KR20020015179A - Gene encoding for a transcription factor which regulates the expression of defense related genes in rice and method for inducing the systemic acquired resistance by using this gene - Google Patents

Gene encoding for a transcription factor which regulates the expression of defense related genes in rice and method for inducing the systemic acquired resistance by using this gene Download PDF

Info

Publication number
KR20020015179A
KR20020015179A KR1020000048358A KR20000048358A KR20020015179A KR 20020015179 A KR20020015179 A KR 20020015179A KR 1020000048358 A KR1020000048358 A KR 1020000048358A KR 20000048358 A KR20000048358 A KR 20000048358A KR 20020015179 A KR20020015179 A KR 20020015179A
Authority
KR
South Korea
Prior art keywords
gene
rice
expression
oserebp
transcription factor
Prior art date
Application number
KR1020000048358A
Other languages
Korean (ko)
Other versions
KR100382167B1 (en
Inventor
황덕주
허성기
배신철
변명옥
고승주
류진창
Original Assignee
김강권
대한민국(관리부서:농촌진흥청)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김강권, 대한민국(관리부서:농촌진흥청) filed Critical 김강권
Priority to KR10-2000-0048358A priority Critical patent/KR100382167B1/en
Publication of KR20020015179A publication Critical patent/KR20020015179A/en
Application granted granted Critical
Publication of KR100382167B1 publication Critical patent/KR100382167B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE: Provided are gene encoding for a transcription factor which regulates the expression of defense related genes in rice and method for inducing the systemic acquired resistance by using this gene. In particular, provided is Oryza sativa ethylene response element binding protein(OsEREBP), a transcription factor which regulates the expression of defense related genes in rice. CONSTITUTION: The method of selecting OsEREBP comprises: treating the known systemic acquired resistance inducer, benzo-1,2,3-thiadiazole-7-carbothioic acid-S-methyl ether (BTH) to produce mRNA which is related to induction of systemic acquired resistance; transcribing the mRNA to obtain cDNA clone by using a transcriptase; selecting cDNA clone capable of being amplified by BTH treatment using the cDNA as a probe; and confirming a OsEREBP by analyzing nucleotide sequence and homology of cDNA clone. The nucleotide sequence of OsEREBP is represented by SEQ ID NO:1.

Description

벼에서 병 방어유전자군의 발현을 조절하는 전사인자 유전자 및 이를 이용하여 벼의 획득저항성을 강화시키는 방법{Gene encoding for a transcription factor which regulates the expression of defense related genes in rice and method for inducing the systemic acquired resistance by using this gene}Gene encoding for a transcription factor which regulates the expression of defense related genes in rice and method for inducing the systemic acquired resistance by using this gene}

본 발명은 벼에서 병 방어유전자군의 발현을 조절하는 전사인자 유전자에 관한 것이다.The present invention relates to a transcription factor gene that regulates the expression of a group of disease defense genes in rice.

식물체들은 병원균의 침입을 받거나, 혹은 외부로부터 상처를 받아서 병원균의 침입을 받을 위험이 있을 때, 자체적으로 병 방어유전자군을 발현하여 병에 대한 저항성을 얻게된다.When plants are invaded by pathogens or are injured from the outside and are at risk of being invaded by pathogens, plants express themselves in a group of disease defense genes, thereby obtaining resistance to disease.

한편, 식물들은 특이한 병 방어유전자를 다양하게 발현하는 것으로 알려져 있으며, 이러한 특이한 병 방어 유전자를 식물체로부터 분리하여, 다른 식물체에 유전 공학적으로 적용하고자 하는 연구가 진행되어 왔다. 예를 들면, 대표적인 병 방어유전자이며 병원균의 세포벽분해효소로 알려진 글루카나제(glucanase), 키티나제(chitinase) 등도 개별적으로 담배나 벼에 도입되어 병 저항성을 증진시킨 보고가 있다.On the other hand, plants are known to express a variety of specific disease defense genes, and studies have been conducted to isolate these specific disease defense genes from plants and apply them genetically to other plants. For example, glucanase, chitinase, and the like, which are representative disease defense genes and are known as cell wall enzymes of pathogens, have been reported to improve disease resistance by individually introducing them into tobacco or rice.

한편, 식물들이 자체적으로 갖고 있는 병 방어 유전자들을 개별적으로 발현시키는 것보다 생체내의 총체적인 병 방어기작처럼 병방어유전자군을 동시에 발현시킬 수 있는 방법에 대해 많은 연구가 진행되었다. 특히, 이 방법 중에서, 병 방어유전자군의 발현을 조절하는 전사인자 유전자에 대한 연구가 주목을 받고 있다. 이러한 예로, 내냉성 유전자 또는 내염성 유전자군의 발현을 조절하는 전사인자 CBF 및 Alfin1에 대한 효능이 검증되어 있다.On the other hand, much research has been carried out on how to express the disease defense gene group at the same time as the overall disease defense mechanism in vivo rather than individually expressing disease defense genes owned by plants. In particular, among these methods, research on the transcription factor genes that regulate the expression of the disease defense gene family has attracted attention. In this example, the potency of the transcription factors CBF and Alfin1 to regulate the expression of cold-resistant genes or salt-tolerant gene groups has been demonstrated.

한편, 병 방어유전자군의 발현을 조절하는 또 다른 전사인자 EREBP(Ethylene response element binding protein)는 프로모터(promoter)에 GCC 상자(GCC box)로 알려진 시스-작용 요소(cis-acting element)를 포함하는 여러 종류의 병저항성 유전자군의 발현을 조절한다고 알려져 있다. EREBP가 발현을 조절하는 병방어 유전자의 예로는, 담배의 PR1(basic type PR1) 및 클래스 Ⅰ 키티나제(class Ichitinase), 오스모틴(osmotin)으로 알려진 PR5 및 글루타치온-S-트랜스퍼라제(glutathoine-S-transferase) 등이 알려져 있다. 또한, 토마토에서는 슈도모나스 시린재 pv. 토마토(Pseudomonas syringae pv.tamato)에 대한 저항성 유전자로 알려진 Pto가 결합하여 병저항성 유전자군의 발현을 조절한 다고 알려진 Pti 4,5,6이 EREBP계의 전사인자이며 이는 이스트 투 하이브리드(yeast two hybrid) 방법에 의해 분리되었다.On the other hand, another transcription factor EREBP (Ethylene response element binding protein) that regulates the expression of the disease defense gene group includes a cis -acting element known as a GCC box in a promoter. It is known to regulate the expression of several pathogenic gene families. Examples of pathogenic genes for which EREBP regulates expression are: PR1 (basic type PR1) and class I chitinase, osmotin (PR5) and glutathione-S-transferase (STA) in tobacco -transferase) and the like are known. In addition, in tomato, Pseudomonas astringent pv. Pti 4,5,6, known to bind to Pto, a resistance gene for tomato (Pseudomonas syringae pv.tamato), which regulates the expression of disease-resistant gene family, is a transcription factor of EREBP. ) By the method.

한편, EREBP계의 전사인자는아라비돕시스 탈리아나,니코티아나 타바쿰등에서는 여러종류에 대해서 염기서열이 알려져 있다. 그러나, 주식으로 사용되고 있는 벼에서는 두 개의 EREBP계 전사인자 유전자의 염기서열만 보고되어 있고, 그에 대한 기능분석이 보고된 바가 없었다.On the other hand, the transcription factor of the EREBP-based, etc., or Arabidopsis Italia, Nikko tiahna other bakum has the nucleotide sequence is known for the various types. However, only rice nucleotide sequences of two EREBP transcription factor genes have been reported in rice, which is used as a staple food, and no functional analysis has been reported.

이에 본 발명자는 주식으로 이용되는 벼에서 병 방어유전자군의 발현을 조절하는 새로운 전사인자를 찾고자 연구를 하였고, 벼에서 발현되는 새로운 전사인자 EREBP를 찾고, 그의 발현이 병원균 및 병원성 자극에 의해 유도됨을 확인하고, 본 발명을 완성하기에 이르렀다.Therefore, the present inventors studied to find a new transcription factor that regulates the expression of disease defense gene group in rice used as a stock, and find a new transcription factor EREBP expressed in rice, and its expression is induced by pathogens and pathogenic stimuli. It confirmed and completed this invention.

따라서, 본 발명의 목적은 벼(Oryza sativa)에서 병 방어유전군의 발현을 조절하는 전사인자 OsEREBP를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a transcription factor OsEREBP that regulates the expression of disease defense genes in rice ( Oryza sativa ).

도 1은 벼의 OsEREBP에 대해 상동성 분석을 한 것이다. 여기에서, AF190770(서열번호 2), AF193803(서열번호 3)은 기존에 알려진 벼에서 보고된 EREBP 유전자들의 서열이다.1 is a homology analysis of the OsEREBP of rice. Here, AF190770 (SEQ ID NO: 2) and AF193803 (SEQ ID NO: 3) are sequences of EREBP genes reported in previously known rice.

도 2a는 벼에서 외부 병원(病原)에 의한 OsEREBP의 발현 정도를 나타낸 도면이다.Figure 2a is a diagram showing the expression level of OsEREBP by the external hospital in rice.

도 2b는 벼의 각 조직에서 OsEREBP의 발현 정도를 나타낸 도면이다.Figure 2b is a diagram showing the expression of OsEREBP in each tissue of rice.

도 3은 에틸렌의 전구 물질인 ACC를 식물에 처리하였을 때, 본 발명의 OsEREBP 발현과 PIP 및 글루카나제의 발현정도를 보여주는 도면이다.Figure 3 is a view showing the expression of OsEREBP expression and PIP and glucanase of the present invention when treated with plants ACC, a precursor of ethylene.

본 발명은 벼에 획득 저항성을 주는 병 저항성유전자의 전사인자 유전자 OsEREBP(Oryza sativaethylene response element binding protein)을 제공한다.The present invention provides a transcription factor gene OsEREBP ( Oryza sativa ethylene response element binding protein) of a disease resistant gene that gives resistance to rice.

식물체는 병 저항성 반응, 예를 들면 과민감 반응, 획득 저항성 등의 유전자를 자체적으로 내포하고 있으나, 병원균이나 상처 등의 자극이 있을 때 발현이 증폭된다.Plants themselves contain genes such as disease resistance reactions, for example, hypersensitivity reactions and acquired resistance, but expression is amplified when there is a stimulus such as a pathogen or a wound.

이러한 획득 저항성을 줄 수 있는 병 방어유전자들의 발현은 식물체 내의 복잡한 신호전달 체계에 의해서 이루어지지만, 신호 전달체계의 마지막 단계는 전사인자 유전자의 산물인 전사인자가 병 방어유전자군의 프로모터에 결합하여 병방어유전자군을 발현시키는 것이다. 즉, 병 방어유전자군은 자체적으로 또는 조절인자(regulator)에 의해서 발현이 조절되다가, 병원성 자극에 의해서 전사인자의 발현이 증폭되고 그에 의해 병 방어유전자군의 발현이 증폭됨으로써 식물체는 저항성을 나타내게 한다.Expression of disease defense genes that can provide such acquisition resistance is achieved by complex signaling systems in plants, but the final stage of the signaling system is that the transcription factor, a product of the transcription factor gene, binds to the promoter of the disease defense gene family. To express a group of defense genes. That is, the disease defense gene group is regulated by itself or by a regulator, and the expression of the transcription factor is amplified by the pathogenic stimulus, thereby amplifying the expression of the disease defense gene group, thereby making the plant resistant. .

본 발명에서는 벼에서 이러한 병 방어유전자군의 발현을 가능하게 하는 전사인자 OsEREBP를 제공하는 것을 목적으로 한다.In the present invention, an object of the present invention is to provide a transcription factor OsEREBP that enables expression of a group of disease defense genes in rice.

본 발명에서 OsEREBP 유전자를 선발하기 위해서, 우선, 획득저항성 유도물질로서 알려진 벤조-(1,2,3)-티아디아졸-7-카르보티오익산 S-메틸에테르(benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ether; 이하, 'BTH'라 함)를 처리하여, 획득 저항성 유도에 관련된 mRNA들을 생성시킨다. 그런 다음, 얻어진 mRNA를 역전사 효소를 이용하여서 cDNA클론으로 만들어내고, 이 cDNA를 프로브로 하여, BTH 처리에 의해 발현이 증폭되는 cDNA 클론들을 리버스 노던 블랏에 의해서 선발한다. 선발된 cDNA 클론의 염기서열 및 상동성 분석을 통해, 선발된 유전자들중의 한 유전자가 EREBP계의 전사인자 OsEREBP임을 확인할 수 있다.In order to select the OsEREBP gene in the present invention, first, benzo- (1,2,3) -thiadiazole-7-carbothioic acid S-methyl ether (benzo- (1,2, 3) -thiadiazole-7-carbothioic acid S-methyl ether (hereinafter referred to as 'BTH') to generate mRNAs related to induction of acquisition resistance. Then, the obtained mRNA is made into a cDNA clone using a reverse transcriptase enzyme, and this cDNA is used as a probe to select cDNA clones whose expression is amplified by BTH treatment by reverse northern blot. Through sequencing and homology analysis of the selected cDNA clone, it can be confirmed that one of the selected genes is the transcription factor OsEREBP of the EREBP system.

본 발명 OsEREBP 유전자를 선발하기 위해서 사용한 리버스 노던 블랏 방법은 다음과 같은 과정으로 행해진다. ① 우선, BTH를 어느 정도 자란 벼의 뿌리에 처리하여(이때, 벼의 뿌리에 BTH를 처리하면, 식물 내의 수송계를 통하여 BTH가 식물 전체에 퍼지게 된다.), 병 방어유전자 및 전사인자 유전자에 관련된 mRNA의 생성을 유도하게 되는 데 그 처리된 벼의 잎으로부터 mRNA를 분리한다. 대조군으로 BTH 처리하지 않은 mRNA도 분리를 한다. ② 상기 mRNA를 역전사 효소를 이용하여 cDNA 유전자 은행을 작성하고, 작성된 cDNA를 λ파지 벡터인 Uni-zap XR vector로 파지 cDNA 유전자은행을 작성하고, 시험관 내 패키징(in vitro packaging)을 통해,E.Coli에 감염시켜, cDNA 양을 증폭시킨다. 상기 작성된 파지 cDNA 유전자은행을 플라스미드 매스 익시젼법(plasmid mass excision protocol)을 사용하여 크기가 약 50kb 정도인 파지 DNA를 약 4-5kb정도의 파지미드(phagemid)로 바꾸고, 그런 다음, 고체배지에 접종배양하여, 콜로니를 형성시킨다. 임의로 선발된 콜로니에서 DNA를 분리하여, 나이론막에 접합시킬 DNA를 만든다. ③ ①에서 분리된 BTH 처리 및 비처리 각각의 mRNA를 역전사 효소를 이용하여32P로 표지된 단일쇄 cDNA를 얻고, 하이브리드형성 프로브로 이용한다. ④ ②에서 형성된 나이론막에 부착된 DNA를 ③에서 형성된 cDNA로 하이브리드를 형성시키고, BTH 처리한 것과 처리하지 않은 것의 방사성 표지정도를 비교하여, 차이가 큰 것을 선발하여 염기서열분석 및 노던 블랏 확인 실험을 한다.The reverse northern blot method used to select the OsEREBP gene of the present invention is carried out by the following procedure. ① First, BTH is treated to the root of rice grown to some extent (when BTH is applied to the root of rice, BTH is spread throughout the plant through the transport system in the plant). It induces the production of related mRNA, which separates the mRNA from the leaves of the treated rice. As a control, mRNA that is not BTH treated is also isolated. ② create a cDNA Gene Bank with the mRNA using a reverse transcriptase, to create a phage cDNA gene bank prepared the cDNA in λ phage vectors of Uni-XR vector zap and, through in vitro packaging (in vitro packaging), E. Infection with Coli amplifies the cDNA amount. Using the prepared phage cDNA gene bank, plasmid mass excision protocol was used to convert phage DNA of about 50 kb into phagemid of about 4-5 kb, and then inoculated into solid medium. Incubate to form colonies. DNA is optionally isolated from the selected colonies to produce DNA to be conjugated to the nylon membrane. ③ BTH-treated and untreated mRNAs isolated from ① are obtained using reverse transcriptase to obtain single-chain cDNA labeled with 32 P and used as a hybridization probe. ④ Sequencing of the DNA attached to the nylon membrane formed in ② and hybridization with cDNA formed in ③, comparing the radiolabeling degree of BTH-treated and untreated, and selecting a large difference, sequencing and Northern blot identification experiment Do it.

이러한 방법으로 선발된 본 발명의 OsEREBP 유전자는 벼에서 병 방어유전자군의 발현을 조절하는 전사인자 유전자로서, 그의 서열은 서열번호 1과 같다.OsEREBP gene of the present invention selected by this method is a transcription factor gene that regulates the expression of the disease defense gene group in rice, its sequence is shown in SEQ ID NO: 1.

상기에서 찾아진 서열번호 1의 유전자에 대하여 GeneBank에서 서열분석을 한 결과, 벼에서 발현되는 EREBP계 전사인자 유전자로는 두 개의 유전자 AF190770(서열번호 2), AF193803(서열번호 3)이 알려져 있었고, 그의 염기서열에 대해서 보고되어 있었다. 그러나, 도 1에서 보여진 바와 같이, 본 발명의 EREBP의 염기서열과 확연히 다름을 알 수 있고, 따라서 본 발명의 OsEREBP 유전자는 벼에서 발현되는 새로운 EREBP임을 알 수 있다.As a result of sequencing by GeneBank for the gene of SEQ ID NO: 1, two genes, AF190770 (SEQ ID NO: 2) and AF193803 (SEQ ID NO: 3), were known as EREBP transcription factor genes expressed in rice. His nucleotide sequence was reported. However, as shown in Figure 1, it can be seen that the base sequence of the EREBP of the present invention is significantly different, and thus the OsEREBP gene of the present invention can be seen that the new EREBP is expressed in rice.

한편, 도 2a 및 2b에서 나타낸 바와 같이, 본 발명에서 찾아낸 OsEREBP 유전자는 BTH, 살리실릭산(SA) 등의 획득 저항성을 유도시키는 화학물질, 또는 상처 등의 병원성 자극 또는 벼 흰잎 마름병균인 산토모나스 오리재(Xoo), 벼도열병균인 마그나포테 그리세아 등의 병원균에 의해서 발현이 유도된다. 또한, 본 발명의 OsEREBP 유전자는 뿌리 등에서는 발현하지 않고, 주로 잎, 잎새, 잎맥 등에서 발현된다.On the other hand, as shown in Figures 2a and 2b, the OsEREBP gene found in the present invention is a chemical that induces acquisition resistance, such as BTH, salicylic acid (SA), or pathogenic stimuli such as wounds or rice bran blight bacteria Santomonas Expression is induced by pathogens such as Xoo and Magnapote grisea. In addition, the OsEREBP gene of the present invention is not expressed in roots or the like, but is mainly expressed in leaves, leaves, leaf veins, and the like.

또한, 도 3에서 보는 바와 같이, 에틸렌을 생성하는 물질인 ACC(1-aminocyclopropane-1-carboxylic acid)을 처리한 후, OsEREBP와 벼에서 대표적인 병저항성 유전자인 PIP(probenazole inducible protein) 및 글루카나제(glucanase)의 프로브로 노던블랏을 하여 식물 내에서 각각의 발현정도를 확인해본 결과, 처리시간 의존-방식으로 OsEREBP의 생성량이 증가하였고 또한 병저항성 유전자인 글루카나제와 PIP의 발현량도 증가하는 것을 확인할 수 있다. 즉, 본 발명에서 찾아낸 유전자는 에틸렌에 의해 발현이 조절되는 유전자이고, 병저항성 유전자군의 발현을증가시키는 EREBP계 전사인자임을 보여준다.In addition, as shown in Figure 3, after treating the ethylene-producing substance ACC (1-aminocyclopropane-1-carboxylic acid), OsEREBP and PIP (probenazole inducible protein) and glucanase which are representative pathogenic genes in rice Northern blotting with glucanase probe confirmed the expression level of each plant in the treatment time-dependent manner. OsEREBP production was increased in the treatment time-dependent manner, and the expression levels of glucanase and PIP, which are pathogenic genes, were also increased. You can see that. That is, the gene found in the present invention is a gene whose expression is regulated by ethylene, and shows that it is an EREBP-based transcription factor that increases the expression of the pathogenic gene group.

이러한 본 발명의 OsEREBP 유전자를 사용하여 획득저항성을 높이기 위한 방법으로는 유전자공학에서 실시할 수 있는 통상적인 방법이 가능하며, 예를 들면, 식물에 존재하는 강력하고 상시발현되는 프로모터를 갖는 플라스미드 등의 벡터에 삽입하여, 재조합 벡터를 만들고, 이 재조합 벡터로 식물의 형질전환을 일으킬 수 있다. 이러한 방법에 의해 형질전환된 식물은 병원균등의 자극이 없는 상태에서도 획득저항성 유전자군의 발현을 유도하게 되어 식물의 획득 저항성을 높일 수 있다.As a method for increasing the acquisition resistance using the OsEREBP gene of the present invention, a conventional method that can be carried out in genetic engineering is possible, for example, a plasmid having a strong and always expressed promoter present in a plant, etc. By inserting into a vector, a recombinant vector can be made, and the recombinant vector can be used to cause plant transformation. Plants transformed by this method can induce the expression of the acquisition resistance gene group even in the absence of stimuli such as pathogens can increase the acquisition resistance of the plant.

이하 본 발명을 실시예 및 도면을 통해서 더욱 상세하게 설명하지만, 본 발명은 이에 국한되지 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples and drawings, but the present invention is not limited thereto.

[실시예 1] 나이론막 부착 DNA의 제조Example 1 Preparation of Nylon Film Attached DNA

병 저항성 형질 발현에 관련된 mRNA의 생성 및 분리Generation and Isolation of mRNA Related to Disease Resistant Expression

파종 후, 23일된 벼의 뿌리에 1ppm의 BTH를 처리하여, 병 저항성 형질발현에 관련된 유전자의 mRNA 생성을 유도하였다. BTH 처리 2일 후에, 벼 잎을 회수하고, 액체질소를 이용하여 회수된 벼 잎을 마쇄시켰다. 그런 다음 라이프 테크놀로지사(LIFE Technologies, Inc.; Maryland, U.S.A.)의 트리졸(Trizol) 시약을 이용하여 제조회사의 지시에 따라, BTH에 의해 발현된 모든 RNA들을 추출하였다. 추출된 RNA들은 cDNA 유전자 은행 작성에 이용하였다.After sowing, 23 ppm of rice roots were treated with 1 ppm of BTH to induce mRNA production of genes involved in disease resistant expression. After 2 days of BTH treatment, the rice leaves were recovered and the recovered rice leaves were ground using liquid nitrogen. Then all RNAs expressed by BTH were extracted using the Trizol reagent from LIFE Technologies, Inc .; Maryland, U.S.A., according to the manufacturer's instructions. The extracted RNAs were used for cDNA gene bank preparation.

cDNA 유전자 은행의 작성Creation of cDNA Gene Bank

cDNA 유전자 은행은 BTH 처리 벼에서 분리된 mRNA로부터 각각 작성하였다.cDNA gene banks were prepared from mRNAs isolated from BTH-treated rice, respectively.

우선, Qiagen사의 oligotex를 사용하여, 상기 트리졸 시약으로 분리된 RNA들 중에서 poly-A 말단 서열을 갖는 mRNA들만을 분리하였다.First, using oligotex of Qiagen, only mRNAs having a poly-A terminal sequence were isolated from RNAs isolated with the trizol reagent.

그런 다음, RNase H가 없는 조건에서, 상기 분리된 폴리-A 말단 서열을 갖는 RNA들을 주형으로 하고, 역전사 효소 및 폴리-A 서열에 결합할 수 있는 올리고 dT 프라이머(oligo dT primer)를 사용하여 이들 mRNA들에 상보되는 단일쇄 cDNA를 합성하였다. 그런 다음, RNA와 DNA가 하이브리드된 상태에서 RNA만을 선택적으로 제거하는 RNase H를 첨가하여 주형으로 쓰인 RNA들을 제거하였다. 얻어진 단일쇄 cDNA를 주형으로, DNA 중합효소 I를 사용하여, cDNA들을 합성하였다. 얻어진 cDNA에 EcoRI 어뎁터를 라이게이션(ligation)시키고, XhoI 및 EcoRI을 처리하여 XhoI 및 EcoRI에 대한 DNA 제한부위(restriction site)를 만들었다.Then, in the absence of RNase H, RNAs having the isolated poly-A terminal sequences were templated, and these were prepared using oligo dT primers capable of binding to reverse transcriptase and poly-A sequences. Single chain cDNA complementary to mRNAs was synthesized. Then, RNA was used as a template by adding RNase H, which selectively removes only RNA while the RNA and DNA were hybridized. CDNAs were synthesized using DNA polymerase I as a template using the obtained single-chain cDNA. The resulting cDNA was ligated with an EcoRI adapter and treated with XhoI and EcoRI to create a DNA restriction site for XhoI and EcoRI.

상기 얻어진 cDNA들로 cDNA 유전자은행을 작성하기 위해서, 스트라타젠사(Stratagene, Inc.; California, U.S.A.)의 Lambda ZAP II cDNA 합성 키트 및 기가팩 II 골드 팩키징 익스트랙트(Gigapack II gold packaging extract)를 사용하여, 제조회사가 지시한 바대로 제작하였다.To prepare a cDNA gene bank with the obtained cDNAs, using Lambda ZAP II cDNA synthesis kit and Gigapack II gold packaging extract of Stratagene, Inc., California, USA , As instructed by the manufacturer.

간략히 설명하면, 상기 얻어진 cDNA를 Uni-zap XR 벡터에 라이게이션시켰다. 그런 다음, 라이게이션된 벡터를 세포외 패키징(in vitropackaging)을 하고,E.Coli에 감염(transfection)시켰다. 배지에 형성된 파지를 정량한 다음, 파지의 양을 증폭시켜 보존용으로 사용하였다. 이 때, 플라그(plaque)의 수는 70만개였다.Briefly, the cDNA obtained above was ligated to Uni-zap XR vector. The ligated vector was then in vitro packaged and transfected with E. Coli . Phage formed in the medium was quantified, and then the amount of phage was amplified and used for preservation. At this time, the number of plaques was 700,000.

나이론막 부착 DNA 및 DNA 부착 나이론막 제조Preparation of Nylon Film Attached DNA and DNA Attached Nylon Film

스트라타젠사가 제공한 방법에 따라, 플라스미드 매스 익시젼(plasmid massexcision)방법에 의해 상기 Lambda ZAP II cDNA유전자 은행으로부터 파지미드 cDNA 유전자 은행(여기에서, 형성된 파지미드 cDNA 유전자 은행은 플라스미드 cDNA 유전자 은행과 같다.)으로 바꾸었다. 배양배지에 콜로니들을 형성한 cDNA 유전자은행으로부터 무작위로 일정수의 클론들을 선택하여 DNA를 분리했다. 그런 다음 아머삼사(Amersham, Inc.)의 하이본드-N 막(hybond-N membrane; 나이론막)에 플라스미드 cDNA 유전자 은행으로부터 얻은 동일한 종류 및 200ng의 동일양의 DNA 용액을 떨어뜨리고, 1.5M NaCl 및 0.5M NaOH에 2분동안 반응시켜, DNA를 변성시킨(denaturing) 다음, 1.5M NaCl 및 0.5M Tris-HCl(pH8.0)을 첨가하여 중화시켰다. 그런 다음, UV 가교결합(UV cross linking)에 의해 나이론막에 고정시켜서 두 개의 DNA 부착 나이론막을 제작하였다.According to the method provided by Stratagen, the phagemid cDNA gene bank formed from the Lambda ZAP II cDNA gene bank by the plasmid massexcision method, wherein the phagemid cDNA gene bank formed is the same as the plasmid cDNA gene bank. Changed to.) DNA was isolated by randomly selecting a number of clones from the cDNA gene bank that formed colonies in the culture medium. Then, drop a DNA solution of the same kind and 200 ng of DNA obtained from the plasmid cDNA gene bank onto Amersham, Inc.'s hybond-N membrane (nylon membrane), 1.5M NaCl and The reaction was carried out in 0.5 M NaOH for 2 minutes to denature the DNA, and then neutralized by addition of 1.5 M NaCl and 0.5 M Tris-HCl (pH 8.0). Then, two DNA-attached nylon membranes were prepared by fixing to the nylon membrane by UV cross linking.

[실시예 2] 프로브 cDNA의 제조Example 2 Preparation of Probe cDNA

파종 후, 23일된 벼의 뿌리에 1ppm의 BTH를 처리하여, 병 저항성 형질발현에 관련된 유전자의 mRNA 생성을 유도하였다. BTH 처리 2일 후에, 벼 잎을 회수하고, 액체질소를 이용하여 회수된 벼 잎을 마쇄시켰다. 그런 다음 라이프 테크놀로지사(LIFE Technologies, Inc.; Maryland, U.S.A.)의 트리졸(Trizol) 시약을 이용하여 제조회사의 지시에 따라, BTH에 의해 발현된 모든 RNA들을 추출하였다.After sowing, 23 ppm of rice roots were treated with 1 ppm of BTH to induce mRNA production of genes involved in disease resistant expression. After 2 days of BTH treatment, the rice leaves were recovered and the recovered rice leaves were ground using liquid nitrogen. Then all RNAs expressed by BTH were extracted using the Trizol reagent from LIFE Technologies, Inc .; Maryland, U.S.A., according to the manufacturer's instructions.

또한, 대조군으로 BTH를 처리하지 않은 벼에서의 RNA도 동일한 방법으로 추출하였다.In addition, RNA was also extracted from the rice not treated with BTH as a control in the same manner.

32P로 표지된 dCTP 및 올리고 dT 프라이머의 존재하에서 역전사 효소를 이용하여, 상기에서 분리된 총 RNA 50ug으로부터 단일쇄 cDNA로 합성하였다. 이렇게 만들어진32P 표지된 단일쇄 cDNA는 하기의 하이브리드형성에 이용하였다. A single chain cDNA was synthesized from 50 ug of total RNA isolated above using reverse transcriptase in the presence of 32 P labeled dCTP and oligo dT primers. The 32 P labeled single chain cDNA thus produced was used for the following hybridization.

[실시예 3] 하이브리드형성에 의한 DNA의 선발Example 3 DNA Selection by Hybrid Formation

실시예 1에서 만들어진 두 개의 BTH 처리 및 BTH 비처리 DNA 부착 나이론막 각각에, 실시예 2에서 만들어진32P로 표지된 단일쇄 cDNA의 동일한 양(총RNA양: 50 ㎍)을 프로브로 하여, 65℃에서 각각 하이브리드 형성을 시켰다. 그런 다음, 이들 두 나이론막의 방사선 표지정도의 차이가 큰 유전자를 선발하였다.In each of the two BTH-treated and BTH untreated DNA-attached nylon membranes made in Example 1, the same amount of 32 P-labeled single-chain cDNA made in Example 2 (total RNA amount: 50 µg) was used as a probe. Hybrid formation was carried out at 占 폚, respectively. Then, genes with large differences in radiolabeling of these two nylon membranes were selected.

[실시예 4] 염기 서열 결정Example 4 Base Sequence Determination

실시예 3에서 선발된 유전자에 해당하는 플라스미드의 cDNA를 ABI 회사의 빅 다이 터미네이터(Big Dye Terminater)를 이용해서 그의 염기서열을 결정하였고, 그 서열은 서열번호 1과 같다.The cDNA of the plasmid corresponding to the gene selected in Example 3 was determined using ABI's Big Dye Terminater to determine its base sequence, and the sequence thereof is shown in SEQ ID NO: 1.

[실시예 5] 상동성 분석Example 5 Homology Analysis

미국 NCBI의 블라스트 프로그램(Blast program)을 통해 상동성 분석을 하였고, 선발된 유전자는 EREBP계의 전사인자인 것으로 확인되었고 벼에서 보고된 EREBP계의 전사인자들과의 상동성 분석 결과는 도 1에 나타내었다. 도 1은 아미노산서열 수준에서도 EREBP계의 전사인자의 전형적인 특징인 DNA 결합 영역(DNA binding domain), 즉 OsEREBP의 129∼189의 아미노산 서열을 제외하고는 거의 상동성이 없는 것을 나타낸다. 본 발명의 OsEREBP유전자는 Genebank에 등록된 다른EREBP계의 다른 전사인자 유전자(서열번호 2 및 서열번호 3)와 다른 서열을 가지므로, 본 발명의 EREBP유전자는 벼에서 발현되는 새로운 OsEREBP 유전자임을 확인하였다.Homology analysis was carried out through the NCBI Blast program, and the selected gene was identified as an EREBP transcription factor, and the results of homology analysis with the EREBP transcription factor reported in rice are shown in FIG. Indicated. Figure 1 shows that even at the amino acid sequence level, there is little homology except for the DNA binding domain (DNA binding domain), ie, the amino acid sequence of 129-189 of OsEREBP, which is a typical feature of EREBP-based transcription factors. Since the OsEREBP gene of the present invention has a sequence different from other transcription factor genes (SEQ ID NO: 2 and SEQ ID NO: 3) of other EERBP systems registered in Genebank, it was confirmed that the EREBP gene of the present invention is a new OsEREBP gene expressed in rice. .

[실시예 6] OsEREBP의 발현 분석Example 6 Expression Analysis of OsEREBP

벼의 뿌리에 1ppm BTH 와 1mM 살리실릭산(SA)을 각각 처리후 6시간후, 벼의 잎을 가위로 절단하여 상처를 낸 후 24시간, 산토모나스 오리재 pv. 오리재(Xoo) 98K1을 24시간 및 마그나포테 그리세아 KJ401을 벼잎에 분사방법에 의해 접종후 24시간 후에 잎을 시료로 채취하여서, 라이프 테크놀로지사의 트리졸 시약으로 RNA를 추출하였다. 그런 다음, 30㎍의 총 RNA를 포름알데히드를 포함하는 아가로즈 겔에서 전기영동을 시켰다. 전기영동시킨 RNA는 모세관 이동(capillary transfer)에 의해 나이론막으로 옮겨, UV로 부착시켰다.Six hours after 1 ppm BTH and 1 mM salicylic acid (SA) were applied to the roots of rice, the leaves of the rice were cut with scissors and wounded for 24 hours. Santomonas duckwood pv. After 24 hours of inoculation with Xoo 98K1 and Magnapote grisea KJ401 by the method of spraying rice leaves, leaves were sampled and RNA was extracted with Life Technologies' Trizol reagent. Then, 30 μg of total RNA was subjected to electrophoresis on an agarose gel containing formaldehyde. Electrophoresed RNA was transferred to the nylon membrane by capillary transfer and attached by UV.

또한, 상기 실시예 3에서 선발된 OsEREBP cDNA 클론을 EcoRI 및 XhoI으로 절단시킨 단편을 타카라(Takara) 회사의 래더만 라벨링 킷트(Ladderman labelling kit)를 사용하여 55℃에서 반응시켜 방사성 물질로 표지화하였다. 그런 다음, 파마시아(PHARMACIA)의 HR 스핀 컬럼(HR spin column)에 의해 프로브를 정제하였다.In addition, the fragment obtained by cutting the OsEREBP cDNA clone selected from Example 3 with EcoRI and XhoI was reacted at 55 ° C using a Laderman labeling kit from Takara, and labeled with radioactive material. The probe was then purified by an HR spin column from PHARMACIA.

이 프로브를 이용하여 상기 분리된 RNA들의 노던 블랏을 65℃에서 수행하였다. 그 결과는 도 2a에 나타내었고, BTH, SA, 상처, Xoo, 마그나포테 그리세아 처리시 OsEREBP의 발현이 증폭됨을 확인할 수 있었다.Northern blots of the isolated RNAs were performed at 65 ° C using this probe. The results are shown in Figure 2a, it can be seen that the expression of OsEREBP amplified when BTH, SA, wound, Xoo, Magnafote greece treatment.

도 2a의 결과는 병원성균 및 병원성 자극에 대해서, 벼는 OsEREBP의 발현을 증폭시키는 것을 확인할 수 있었다.The results of Figure 2a was confirmed that for the pathogenic bacteria and pathogenic stimulation, rice amplifies the expression of OsEREBP.

[실시예 7] OsEREBP의 조직특이성Example 7 Tissue Specificity of OsEREBP

분헐기 벼의 뿌리, 어린 벼의 뿌리에 1ppm BTH를 처리하고, 라이프 테크놀로지사의 트리졸 시약을 사용하여 RNA 추출하고, 실시예 6에서와 같은 방법으로 노던 블랏을 수행하였다. 그 결과는 도 2b에 나타내었고, OsEREBP의 발현은 뿌리에서는 발현이 되지 않고, 잎에서 주로 발현이 되며, 분헐기의 잎에서는 발현이 줄어드는 것을 확인하였다.1 ppm BTH was treated to the roots of the cultivator rice and the roots of the young rice, RNA extraction was carried out using Life Technologies' Trizol Reagent, and Northern blot was performed in the same manner as in Example 6. The results are shown in Figure 2b, the expression of OsEREBP is not expressed in the roots, mainly in the leaves, it was confirmed that the expression is reduced in the leaves of the divider.

[실시예 8] 선발된 DNA의 노던 블랏 검사Example 8 Northern Blot Test of Selected DNA

파종 후, 20일째 된 벼에 에틸렌 전구물질인 ACC를 토양 침지 적용법(soil drench application)으로 처리하였다. 처리 후 12, 24, 48시간째에 벼잎을 회수하고, 라이프 테크놀로지사의 트리졸 시약을 이용하여 총 RNA를 분리하였다. 그런 다음, 분리된 RNA를 1.2% 포름알데히드 변성(denature) 아가로즈 겔로 전기영동을 시켰다. 그런 다음, OsEREBP, 및 프로벤나졸 유도 단백질(PIP) 및 글루카나제의 각각의 cDNA로 하이브리드 형성을 시켜, 노던 블랏을 수행하였다. 그 결과는 도 3에 나타내었다. 도 3에서 EtBr에 의해 염색된 RNA겔 결과는 각처리의 RNA양이 동일한 양임을 나타낸다.After sowing, the ethylene precursor ACC was treated with a soil drench application in 20 days old rice. 12, 24 and 48 hours after the treatment, the rice leaves were recovered and total RNA was isolated using Life Technologies' Trizol reagent. The isolated RNA was then electrophoresed with 1.2% formaldehyde denature agarose gel. Northern blots were then performed by hybridization with OsEREBP, and each cDNA of Probenzazole Inducing Protein (PIP) and Glucanase. The results are shown in FIG. RNA gel stained with EtBr in Figure 3 shows that the amount of RNA in each treatment is the same amount.

도 3을 보면, ACC 처리 시간의 증가에 따라, 본 발명의 병 저항성 전사인자인 OsEREBP, 및 병저항성 유전자인 PIP 및 글루카나제의 발현량이 증가하는 것을 확인할 수 있었다. 이러한 결과는 본 발명의 OsEREBP는 ethylene에 의해서 발현이 유도되고, 또한 본 발명의 OsEREBP는 병저항성 유전자군의 발현을 유도함을 암시해준다. 즉, 결론적으로 본 발명에서 선발한 DNA는 벼에서 발현하는 EREBP계 유전자임을 나타낼 수 있다.Referring to FIG. 3, as the ACC treatment time increases, the expression levels of OsEREBP, the disease-resistant transcription factor, and PIP and glucanase, the disease-resistant genes of the present invention, increase. These results suggest that OsEREBP of the present invention is induced by ethylene, and also OsEREBP of the present invention induces expression of pathogenic gene groups. That is, in conclusion, the DNA selected in the present invention may indicate that EREBP-based genes are expressed in rice.

본 발명의 OsEREBP 유전자는 벼에 획득 저항성을 줄 수 있는 전사인자로서 그의 완전한 서열은 서열번호 1과 같다. OsEREBP 유전자는 잎, 잎맥, 잎새 등에서 발현이 되고, 뿌리에서는 발현이 되질 않는다는 것을 본 발명을 통해 알 수 있다. 또한, 본 발명의 OsEREBP는 벼에서 병에 대한 획득 저항성을 강화시키는데 이용할 수 있다.OsEREBP gene of the present invention is a transcription factor capable of giving resistance to rice, its complete sequence is shown in SEQ ID NO: 1. OsEREBP gene is expressed in the leaves, leaf veins, leaves, etc., it can be seen through the present invention that the expression is not in the root. In addition, the OsEREBP of the present invention can be used to enhance the acquisition resistance to disease in rice.

Claims (2)

벼에서 병 방어유전자군의 발현을 조절하는 서열번호 1의 OsEREBP 전사인자 유전자.OsEREBP transcription factor gene of SEQ ID NO: 1 that controls the expression of disease defense gene family in rice. 청구항 1의 OsEREBP 전사인자를 이용하여 벼에서 획득저항성을 강화시키는 방법.Method of enhancing the acquired resistance in rice using the OsEREBP transcription factor of claim 1.
KR10-2000-0048358A 2000-08-21 2000-08-21 Gene encoding for a transcription factor which regulates the expression of defense related genes in rice and method for inducing the systemic acquired resistance by using this gene KR100382167B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0048358A KR100382167B1 (en) 2000-08-21 2000-08-21 Gene encoding for a transcription factor which regulates the expression of defense related genes in rice and method for inducing the systemic acquired resistance by using this gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0048358A KR100382167B1 (en) 2000-08-21 2000-08-21 Gene encoding for a transcription factor which regulates the expression of defense related genes in rice and method for inducing the systemic acquired resistance by using this gene

Publications (2)

Publication Number Publication Date
KR20020015179A true KR20020015179A (en) 2002-02-27
KR100382167B1 KR100382167B1 (en) 2003-04-26

Family

ID=19684226

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0048358A KR100382167B1 (en) 2000-08-21 2000-08-21 Gene encoding for a transcription factor which regulates the expression of defense related genes in rice and method for inducing the systemic acquired resistance by using this gene

Country Status (1)

Country Link
KR (1) KR100382167B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803393B1 (en) * 2006-09-05 2008-02-14 대한민국 A method enhancing disease resistance using oslrp gene in rice
KR101024112B1 (en) * 2009-01-09 2011-03-29 대한민국 Improving method for Plant disease resistance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101261985B1 (en) 2007-06-15 2013-05-08 재단법인 작물유전체기능연구사업단 Plants with modulated expression of NAC transcription factors having enhanced yield-related traits and a method for making the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803393B1 (en) * 2006-09-05 2008-02-14 대한민국 A method enhancing disease resistance using oslrp gene in rice
KR101024112B1 (en) * 2009-01-09 2011-03-29 대한민국 Improving method for Plant disease resistance

Also Published As

Publication number Publication date
KR100382167B1 (en) 2003-04-26

Similar Documents

Publication Publication Date Title
Lee et al. A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death
Subramanian et al. RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae
Thordal-Christensen et al. cDNA cloning and characterization of two barley peroxidase transcripts induced differentially by the powdery mildew fungus Erysiphe graminis
Wasaki et al. Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status
Letousey et al. Molecular analysis of resistance mechanisms to Orobanche cumana in sunflower
CA2269111C (en) Genes encoding plant transcription factors
Wang et al. Splice variants of the SIP1 transcripts play a role in nodule organogenesis in Lotus japonicus
EP0749485A1 (en) ANTIMICROBIAL PROTEINS FROM $i(ARALIA) AND $i(IMPATIENS)
Lange et al. A gene encoding a receptor-like protein kinase in the roots of common bean is differentially regulated in response to pathogens, symbionts and nodulation factors
KR100382167B1 (en) Gene encoding for a transcription factor which regulates the expression of defense related genes in rice and method for inducing the systemic acquired resistance by using this gene
KR20000068498A (en) Protein kinases and uses thereof
Broderick et al. Pathogenesis-related proteins in Trifolium subterraneum: a general survey and subsequent characterisation of a protein inducible by ethephon and redlegged earth mite attack
Charvet‐Candela et al. Characterization of an Aux/IAA cDNA upregulated in Pinus pinaster roots in response to colonization by the ectomycorrhizal fungus Hebeloma cylindrosporum
JPH08505048A (en) Biocidal chitin-binding protein
Nuc et al. Yellow lupine cyclophilin transcripts are highly accumulated in the nodule meristem zone
US6545202B2 (en) Transgenic plant transformed with a translationally controlled tumor protein (TCTP) gene
KR100436750B1 (en) Gene sequences of SASAR82A from Capsicum annuum. L. cv. Hanbyul and usage as marker thereof
KR100703566B1 (en) DISEASE RESISTANCE GENE ISOLATED FROM Oryza sativa EXPRESSION VECTOR CONTAINING THE GENE TRANSFORMANT TRANSFORMED BY THE VECTOR AND METHOD FOR PREPARATION OF THE TRANSFORMANT
CZ285675B6 (en) Method od inducing necrotic action in specific plant cell
Clement et al. Isolation of a novel nodulin: a molecular marker of osmotic stress in Glycine max/Bradyrhizobium japonicum nodule
KR100758635B1 (en) The cytosolic pyruvate kinase induced during the resistance response to Tobacco mosaic virus in Capsicum annuum
KR100789846B1 (en) A hot pepper gene encoding WRKY transcription factor induced during hypersensitive response to Tobacco mosaic virus and Xanthomonas campestris
NL2034963B1 (en) Application of cs-mir397a targeting the cslac1 gene in the regulation of tea grey blight sensitivity
KR100578744B1 (en) 1 Pepper geneCAHIR1 of hypersensitive reaction induced protein and transformed plant using the same
JPH05153978A (en) Regulator gene

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant