion to machine tool parts is being actively conducted, and the spindle housing and wire cutting M / C of CNC M / C of precision machine tools Invar alloy is applied to parts that directly affect the precision of machining, such as arm, main spindle mounted on CNC machine and head stock body.

그러나, Fe-Ni계 인바합금은 단조, 압연, 인발 등의 기계가공성이 풍부한 반면에 기계적 강도가 낮고 절삭가공성, 용접성이 좋지 않은 단점이 있으며, 더욱이, 상기 합금은 자기변태점이 낮아 약 520K이상의 온도에서는 인바효과가 없어져서 고온에서의 응용에 큰 제약을 받고 있는 문제점이 있다.However, Fe-Ni-based invar alloy has the disadvantages of low mechanical strength, good machinability, good weldability, while rich in machinability, such as forging, rolling, drawing, etc. Furthermore, the alloy has a low magnetic transformation point and a temperature of about 520 K or more. There is a problem in that the invar effect is lost and is greatly restricted in the application at high temperatures.

상기한 종래의 문제점을 해결하기 위하여 안출된 본 발명은, 인바합금을 정밀공작기계용 재료로 사용할 수 있도록 하기 위해서 강도,경도,경년열화 등의 기계 적 특성이 향상된 인바합금을 제조하도록 하는 목적을 제공한다.The present invention has been made in order to solve the above-mentioned problems, the object of the present invention is to produce an invar alloy with improved mechanical properties such as strength, hardness, deterioration in order to be able to use the invar alloy as a material for precision machine tools to provide.

상기한 목적은, 본 발명에 따라, 99.9중량%의 순도를 가진 철(Fe), 탄소(C),니켈(Ni), 코발트(Co), 몰리브텐(Mo), 크롬(Cr), 망간(Mn), 규소(Si), 황(S), 티탄(Ti)를 원재료로 하여 진공유도용해로에서 주괴(Ingot)를 제조하고, 1100℃까지 가열한 후 열간단조가공을 수행한 후, 상기 가공재료의 표면결함제거를 위한 연삭작업을 수행하여 가공재료를 1100℃까지 가열한 후 열간 압연을 통하여 12ψ의 선재를 만들어 1100, 1200, 1300℃에서 각각 1시간씩 용체화 처리를 하고, 500, 600, 700, 800℃에서 각각 2시간씩 시효처리하여 인바합금을 제조함으로써 달성된다.The above object is, according to the present invention, iron (Fe), carbon (C), nickel (Ni), cobalt (Co), molybdenum (Mo), chromium (Cr), manganese having a purity of 99.9% by weight. Ingot is prepared in a vacuum induction furnace using (Mn), silicon (Si), sulfur (S), and titanium (Ti) as raw materials, and heated to 1100 ° C., followed by hot forging. Grinding work is performed to remove the surface defects of the material, and the processed material is heated to 1100 ℃ and hot rolled to make 12ψ wire, and solution treatment is performed at 1100, 1200 and 1300 ℃ for 1 hour, respectively, and 500, 600 It is achieved by producing the invar alloy by aging at 700, 800 ℃ for 2 hours each.

이하, 본 발명의 구성을 설명하면 다음과 같다.Hereinafter, the configuration of the present invention will be described.

99.9중량%의 순도를 가진 탄소(C) 0.35중량%, 니켈(Ni) 38중량%, 코발트(Co) 0.5중량%, 몰리브텐(Mo) 2중량%, 크롬(Cr) 1중량%, 망간(Mn) 0.27중량%,규소(Si) 0.48중량%, 티탄(Ti) 0.1중량%, 황(S) 최대 5중량%과 잔여 철(Fe)로 조성한다.0.35% by weight of carbon (C) with a purity of 99.9% by weight, 38% by weight of nickel (Ni), 0.5% by weight of cobalt (Co), 2% by weight of molybdenum (Mo), 1% by weight of chromium (Cr), manganese (Mn) 0.27% by weight, silicon (Si) 0.48% by weight, titanium (Ti) 0.1% by weight, sulfur (S) up to 5% by weight and residual iron (Fe).

상기한 구성으로 이루어진 본 발명 인바합금의 제조방법을 설명하면 다음과 같다.Referring to the production method of the present invention Inba alloy consisting of the above configuration is as follows.

먼저, 99.9중량%의 순도를 가진 탄소(C) 0.35중량%, 니켈(Ni) 38중량%, 코발트(Co) 0.5중량%, 몰리브텐(Mo) 2중량%, 크롬(Cr) 1중량%, 망간(Mn) 0.27중량%,규소(Si) 0.48중량%, 티탄(Ti) 0.1중량%, 황(S) 최대 5중량%과 잔여 철(Fe)로 조성된 원재료를 진공유도용해로에서 주괴(Ingot)로 제조한다.First, 0.35% by weight of carbon (C) having a purity of 99.9% by weight, 38% by weight of nickel (Ni), 0.5% by weight of cobalt (Co), 2% by weight of molybdenum (Mo), and 1% by weight of chromium (Cr) , Raw material composed of 0.27% manganese (Mn), 0.48% silicon (Si), 0.1% titanium (Ti), up to 5% sulfur (S) and residual iron (Fe) in a vacuum induction furnace Ingot).

그리고, 상기 주괴를 1100℃까지 가열한 후 열간단조가공을 수행하며, 상기 가공재료의 표면결함제거를 위해 그 표면을 연삭하는 연삭작업을 수행한다.Then, the ingot is heated to 1100 ° C and hot forging is performed, and the grinding operation for grinding the surface to remove the surface defects of the processing material.

또한, 상기 가공재료를 1100℃까지 가열한 후 열간 압연을 통하여 12ψ의 선재를 만들어 1300℃에서 용체화 처리를 한 후, 800℃에서 2시간 시효처리한다.In addition, after heating the processing material to 1100 ℃ and hot wire rolling to make a 12 ψ wire and solution treatment at 1300 ℃, and then aged at 800 ℃ 2 hours.

상기한 제조방법에 의해 제조된 본 발명의 인바합금의 실시예를 설명하면 다음과 같다.Referring to the embodiment of the invar alloy of the present invention prepared by the above-described manufacturing method as follows.

먼저,상기한 탄소(C) 0.35중량%, 니켈(Ni) 38중량%, 코발트(Co) 0.5중량%, 몰리브텐(Mo) 2중량%, 크롬(Cr) 1중량%, 망간(Mn) 0.27중량%,규소(Si) 0.48중량%, 황(S) 최대 5중량%와 잔여 철(Fe)로 조성된 시료1과,First, the above-mentioned carbon (C) 0.35% by weight, nickel (Ni) 38% by weight, cobalt (Co) 0.5% by weight, molybdenum (Mo) 2% by weight, chromium (Cr) 1% by weight, manganese (Mn) Sample 1 composed of 0.27% by weight, 0.48% by weight of silicon (Si), up to 5% by weight of sulfur (S) and residual iron (Fe),

탄소(C) 0.35중량%, 니켈(Ni) 38중량%, 코발트(Co) 0.5중량%, 몰리브텐(Mo) 2중량%, 크롬(Cr) 1중량%, 망간(Mn) 0.27중량%,규소(Si) 0.48중량%,황(S) 최대 5중량%, 바나듐(V) 0.1중량%와 잔여 철(Fe)로 조성된 시료2와,0.35 wt% carbon (C), 38 wt% nickel (Ni), 0.5 wt% cobalt (Co), 2 wt% molybdenum (Mo), 1 wt% chromium (Cr), 0.27 wt% manganese (Mn), Sample 2 composed of 0.48% by weight of silicon (Si), up to 5% by weight of sulfur (S), 0.1% by weight of vanadium (V), and residual iron (Fe),

탄소(C) 0.35중량%, 니켈(Ni) 38중량%, 코발트(Co) 0.5중량%, 몰리브텐(Mo) 2중량%, 크롬(Cr) 1중량%, 망간(Mn) 0.27중량%,규소(Si) 0.48중량%,황(S) 최대 5중량%, 니오브(Nb) 0.1중량%와 잔여 철(Fe)로 조성된 시료3과,0.35 wt% carbon (C), 38 wt% nickel (Ni), 0.5 wt% cobalt (Co), 2 wt% molybdenum (Mo), 1 wt% chromium (Cr), 0.27 wt% manganese (Mn), Sample 3 composed of 0.48 wt% of silicon (Si), up to 5 wt% of sulfur (S), 0.1 wt% of niobium (Nb), and residual iron (Fe);

탄소(C) 0.35중량%, 니켈(Ni) 38중량%, 코발트(Co) 0.5중량%, 몰리브텐(Mo) 2중량%, 크롬(Cr) 1중량%, 망간(Mn) 0.27중량%,규소(Si) 0.48중량%,황(S) 최대 5중량%, 티타늄(Ti) 0.1중량%와 잔여 철(Fe)로 조성된 시료4를 표1과 같이 마련하여 진공유도용해로에서 각각 10kg의 주괴(Ingot)를 제조한다.0.35 wt% carbon (C), 38 wt% nickel (Ni), 0.5 wt% cobalt (Co), 2 wt% molybdenum (Mo), 1 wt% chromium (Cr), 0.27 wt% manganese (Mn), 10 kg of ingot in the vacuum induction furnace were prepared by preparing a sample 4 composed of 0.48% by weight of silicon (Si), 5% by weight of sulfur (S), 0.1% by weight of titanium (Ti) and residual iron (Fe). (Ingot) is manufactured.

조성종류Type of composition FeFe CC NiNi CoCo MoMo CrCr MnMn SiSi SS vv NbNb TiTi 시료1Sample 1 bal.bal. 0.350.35 3838 0.50.5 22 1One 0.270.27 0.480.48 <5<5 -- -- -- 시료2Sample 2 bal.bal. 0.350.35 3838 0.50.5 22 1One 0.270.27 0.480.48 <5<5 0.10.1 -- -- 시료3Sample 3 bal.bal. 0.350.35 3838 0.50.5 22 1One 0.270.27 0.480.48 <5<5 -- 0.10.1 -- 시료4Sample 4 bal.bal. 0.350.35 3838 0.50.5 22 1One 0.270.27 0.480.48 <5<5 -- -- 0.10.1

그리고, 상기 진공유도용해로에서 제조된 각 시료의 주괴는 1100℃까지 가열한 후 열간단조를 행하여 50mm이하×50mm이하×750mm이상의 입방형으로 가공한 후가공된 재료의 표면결함을 제거하기 위해 연삭을 행하였으며, 이 재료를 다시 1100℃까지 가열한 후 열간 압연을 통하여 12ψ의 선재(이하, 시편이라 함)를 만들었다. 이렇게 만들어진 시편들을 1100, 1200, 1300℃에서 각각 1시간씩 용체화 처리를 한 후 500, 600, 700, 800℃에서 각각 2시간씩 시효처리를 한다.The ingot of each sample manufactured in the vacuum induction furnace is heated to 1100 ° C., and then hot forged, and then processed into a cubic shape of 50 mm or less × 50 mm or less × 750 mm or more, followed by grinding to remove surface defects of the processed material. The material was heated up to 1100 ° C. and then hot rolled to make a wire of 12ψ (hereinafter referred to as a specimen). The specimens thus prepared were subjected to solution treatment for 1 hour at 1100, 1200, and 1300 ° C, respectively, and then aged for 2 hours at 500, 600, 700, and 800 ° C.

그리고, 미세조직은 100㎖ 염산, 7g 염화철, 2g 염화구리, 5㎖ 질산, 200㎖ 메탄올, 100㎖ 증류수를 혼합한 에칭액으로 에칭시켜 광학현미경, 주사전자현미경(Hitachi S-2400), 전계방사형 주자전자현미경(FEG-SEM, Hitachi S-4200)으로 관찰하고, 탄화물의 형상과 종류를 파악하기 위해 투과전자현미경(JEOL H-9000NAR)으로 관찰한다.The microstructure was etched with an etchant mixed with 100 ml hydrochloric acid, 7 g iron chloride, 2 g copper chloride, 5 ml nitric acid, 200 ml methanol, and 100 ml distilled water, followed by an optical microscope, a scanning electron microscope (Hitachi S-2400), and a field emission runner. Observation with an electron microscope (FEG-SEM, Hitachi S-4200) and transmission electron microscope (JEOL H-9000NAR) to determine the shape and type of carbide.

이하, 광학현미경으로 관찰된 미세조직도를 표2내지 표4에서 설명하면 다음과 같다.Hereinafter, the microstructures observed by the optical microscope will be described in Tables 2 to 4.

시료1Sample 1 시료2Sample 2 시료3Sample 3 시료4Sample 4 500℃500 ℃ 600℃600 ℃ 700℃700 ℃ 800℃800 ℃

표1에서 알 수 있듯이 1100℃에서 1시간동안 용체화 처리를 한 후 500, 600, 700, 800℃에서 각각 2시간씩 시효처리 했을 때, 각 시료들의 미세조직의 변화는 표2와 같으며, 시편4(Ti첨가)가 시편1(무첨가)에 비해 결정립 크기가 훨씬 미세해졌음을 알 수 있는데, 이는 티탄(Ti)계 탄화물이 미세하게 석출되어 피닝(pinning) 효과를 일으킴으로써 인바합금의 단상 오스테나이트의 결정립 성장을 방해했기 때문임을 알 수 있다.As can be seen from Table 1, after 1-hour solution solution at 1100 ℃ and aged for 2 hours at 500, 600, 700, 800 ℃, respectively, the microstructure change of each sample is shown in Table 2, It can be seen that the grain size of the specimen 4 (Ti addition) is much finer than that of the specimen 1 (no addition), which is due to the fine precipitation of titanium (Ti) carbide, which causes a pinning effect. It can be seen that it interfered with the grain growth of the knight.

또한, 시편4의 경우에는 재결정이 일어난 것이 관찰되었는데, 이는 티탄(Ti)계 탄화물이 핵생성 자리가 됨으로써 재결정이 일어나 결정립 미세화가 이루어진 것이다.In addition, in the case of specimen 4, it was observed that recrystallization occurred, which is caused by recrystallization as the titanium (Ti) carbide becomes a nucleation site, resulting in grain refinement.

그리고, 시편1의 경우에는 시효온도에 따라 결정립 크기의 변화가 없는데,이는 시편1은 어떠한 탄화물 형성원소도 첨가되지 않았고, 따라서 탄화물이 생성되지 않음으로써 시효처리의 효과가 전혀 없었기 때문이다.In the case of Specimen 1, there was no change in grain size according to the aging temperature, because Specimen 1 had no carbide forming element added, and therefore, no carbide was produced, thus having no effect of aging treatment.

No.1No.1 No.2No.2 No.3No.3 No.4No.4 500℃500 ℃ 600℃600 ℃ 700℃700 ℃ 800℃800 ℃

또한, 표3은 1200℃에서 각각 1시간 용체화 처리 후 500, 600, 700, 800℃에서 각각 2시간 시효처리 했을 때, 각 시편들의 미세조직의 변화를 관찰한 결과이며, 표3에서 알 수 있듯이 용체화 처리 온도의 증가함에 따라 1100℃ 용체화 처리에 비해 결정립 크기가 증가되는 현상을 볼 수 있다. 특히, 시편4의 1200℃ 경우에는 일부의 결정립이 아주 거대하게 성장하는 비정상결정립성장(abnormal grain growth)이 일어나는 것을 볼 수 있는데, 이는 앞에서도 언급했듯이 티탄(Ti)계 탄화물의 석출로 인해서 결정립 성장을 억제했기 때문이다.In addition, Table 3 shows the results of observing changes in the microstructure of the specimens after aging at 500, 600, 700, and 800 ° C for 2 hours after solution treatment at 1200 ° C for 1 hour, respectively. As can be seen, as the solution temperature increases, the grain size increases compared to the solution solution 1100 ° C. In particular, at 1200 ° C of specimen 4, it can be seen that abnormal grain growth occurs, in which some grains grow enormously. As mentioned above, grain growth is caused by precipitation of titanium carbide. Because it suppressed.

시료1Sample 1 시료2Sample 2 시료3Sample 3 시료4Sample 4 500℃500 ℃ 600℃600 ℃ 700℃700 ℃ 800℃800 ℃

그리고, 표4에서 시편4의 1300℃ 경우에는 1200℃에서 보았던 비정상결정립성장이 나타나지 않고, 결정립의 크기가 대체적으로 비슷한 것을 볼 수 있는데, 이는 용체화 처리온도가 증가함에 따라 티탄(Ti)계 탄화물에 의한 결정립성장 억제효과가 영향을 미치지 못했기 때문이다.In Table 4, at 1300 ° C. of specimen 4, abnormal grain growth was not observed at 1200 ° C., and the grain size was generally similar, which is due to the increase in solution treatment temperature. This is because the effect of inhibiting grain growth due to the erosion was not affected.

한편, 광학현미경 관찰에서 크기가 미세해서 볼 수 없었던 탄화물의 전체적인 분포를 보기 위해 주사전자현미경으로 관찰한 관찰결과를 표5에서 설명하면 다음과 같다.On the other hand, in order to see the overall distribution of carbides that could not be seen because of the small size in the optical microscope observation observed in the scanning electron microscope in Table 5 as follows.

시편1Psalm 1 시편2Psalm 2 시편3Psalm 3 시편4Psalm 4 500℃500 ℃ 600℃600 ℃ 700℃700 ℃ 800℃800 ℃

먼저, 1100℃ 용체화 처리후 500, 600, 700, 800℃에서 각각 시효처리한 시편의 관찰결과를 표5에 나타내었으며, 표5의 주사전자현미경 사진을 보면 시편4가 시편1보다 탄화물들이 입계와 입내에 골고루 분포하는 것을 볼 수 있으며, 시편4의 경우에는 시효처리온도가 증가할수록 탄화물들이 입계로 이동하며 특히, 800℃ 시효처리 시편의 경우에 입계로 탄화물들이 많이 이동한 것을 알 수 있다. 이는 시효처리 온도가 증가함에 따라 입내에 있던 탄화물들이 불안정한 입계로 이동했기 때문이다. 그리고, 시편1의 경우에는 탄화물 형성원소가 첨가되지 않았기 때문에 표5에서 알 수 있듯이 탄화물을 관찰할 수 없다.First, the observation results of the specimens aged at 500, 600, 700, and 800 ° C after the solution treatment at 1100 ° C are shown in Table 5. In the case of specimen 4, it can be seen that the carbides move to the grain boundary as the aging temperature increases. This is because carbides in the mouth moved to unstable grain boundaries as the aging temperature increased. In the case of specimen 1, since no carbide forming element was added, carbides could not be observed as shown in Table 5.

또한, 시편1이나 시편4 모두 입내와 입계에 약 2∼4㎛ 크기의 용체화 처리시에 미용해된 편석물을 관찰할 수 있는 바, 이것은 용체화 처리온도가 1200, 1300℃로 증가함에 따라 편석물이 기지에 용해됨으로써 그 양이 감소하였으나 완전히 제거되지는 않았기 때문이다(표6, 표7 참조).In addition, both specimens 1 and 4 could observe undissolved segregates during the solution treatment of about 2 to 4 μm in the grain size and grain boundaries, as the solution treatment temperature increased to 1200 and 1300 ° C. As segregates dissolved in the matrix, their amount was reduced but not completely removed (see Tables 6 and 7).

시편1Psalm 1 시편2Psalm 2 시편3Psalm 3 시편4Psalm 4 500℃500 ℃ 600℃600 ℃ 700℃700 ℃ 800℃800 ℃

시편1Psalm 1 시편2Psalm 2 시편3Psalm 3 시편4Psalm 4 500℃500 ℃ 600℃600 ℃ 700℃700 ℃ 800℃800 ℃

그리고, 시편2, 시편3의 경우에는 시편1에 비해 입계와 입내에 탄화물들의 양이 적은 것을 볼 수 있는데, 이것은 시편4에 비해 상대적으로 적은 탄화물들의 양은 결정립들이 성장하는 것을 방해할 수 있는 피닝(pinning)효과를 일으키지 못하기 때문이다.In addition, in the case of specimens 2 and 3, the amount of carbides in the grain boundary and in the mouth is smaller than in specimen 1, which is because the relatively small amount of carbides compared to specimen 4 may cause the pinning ( It does not cause pinning effect.

일반적인 주사전자현미경 관찰에 의해서는 탄화물의 전체적인 분포를 볼 수는 있었으나, 하나하나의 탄화물들의 형상과 크기를 자세히 관찰할 수는 없기 때문에, 분해능이 우수한 전계방사형 주사전자현미경(FEG-SEM)으로 1100℃에서 1시간 용체화 처리 후 600, 800℃에서 각각 2시간씩 시효처리 한 시편을 관찰한 후, 그 사진을 표8에 나타내었다.The general distribution of carbides could be seen by normal scanning electron microscopy, but since the shape and size of each carbide could not be observed in detail, the field emission scanning electron microscopy (FEG-SEM) with excellent resolution 1100. After observing the specimens aged at 600 ° C. and 800 ° C. for 2 hours after the solution treatment at 1 ° C. for 1 hour, the photographs are shown in Table 8.

시편1Psalm 1 시편2Psalm 2 시편3Psalm 3 시편4Psalm 4 600℃600 ℃ 800℃800 ℃

그리고, 시편4의 경우에 탄화물들은 시효처리 온도가 600℃ 일 때 50∼90nm 크기 구상의 탄화물들이 서로 독립적으로 떨어져서 존재하는 것을 볼 수 있으나, 온도가 800℃로 증가함에 따라 탄화물들이 서로 결합되어서 100∼200nm 정도로 커지는 과시효 현상이 나타나는 것을 볼 수 있다. 이는 상기한 표5에서 시효처리 온도가 증가함에 따라 탄화물들의 양이 증가하여 800℃에서는 탄화물의 크기가 커져보이는 것과 일치하고 있다.And, in the case of specimen 4, the carbides can be seen that 50 ~ 90nm spherical carbides are separated independently from each other when the aging temperature is 600 ℃, but the carbides are bonded to each other as the temperature increases to 800 ℃ It can be seen that the phenomenon of overaging, which is increased to about 200 nm, appears. This is consistent with the increase in the amount of carbides as the aging temperature in Table 5 above increases the size of carbides at 800 ° C.

또한,시편1의 경우에는 석출물들이 빠져나간 것으로 추측되는 자리들만이 남아있는데, 이는 인바합금 특유의 오스테나이트 기지와 석출물간의 결합력이 약해서 에칭시 석출물들이 빠져나갔기 때문이다.In addition, in the case of specimen 1, only the sites where the precipitates are estimated to be left remain, because the binding strength between the inva alloy-specific austenite base and the precipitates is weak, and the precipitates are removed during etching.

그리고, 시편2, 시편3에서는 200∼400nm 크기의 탄화물들을 관찰할 수 있었으며, 이는 시편4의 탄화물에 비해 3∼4배 정도 크며, 탄화물의 양은 앞의 주사전자현미경 관찰에서 보았듯이 탄화물 양이 적었고, 그 분포가 입계를 중심으로 모여있는 것을 관찰할 수 있었다. 탄화물의 모양은 대체적으로 원판상의 형태이며, 사진에서 탄화물들이 없는 구멍을 볼 수 있는데 이는 연마, 에칭시에 기계적, 화학적 작용에 의해 제거된 것이다.In specimens 2 and 3, carbides of 200-400 nm in size were observed, which was about 3 to 4 times larger than the carbides in specimen 4, and the amount of carbides was small as seen in the scanning electron microscope. As a result, it was observed that the distribution was concentrated around the grain boundary. The shape of the carbide is generally disc-shaped, and the picture shows holes without carbides, which are removed by mechanical and chemical action during polishing and etching.

한편, Zener에 의하면 결정립 성장 억제 기구는 분산입자의 pinnig force와 결정립 성장 구동력간에 균형을 고려할 때 수학식1과 같이 나타낼 수 있다.On the other hand, according to Zener, the grain growth suppression mechanism can be expressed as Equation 1 when considering the balance between the pinnig force and the grain growth driving force of the dispersed particles.

D : 오스테나이트 결정립 크기D: austenite grain size

d : 석출물 입자 직경d: precipitate particle diameter

fV: 석출물의 체적분율f V : volume fraction of precipitate

ξ″: 2/3ξ ″: 2/3

따라서, Zener식에 의하면 결정립 성장 억제 효과는 탄화물 크기가 작을수록, 탄화물의 체적분율이 클수록 증가함을 알 수 있으며, 상기한 주사전자현미경, 전계방사형 주사전자현미경 관찰에서 시편2, 시편3의 탄화물의 크기가 시편4에 비해 크기가 3∼4배 정도 크며, 탄화물의 체적분율이 작은데, 이러한 조건을 Zener식에 적용하면 시편4에서 관찰되어지는 비정상결정립성장이, 시편2, 시편3에서 관찰되어지지 않는 이유가 설명된다. 즉, 상기 시편2, 시편3에서의 결정립성장을 억제하는 힘이 시편4에 비해 작기 때문에 비정상결정립성장이 나타나지 않게 되는 것이다.Therefore, according to the Zener equation, the grain growth inhibitory effect increases as the size of carbide decreases and the volume fraction of carbide increases, and the carbides of specimens 2 and 3 are observed in the scanning electron microscope and the field emission scanning electron microscope. The size of is 3 to 4 times larger than that of specimen 4, and the volume fraction of carbide is small. When these conditions are applied to Zener equation, abnormal grain growth observed in specimen 4 is observed in specimen 2 and specimen 3. The reason for the loss is explained. That is, since the force for inhibiting grain growth in the specimens 2 and 3 is smaller than that of the specimen 4, abnormal grain growth does not appear.

한편, 시편4의 전계방사형 주사전자현미경에서 관찰되어지는 50∼90nm정도의 구상 탄화물들의 종류를 분석하기 위해 1100℃ 1시간 용체화처리 후 600, 800℃에서 각각 2시간씩 시효처리한 시편의 투과전자현미경(TEM) 사진과 EDS 분석 결과를 표9에 나타내었다.On the other hand, in order to analyze the types of spherical carbides of about 50 to 90 nm observed in the field emission scanning electron microscope of Specimen 4, permeation of the specimens aged at 600 and 800 ° C for 2 hours after solution treatment at 1100 ° C for 1 hour Electron microscopy (TEM) images and EDS analysis results are shown in Table 9.

600℃600 ℃ 600℃600 ℃ 600℃600 ℃ 800℃800 ℃ 800℃800 ℃ ImageImage EDSEDS

그리고, 투과전자현미경 분석결과 시효처리의 온도에 따라 여러 가지 탄화물들이 발견되었는데, 시효처리 온도가 600℃인 경우에는 구형과 판상형의 3종류의 탄화물들이 관찰되었으며, 이것들의 EDS 분석결과 몰리브텐(Mo)과 티탄(Ti)의 비율이 각각 다른 (Mo, Ti)계 탄화물이었다.As a result of transmission electron microscopy analysis, various carbides were found according to the temperature of the aging treatment. When the aging temperature was 600 ° C, three kinds of carbides, spherical and plate-shaped, were observed. (Mo, Ti) carbides having different ratios of Mo) and titanium (Ti).

또한, 시효처리온도가 800℃인 경우에도 구형과 판상형의 2종류의 탄화물이관찰되었으며, 구형의 탄화물 경우에는 EDS 분석결과 600℃ 시효 처리한 시편과 동일한 (Mo, Ti)계 탄화물이었으며, 판상형의 탄화물의 경우에는 EDS 분석결과 상기한 바와는 달리 몰리브텐(Mo)계 탄화물을 확인할 수 있었다.In addition, even when the aging temperature was 800 ° C, two types of carbides, spherical and plate-shaped, were observed. In the case of spherical carbides, the EDS analysis showed that the same (Mo, Ti) -based carbides as the 600 ° C-aging specimens were used. In the case of carbides, molybdenum (Mo) -based carbides were identified, unlike the above-mentioned EDS analysis.

따라서, 상기 시편4의 결정립 성장을 억제하여 비정상결정립성장을 나타나게 하는 주요한 탄화물들은 투과전자현미경 분석 결과에서 보듯이 (Mo, Ti)계 탄화물과 몰리브텐(Mo)계 탄화물임을 알 수 있다.Therefore, it can be seen that the major carbides that suppress the grain growth of the specimen 4 to exhibit abnormal grain growth are (Mo, Ti) carbide and molybdenum (Mo) carbide as shown in the transmission electron microscope analysis results.

No.2 시편의 투과전자현미경 관찰 결과를 표10에 나타내었다.The transmission electron microscope observation results of the No. 2 specimen are shown in Table 10.

600℃600 ℃ 600℃600 ℃ 800℃800 ℃ ImageImage EDSEDS

그리고, 시편2의 시효처리 온도가 600℃ 경우에는 구형과 판상형의 2종류의 탄화물을 관찰할 수 있었으며, 이것의 EDS 분석 결과 몰리브텐(Mo)으로 이루어진 몰리브텐(Mo)계 탄화물이었다.When the aging treatment temperature of Specimen 2 was 600 ° C., two types of carbides, spherical and plate-shaped, were observed. As a result of the EDS analysis, molybdenum (Mo) carbides made of molybdenum (Mo) were observed.

그러나, 상기 시편2에서 관찰된 2종류의 탄화물의 EDS 분석결과가 거의 일치하고, 이것의 크기가 앞의 전계방사형 주사현미경에서 관찰된 탄화물의 평균 크기범위 200∼400nm에 들어가는 것으로 보아서 하나의 판상 몰리브텐(Mo)계 탄화물의 앞쪽과 옆쪽에서 관찰된 결과이다.However, the results of EDS analysis of the two types of carbides observed in Specimen 2 were almost identical, and the size of these carbides was found to be within the average size range of 200-400 nm of carbides observed in the field emission scanning microscope. These results were observed from the front and side of the ribtene (Mo) carbide.

또한, 시편2의 시효처리 온도가 800℃ 경우에는 1종류의 탄화물들을 관찰할 수 있었으며, 이것의 EDS 분석결과 600℃에서 나타난 탄화물들보다 몰리브텐(Mo)의 양이 적은 몰리브텐(Mo)계 탄화물이다.Also, when the aging treatment temperature of Specimen 2 was 800 ° C, one kind of carbides could be observed, and molybdenum (Mo) having a smaller amount of molybdenum (Mo) than the carbides shown at 600 ° C by EDS analysis thereof. ) Carbides.

그리고, 시편3의 투과전자현미경 관찰 결과는 표11에 나타내었다.The transmission electron microscope observation results of the specimen 3 are shown in Table 11.

800℃800 ℃ ImageImage EDSEDS

시편3의 시효처리 온도가 600℃ 경우에는 앞의 전계방사형 주사전자현미경에서 보았듯이 탄화물들의 양이 많지 않기 때문에 관찰하지 못하였고, 800℃ 경우에는 1종류의 탄화물을 관찰할 수 있었는데, 이것의 EDS 분석결과 몰리브텐(Mo)로 이루어진 몰리브텐(Mo)계 탄화물이다.When the aging temperature of Specimen 3 was 600 ° C, as observed in the field emission scanning electron microscope, the amount of carbides was not observed. At 800 ° C, one type of carbide was observed. Analysis results are molybdenum (Mo) carbide consisting of molybdenum (Mo).

이상에서 살펴본 바와 같이 시편4의 경우 티탄(Ti)계 탄화물의 피닝(pinning)효과에 의한 결정립 성장 방해와 티탄(Ti)계 탄화물이 재결정 자리 역할을 함으로써, 시편1,시편2,시편3합금보다 결정립의 크기가 미세해짐을 알 수있고, 시편4의 용체화처리 후 시효처리 온도가 증가할 수록 탄화물의 양이 증가하며, 티탄(Ti), (Ti, Mo)계 탄화물이 형성되어 결정립 미세화에 영향을 줌으로써 인바합금이 고강도의 기계적 특성을 갖을 수 있게 하는 것이다.As described above, in the case of specimen 4, the growth of grain due to the pinning effect of titanium (Ti) carbide and the titanium (Ti) carbide act as recrystallization sites. It can be seen that the grain size becomes fine, the amount of carbide increases as the aging temperature increases after solution treatment of specimen 4, and titanium (Ti), (Ti, Mo) based carbides are formed to reduce grain size. Influence allows the invar alloy to have high mechanical properties.

상기한 바와 같이 본 발명은 정밀공작기계의 고속 작동시 열적 안정성 및 고강도를 유지할 수 있는 저열팽창 합금을 개발하게 됨으로써, 정밀공작기계 부품에 신소재 기술을 적용할 수 있게 되었으며, 이로 인해 공작기계의 정밀도를 향상시키고 내구성이 강화할 수 있게 되어 기업의 산업 기술력을 향상시키며, 나아가서 인바합금의 국산화에 따른 국제경쟁력을 제고시킬 수 있는 매우 훌륭한 발명이다.As described above, the present invention develops a low thermal expansion alloy capable of maintaining thermal stability and high strength during high speed operation of a precision machine tool, thereby enabling the application of a new material technology to a machine tool component, thereby increasing the precision of a machine tool. It is an excellent invention that can improve the industrial technology of the enterprise by improving the durability and strengthening the durability, and further enhance the international competitiveness by the localization of Invar alloy.

Claims (2)

99.9중량%의 순도를 가진 탄소(C) 0.35중량%, 니켈(Ni) 38중량%, 코발트(Co) 0.5중량%, 몰리브텐(Mo) 2중량%, 크롬(Cr) 1중량%, 망간(Mn) 0.27중량%,규소(Si) 0.48중량%, 티탄(Ti) 0.1중량%, 황(S) 최대 5중량%과 잔여 철(Fe)로 조성되는 것을 특징으로 하는 정밀공작기계용 저열팽창 인바합금.0.35% by weight of carbon (C) with a purity of 99.9% by weight, 38% by weight of nickel (Ni), 0.5% by weight of cobalt (Co), 2% by weight of molybdenum (Mo), 1% by weight of chromium (Cr), manganese (Mn) 0.27% by weight, silicon (Si) 0.48% by weight, titanium (Ti) 0.1% by weight, sulfur (S) up to 5% by weight and low thermal expansion for precision machine tools, characterized in that the composition is composed of iron (Fe) Invar alloy. 99.9중량%의 순도를 가진 탄소(C) 0.35중량%, 니켈(Ni) 38중량%, 코발트(Co) 0.5중량%, 몰리브텐(Mo) 2중량%, 크롬(Cr) 1중량%, 망간(Mn) 0.27중량%,규소(Si) 0.48중량%, 티탄(Ti) 0.1중량%, 황(S) 최대 5중량%과 잔여 철(Fe)로 조성된 원재료를 진공유도용해로에서 주괴(Ingot)를 제조하고, 1100℃까지 가열한 후 열간단조가공을 수행하며, 상기 가공재료의 표면결함제거를 위한 연삭작업을 수행하여 가공재료를 1100℃까지 가열한 후 열간 압연을 통하여 12ψ의 선재를 만들어 1300℃에서 용체화 처리를 하고, 800℃에서 2시간 시효처리함을 특징으로 하는 정밀공작기계용 저열팽창 인바합금의 제조방법.0.35% by weight of carbon (C) with a purity of 99.9% by weight, 38% by weight of nickel (Ni), 0.5% by weight of cobalt (Co), 2% by weight of molybdenum (Mo), 1% by weight of chromium (Cr), manganese (Mn) 0.27% by weight, silicon (Si) 0.48% by weight, titanium (Ti) 0.1% by weight, sulfur (S) up to 5% by weight, and raw materials composed of residual iron (Fe) ingot in a vacuum induction furnace After manufacturing, and heated to 1100 ℃ hot forging processing, performing a grinding operation for removing the surface defects of the processing material, heating the processing material to 1100 ℃ and made a wire of 12ψ through hot rolling 1300 A process for producing a low thermal expansion inva alloy for precision machine tools, wherein the solution is subjected to a solution treatment at 캜, and aged at 800 캜 for 2 hours.
KR1020000049360A 2000-08-24 2000-08-24 Method of low thermal expansion alloys for precision machine tools KR20020016188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000049360A KR20020016188A (en) 2000-08-24 2000-08-24 Method of low thermal expansion alloys for precision machine tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000049360A KR20020016188A (en) 2000-08-24 2000-08-24 Method of low thermal expansion alloys for precision machine tools

Publications (1)

Publication Number Publication Date
KR20020016188A true KR20020016188A (en) 2002-03-04

Family

ID=19685017

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000049360A KR20020016188A (en) 2000-08-24 2000-08-24 Method of low thermal expansion alloys for precision machine tools

Country Status (1)

Country Link
KR (1) KR20020016188A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10625289B2 (en) 2016-09-12 2020-04-21 Samsung Display Co., Ltd. Mask and method of manufacturing mask assembly including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597453A (en) * 1979-01-18 1980-07-24 Daido Steel Co Ltd Alloy with high strength and low thermal expansion
JPS5811767A (en) * 1981-07-14 1983-01-22 Furukawa Electric Co Ltd:The Alloy of high strength and low coefficient of thermal expansion
KR100261678B1 (en) * 1998-04-18 2000-07-15 홍영철 Invar type slab and a wire rod having a circular shape, etc, and a method of producing thereof
KR100291463B1 (en) * 1998-12-26 2001-06-01 홍영철 Ultra High Strength Invar Alloy Wire and Manufacturing Method Thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597453A (en) * 1979-01-18 1980-07-24 Daido Steel Co Ltd Alloy with high strength and low thermal expansion
JPS5811767A (en) * 1981-07-14 1983-01-22 Furukawa Electric Co Ltd:The Alloy of high strength and low coefficient of thermal expansion
KR100261678B1 (en) * 1998-04-18 2000-07-15 홍영철 Invar type slab and a wire rod having a circular shape, etc, and a method of producing thereof
KR100291463B1 (en) * 1998-12-26 2001-06-01 홍영철 Ultra High Strength Invar Alloy Wire and Manufacturing Method Thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10625289B2 (en) 2016-09-12 2020-04-21 Samsung Display Co., Ltd. Mask and method of manufacturing mask assembly including the same
US11207705B2 (en) 2016-09-12 2021-12-28 Samsung Display Co., Ltd. Mask and method of manufacturing mask assembly including the same

Similar Documents

Publication Publication Date Title
JP4493029B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JP4179024B2 (en) High speed tool steel and manufacturing method thereof
KR101418775B1 (en) Beta type titanium alloy with low elastic modulus and high strength
JP6047164B2 (en) TWIP and nano-twinned austenitic stainless steel and method for producing the same
JP4548652B2 (en) Α-β type titanium alloy with excellent machinability
KR102178331B1 (en) Medium-entropy alloys and Manufacturing method of the same
TW201713785A (en) Steel for mold and mold
TWI725536B (en) Cu-ni-al copper alloy plate and method for producing the same and conductive spring member
JP2020050916A (en) Martensitic stainless steel for high hardness and high corrosion resistant applications, excellent in cold workability, and manufacturing method therefor
JP2009046760A (en) Co-BASED ALLOY STOCK FOR LIVING BODY FOR HOT DIE FORGING, AND METHOD FOR PRODUCING THE SAME
JP6602462B2 (en) Chromium-based two-phase alloy and product using the two-phase alloy
JP2007051341A (en) Steel with high young&#39;s modulus
JP3654899B2 (en) Manufacturing method of high strength low expansion cast iron
KR20020016188A (en) Method of low thermal expansion alloys for precision machine tools
KR20210065220A (en) High entropy alloy having nanoscale compositionally modulated layered structure and method for manufacturing the same
JP4737614B2 (en) Fe-Ni alloy plate and method for producing Fe-Ni alloy plate
JP6044037B2 (en) Free-cutting stainless steel material for precision machining and its manufacturing method
JP2012126953A (en) Alloy steel for machine structural use
WO2018066303A1 (en) Cr-BASED TWO PHASE ALLOY PRODUCT AND PRODUCTION METHOD THEREFOR
TW202124735A (en) Martensitic stainless steel with excellent cold workability, high hardness and high corrosion resistance and manufacturing method thereof used for manufacturing parts with softening characteristic and excellent cold workability
JP6359241B2 (en) Corrosion-resistant plastic molding steel with excellent specularity
KR102356521B1 (en) Uniform steel alloys and tools
JP2000313944A (en) Free-cutting corrosion-resistant soft magnetic material excellent in magnetic property
JP6790775B2 (en) High temperature carburizing steel, its manufacturing method and carburized parts
CN114540718A (en) Self-healing alloy and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application