KR20020004531A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
KR20020004531A
KR20020004531A KR1020000038506A KR20000038506A KR20020004531A KR 20020004531 A KR20020004531 A KR 20020004531A KR 1020000038506 A KR1020000038506 A KR 1020000038506A KR 20000038506 A KR20000038506 A KR 20000038506A KR 20020004531 A KR20020004531 A KR 20020004531A
Authority
KR
South Korea
Prior art keywords
tube
heat exchanger
refrigerant
pipe
groove
Prior art date
Application number
KR1020000038506A
Other languages
Korean (ko)
Inventor
오세기
장동연
오세윤
이욱용
Original Assignee
구자홍
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자주식회사 filed Critical 구자홍
Priority to KR1020000038506A priority Critical patent/KR20020004531A/en
Publication of KR20020004531A publication Critical patent/KR20020004531A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/124Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of pins

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: A capillary heat exchanger is provided to obtain the excellent heat transfer performance of a heat exchanger without using a groove pipe as a refrigerant tube by forming the refrigerant tube of composite structure having a capillary tube and a smooth tube. CONSTITUTION: A capillary heat exchanger consists of refrigerant tubes(51) and plural cooling fins. The refrigerant tube has composite structure of a capillary tube having a pipe diameter of lower than 5mm and a smooth tube having smooth inside. The capillary heat exchanger having the composite structure of refrigerant tube has no difference in heat transfer coefficient with a heat exchanger having a same-diameter groove tube. In addition, the pressure loss in the refrigerant tube is reduced remarkably. Thereby, the capillary heat exchanger obtains heat transfer performance better than one of the heat exchanger having the groove tube.

Description

세경관형 열교환기{HEAT EXCHANGER}Fine Tube Heat Exchanger {HEAT EXCHANGER}

본 발명은 세경관형 열교환기에 관한 것으로서, 특히 세경관과 그루브를 가공하지 않아 내주면이 매끄러운 나관(Smooth tube)이 서로 복합된 형태로 냉매관을 구성하는 세경관형 열교환기에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a narrow tubular heat exchanger, and more particularly, to a narrow tubular heat exchanger configured to form a refrigerant pipe in which a smooth tube is smoothly formed on the inner circumferential surface thereof without processing the narrow tube and the groove.

도 1은 일반적인 열교환기의 구조가 도시된 구성도이고, 도 2는 종래 기술에 따른 열교환기에 사용되는 냉매관의 구조가 도시된 구성도이며, 도 3은 종래 기술에 의한 냉매관의 그루브 단면 구조가 도시된 단면도이다.1 is a block diagram showing the structure of a general heat exchanger, Figure 2 is a block diagram showing the structure of a refrigerant pipe used in the heat exchanger according to the prior art, Figure 3 is a groove cross-sectional structure of the refrigerant pipe according to the prior art Is a cross-sectional view shown.

상기한 도 1을 참조하면, 일반적인 열교환기는 내부에 냉매가 흐르는 냉매관(1)과, 상기 냉매관(1)에 확관에 의해 결합되어 냉매와 공기 사이의 열교환 면적을 확보하는 다수의 냉각핀(3)으로 구성되어 상기 냉매관(1)을 흐르는 냉매와 주변의 공기를 서로 열교환시키도록 되어 있다.Referring to FIG. 1, a general heat exchanger includes a refrigerant pipe 1 through which refrigerant flows and a plurality of cooling fins coupled to the refrigerant pipe 1 by expansion pipes to secure a heat exchange area between the refrigerant and air ( 3) to exchange heat between the refrigerant flowing through the refrigerant pipe 1 and the surrounding air.

여기서, 상기 냉매관(1) 및 냉각핀(3)의 조립체는 통상 도 1과 같이, 두 개가 2열 형태로 조립되어 일체로 된 하나의 열교환기처럼 사용되고 있다.Here, the assembly of the refrigerant pipe (1) and the cooling fin (3) is generally used as one heat exchanger in which two are assembled in two rows form as shown in FIG.

특히, 종래의 열교환기에 사용되는 냉매관(1)은 도 2 및 도 3에 도시된 바와 같이, 7㎜ 또는 9㎜의 관경을 갖고 그 내주면에 그루브(5)가 형성된 그루브관으로 이루어져 있다.In particular, the refrigerant pipe 1 used in the conventional heat exchanger, as shown in Figs. 2 and 3, consists of a groove pipe having a pipe diameter of 7 mm or 9 mm and a groove 5 formed on the inner circumferential surface thereof.

상기와 같이 냉매관(1)이 그루브관으로 이루어진 종래의 열교환기에서는, 상기 그루브(5)에 의해 냉매관(1) 내부의 열전달 면적이 증가되는 동시에 온도경계층이 교란되어 상기 냉매관(1)과 공기 사이의 열전달 성능이 향상되게 된다.In the conventional heat exchanger in which the refrigerant pipe 1 is a groove pipe as described above, the heat transfer area inside the refrigerant pipe 1 is increased by the groove 5, and the temperature boundary layer is disturbed, so that the refrigerant pipe 1 The heat transfer performance between and air is improved.

이때, 상기한 열교환기가 증발용으로 사용되는 경우에는 액상의 냉매와 관벽면이 접촉하는 면적이 넓을수록 상기 냉매와 공기 사이의 열전달이 촉진되므로 상기 그루브(5)에 의해 냉매관(1)의 관내 면적이 최대화되도록 그루브(5)의 개수와 스파이럴 각도를 설계하여 상기 그루브(5)의 형상을 증발용 열교환기에 적합한 형태로 최적화한다.At this time, when the heat exchanger is used for evaporation, the heat transfer between the refrigerant and the air is promoted as the area where the liquid refrigerant and the tube wall surface contact is larger, so that the groove 5 of the refrigerant tube 1 is in the pipe. The number of grooves 5 and the spiral angle are designed to maximize the area to optimize the shape of the grooves 5 in a form suitable for evaporative heat exchangers.

또한, 상기한 열교환기가 응축용으로 사용되는 경우에는 증기상의 냉매가 관벽면과 접촉하는 면적이 넓을수록 공기로의 열전달이 촉진되므로 상기 냉매관(1)을 통과하면서 응축된 액상의 냉매가 상기 그루브(5)를 따라 신속히 제거되어 보다 많은 냉매관(1)의 관벽면이 증기상의 냉매에 노출되도록 그루브(5)의 형상을 응축용 열교환기에 적합한 형태로 최적화하여 설계한다.In addition, when the heat exchanger is used for condensation, the larger the area where the vaporized refrigerant contacts the tube wall surface promotes heat transfer to the air, so that the liquid refrigerant condensed while passing through the refrigerant pipe 1 is grooved. The shape of the groove 5 is optimized to a shape suitable for a heat exchanger for condensation so that it is quickly removed along (5) to expose more pipe walls of the refrigerant pipe 1 to the vapor phase refrigerant.

그러나, 상기와 같은 종래의 열교환기는 냉매관(1)을 그루브관으로 제작하기 위해서 나관에 강선을 갖는 플러스를 삽입한 후 인발하는 방식으로 상기 냉매관(1)의 내주면에 그루브(5)를 형성하여야 하기 때문에 냉매관(1)에 그루브(5)를 가공하기 위한 별도의 가공작업이 필요함은 물론 그 가공작업이 매우 어려운 문제점이 있었다.However, in the conventional heat exchanger as described above, the groove 5 is formed on the inner circumferential surface of the refrigerant pipe 1 by inserting a plus having a steel wire into the bare pipe and then drawing it in order to manufacture the refrigerant pipe 1 as the groove pipe. Since it must be a separate processing work for processing the groove 5 in the refrigerant pipe (1) of course there was a problem that the processing is very difficult.

뿐만 아니라, 상기한 종래의 열교환기는 그루브관의 인발속도가 일반적으로 그루브(5)가 없는 나관의 인발속도에 비해 약 1/10이하로 떨어지기 때문에 상기 냉매관(1)을 그루브관으로 가공하는데 소요되는 시간이 길어져 생산성이 저하되고, 이에 따라 제조비가 상승되어 가격경쟁력이 약화되는 문제점이 있었다.In addition, the conventional heat exchanger is used to process the coolant tube 1 into the groove tube because the drawing speed of the grooved pipe generally falls below about 1/10 of the drawing speed of the bare tube without the groove 5. The longer the time is required, the lower the productivity, and thus, the manufacturing cost is increased, thereby lowering the price competitiveness.

하지만, 지금까지는 상기 냉매관(1)에 7㎜ 또는 9㎜의 관경을 갖는 관을 사용하여 왔기 때문에 냉매관(1)이 그루브관인 경우와 그루브관이 아닌 경우 사이의 열전달계수 차이가 너무 커서 가공의 어려움 및 원가상승과 같은 그루브관의 적용으로 인한 문제점에도 불구하고 그냥 그루브관을 사용하여 왔다.However, until now, since the tube having a diameter of 7 mm or 9 mm has been used for the refrigerant pipe 1, the difference in heat transfer coefficient between the case where the refrigerant pipe 1 is a grooved pipe and the case where the grooved pipe is not grooved is too large. Despite the problems caused by the application of grooved pipes, such as difficulties and cost increases, they have just used grooved pipes.

따라서, 상기 냉매관(1)에 그루브관이 아닌 나관을 이용하면서도 상기한 그루브관을 사용할 때와 같은 정도의 열전달 성능을 얻을 수 있는 구조의 열교환기를 개발할 필요가 있다.Therefore, it is necessary to develop a heat exchanger having a structure capable of obtaining a heat transfer performance similar to that when using the grooved tube while using a bare tube instead of the grooved tube in the refrigerant pipe 1.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 냉매관을 세경관과 나관(Smooth tube)이 복합된 형태로 형성하여 상기 냉매관으로 그루브관을 사용하지 않고도 우수한 열전달 성능을 얻을 수 있게 됨으로써 열교환기의 제조공정에서 그루브 가공공정이 삭제되어 냉매관의 제작이 간단해지고 제작시간이 단축되며 제조비가 절감되도록 하는 세경관형 열교환기를 제공하는데 그 목적이 있다.The present invention has been made in order to solve the above problems, the refrigerant tube is formed in the form of a combination of the narrow tube and the smooth tube (Smooth tube) to obtain an excellent heat transfer performance without using a groove tube as the refrigerant tube As a result, the groove processing process is eliminated in the manufacturing process of the heat exchanger, thereby simplifying the production of the refrigerant pipe, shortening the manufacturing time, and providing a tubular heat exchanger that reduces the manufacturing cost.

도 1은 일반적인 열교환기의 구조가 도시된 구성도,1 is a configuration diagram showing a structure of a general heat exchanger,

도 2는 종래 기술에 따른 열교환기에 사용되는 냉매관의 구조가 도시된 구성도,Figure 2 is a block diagram showing the structure of a refrigerant pipe used in the heat exchanger according to the prior art,

도 3은 종래 기술에 의한 냉매관의 그루브 단면 구조가 도시된 단면도,3 is a cross-sectional view showing a groove cross-sectional structure of a refrigerant pipe according to the prior art,

도 4는 본 발명에 따른 세경관형 열교환기에 사용되는 냉매관의 구조가 도시된 구성도,Figure 4 is a block diagram showing the structure of a refrigerant pipe used in the narrow tubular heat exchanger according to the present invention,

도 5는 본 발명에 의한 냉매관의 열전달 성능을 설명하기 위한 도면이다.5 is a view for explaining the heat transfer performance of the refrigerant pipe according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

51 : 냉매관51: refrigerant tube

(a) : 9㎜의 관경을 갖는 나관의 열전달계수가 도시된 그래프(a): Graph showing heat transfer coefficient of a bare tube with a diameter of 9 mm

(b) : 7㎜의 관경을 갖는 나관의 열전달계수가 도시된 그래프(b): Graph showing heat transfer coefficient of a screw having a diameter of 7 mm

(c) : 7㎜의 관경을 갖는 그루브관의 열전달계수가 도시된 그래프(c): Graph showing heat transfer coefficient of grooved pipe having a diameter of 7 mm

(d) : 9㎜의 관경을 갖는 그루브관의 열전달계수가 도시된 그래프(d): Graph showing heat transfer coefficient of grooved pipe having a diameter of 9 mm

상기의 목적을 달성하기 위한 본 발명에 따른 세경관형 열교환기는, 내부에 냉매가 흐르는 냉매관과, 상기 냉매관에 결합되어 냉매와 공기 사이의 열교환 면적을 확보하는 다수의 냉각핀으로 구성된 열교환기에 있어서, 상기 냉매관은 5㎜이하의 관경을 갖는 세경관과 그루브를 가공하지 않아 내주면이 매끄러운 나관(Smoothtube)이 복합된 형태로 형성된 것을 특징으로 한다.According to an aspect of the present invention, there is provided a narrow tubular heat exchanger including a refrigerant pipe through which a refrigerant flows and a plurality of cooling fins coupled to the refrigerant pipe to secure a heat exchange area between the refrigerant and air. In addition, the refrigerant pipe is characterized in that the inner tube has a smooth tube (Smoothtube) is formed in a complex form without processing the narrow pipe and the groove having a tube diameter of 5mm or less.

이하, 본 발명의 실시 예를 첨부한 도면을 참조하여 설명한다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

도 4는 본 발명에 따른 세경관형 열교환기에 사용되는 냉매관의 구조가 도시된 구성도이고, 도 5는 본 발명에 의한 냉매관의 열전달 성능을 설명하기 위한 도면이다.Figure 4 is a block diagram showing the structure of the refrigerant pipe used in the narrow tubular heat exchanger according to the present invention, Figure 5 is a view for explaining the heat transfer performance of the refrigerant pipe according to the present invention.

상기한 도 4를 참조하면, 본 발명에 따른 세경관형 열교환기는 내부에 냉매가 흐르는 냉매관(51)과, 상기 냉매관(51)에 확관에 의해 결합되어 냉매와 공기 사이의 열교환 면적을 확보하는 다수의 냉각핀(미도시)으로 구성된 것으로서, 상기 냉매관(51)은 5㎜이하의 관경을 갖는 세경관과 그루브를 가공하지 않아 내주면이 매끄러운 나관이 복합된 형태로 형성된다.Referring to FIG. 4, the narrow tubular heat exchanger according to the present invention is coupled to the refrigerant pipe 51 through which a refrigerant flows and the expansion pipe connected to the refrigerant pipe 51 to secure a heat exchange area between the refrigerant and the air. Consisting of a plurality of cooling fins (not shown), the refrigerant pipe 51 is formed in the form of a composite of a narrow pipe and a pipe having a smooth inner circumferential surface without processing grooves having a tube diameter of 5 mm or less.

상기와 같이 세경관과 나관이 복합된 형태로 냉매관(51)이 형성된 본 발명에 의한 세경관형 열교환기는, 같은 관경의 그루브관을 적용한 열교환기와 비교할 때, 열전달계수의 차이가 거의 없을 뿐만 아니라 상기 냉매관(51) 내부의 압력손실이 대폭 감소되어 상기한 그루브관을 적용한 열교환기보다 우수한 열전달 성능을 얻을 수 있게 된다.As described above, the narrow tubular heat exchanger according to the present invention in which the coolant tube 51 is formed in a complex form of the narrow tube and the spiral tube has little difference in heat transfer coefficient as compared with the heat exchanger using the groove tube of the same diameter. The pressure loss inside the refrigerant pipe 51 is greatly reduced, so that a better heat transfer performance can be obtained than the heat exchanger to which the groove pipe is applied.

상기한 바와 같은 본 발명에 의한 냉매관(51)의 열전달 성능에 대하여 도 5를 참조하여 설명하면 다음과 같다. 이때, 상기한 도 5는 7㎜의 관경을 갖는 나관과 그루브관, 그리고 9㎜의 관경을 갖는 나관과 그루브관을 각각 동일한 질량유속 하에서 실험하여 각 관의 증발 열전달계수를 측정한 결과가 도시된 도면이다.The heat transfer performance of the refrigerant pipe 51 according to the present invention as described above with reference to Figure 5 as follows. 5 shows the results of measuring evaporation heat transfer coefficients of each tube by experimenting with a tube and a groove tube having a tube diameter of 7 mm and a tube and a groove tube having a tube diameter of 9 mm, respectively, under the same mass flow rate. Drawing.

즉, 도 5의 (a)는 9㎜의 관경을 갖는 나관의 열전달계수가 도시된 그래프이고, (b)는 7㎜의 관경을 갖는 나관의 열전달계수가 도시된 그래프이다. 또한, 도 5의 (c)는 7㎜의 관경을 갖는 그루브관의 열전달계수가 도시된 그래프이고, (d)는 9㎜의 관경을 갖는 그루브관의 열전달계수가 도시된 그래프이다.That is, Figure 5 (a) is a graph showing the heat transfer coefficient of the tube having a diameter of 9mm, (b) is a graph showing the heat transfer coefficient of a tube having a diameter of 7mm. 5C is a graph showing a heat transfer coefficient of a grooved tube having a tube diameter of 7 mm, and (d) is a graph showing a heat transfer coefficient of a grooved tube having a diameter of 9 mm.

상기와 같이 각각의 열전달계수를 측정한 결과가 도시된 도 5를 살펴보면, 각 관들의 열전달계수는 냉매의 건도가 증가할수록 계속 증가함을 알 수 있다. 이렇게 각 관의 열전달계수가 냉매의 건도에 비례하여 증가하는 것은 냉매의 건도가 증가할수록 관벽에 형성되는 냉매의 액막 두께가 감소되고 기체상태의 냉매가 증가하여 상기한 액막의 유동속도도 빨라지기 때문이다.Referring to FIG. 5 in which the results of measuring the respective heat transfer coefficients are shown, it can be seen that the heat transfer coefficients of the respective pipes continue to increase as the dryness of the refrigerant increases. The heat transfer coefficient of each tube increases in proportion to the dryness of the refrigerant because the liquid film thickness of the coolant formed in the pipe wall decreases as the dryness of the coolant increases, and the flow rate of the liquid film also increases due to the increase of the gaseous coolant. to be.

또한, 상기한 도 5를 살펴보면, 9㎜의 관경을 갖는 경우에는 나관과 그루브관의 열전달계수가 크게 차이나지만 7㎜의 관경을 갖는 경우에는 나관과 그루브관의 열전달계수의 차이가 대폭 감소됨을 알 수 있다.In addition, referring to FIG. 5, when the diameter of 9 mm is large, the heat transfer coefficients of the spiral and grooved pipes are greatly different, but when the diameter of 7 mm is large, the difference in heat transfer coefficients of the spiral and grooved pipes is greatly reduced. Can be.

이와 같은 측정결과로부터, 냉매관(51)이 세경관화되어 그 관경이 작아지면 그루브를 통한 열전달 증가의 효과는 감소한다는 결론을 도출할 수 있게 된다.From the above measurement results, it can be concluded that the coolant pipe 51 becomes narrow in diameter and the diameter of the coolant pipe 51 decreases, thereby reducing the effect of increasing heat transfer through the groove.

즉, 상기 냉매관(51)의 관경이 1/2로 감소되면 관단면적은 1/4로 줄어드는 반면에 원주는 1/2로 줄어들고 동일 질량유속을 유지하기 위한 질량유량은 1/4로 줄어들게 되는데, 냉매의 액막은 냉매관(51)의 원주를 따라 형성되므로 1/4로 감소한 질량유량에 의해 1/2로 감소한 원주 상에 액막이 형성되면 상기한 액막의 두께가 감소하게 된다.That is, when the diameter of the refrigerant pipe 51 is reduced to 1/2, the pipe cross-sectional area is reduced to 1/4, while the circumference is reduced to 1/2, and the mass flow rate for maintaining the same mass flow rate is reduced to 1/4. Since the liquid film of the coolant is formed along the circumference of the coolant tube 51, when the liquid film is formed on the circumference reduced by 1/2 by the mass flow rate reduced by 1/4, the thickness of the liquid film is reduced.

따라서, 상기 냉매관(51)의 관경이 작아질수록 냉매관(51)의 내주면에 형성가능한 그루브의 개수는 줄어들고 액막의 두께는 감소하게 되므로 나관과 그루브관 사이의 열전달계수 차이는 감소된다.Therefore, as the diameter of the refrigerant pipe 51 decreases, the number of grooves that can be formed on the inner circumferential surface of the refrigerant pipe 51 decreases and the thickness of the liquid film decreases, so that the difference in heat transfer coefficient between the bare pipe and the groove pipe decreases.

결과적으로, 상기 냉매관(51)에 세경관과 나관이 복합된 형태를 사용하면 동일한 관경의 그루브관과 비교할 때 열전달계수의 차이가 거의 없을 뿐만 아니라, 열교환기의 가격저감, 소형화, 대체 냉매에 대한 대응 등과 같은 냉매관(51)의 세경관화로 인한 장점들을 모두 살릴 수 있게 되고, 그루브관에 비해 관내의 압력손실이 감소되어 시스템의 구성시 분지수를 줄일 수 있는 동시에 열교환기의 냉매측 압력손실도 저감되게 되므로 그루브관을 사용하는 경우보다 오히려 열전달 성능이 향상되게 된다.As a result, when the combination of the narrow pipe and the bare pipe in the refrigerant pipe 51 is used, there is almost no difference in heat transfer coefficient compared to the groove pipe of the same pipe diameter, and the cost reduction, miniaturization, and replacement of the heat exchanger It is possible to take full advantage of the fine diameter of the refrigerant tube 51, such as the response to the response, and the pressure loss in the tube is reduced compared to the groove tube, which can reduce the number of branches in the configuration of the system and at the same time the refrigerant side pressure of the heat exchanger Since the loss is also reduced, heat transfer performance is improved rather than using a grooved pipe.

상기와 같이 구성되고 동작되는 본 발명에 따른 세경관형 열교환기는, 냉매관을 세경관과 나관이 복합된 형태로 형성하여 상기 냉매관으로 그루브관을 사용하지 않고도 우수한 열전달 성능을 얻을 수 있게 되므로 열교환기의 제조공정에서 그루브 가공공정이 삭제되어 냉매관의 제작이 간단해지고 제작시간이 단축되며 제조비가 절감되는 이점이 있다.The tubular heat exchanger according to the present invention constructed and operated as described above forms a refrigerant tube in a form in which the tubular tube and the tubular tube are combined so that excellent heat transfer performance can be obtained without using a groove tube as the refrigerant tube. Grooving process is eliminated in the manufacturing process of the refrigerant pipe has the advantage of simplifying the production of the refrigerant pipe, shortening the manufacturing time and manufacturing cost.

즉, 본 발명은 냉매관의 제작이 단순화되고 제조비가 절감되어 생산성이 향상되는 동시에 가격 저감이 가능하게 되어 가격경쟁력이 향상되는 이점이 있다.In other words, the present invention has the advantage that the production of the refrigerant pipe is simplified and the manufacturing cost is reduced to improve the productivity at the same time the price can be reduced and the price competitiveness is improved.

Claims (1)

내부에 냉매가 흐르는 냉매관과, 상기 냉매관에 결합되어 냉매와 공기 사이의 열교환 면적을 확보하는 다수의 냉각핀으로 구성된 열교환기에 있어서,In a heat exchanger consisting of a refrigerant pipe through which a refrigerant flows and a plurality of cooling fins coupled to the refrigerant pipe to secure a heat exchange area between the refrigerant and air, 상기 냉매관은 5㎜이하의 관경을 갖는 세경관과 그루브를 가공하지 않아 내주면이 매끄러운 나관(Smooth tube)이 복합된 형태로 형성된 것을 특징으로 하는 세경관형 열교환기.The coolant tube is a narrow tube tube heat exchanger, characterized in that formed in the form of a smooth tube with a smooth inner circumferential surface without processing the narrow tube and the groove having a tube diameter of 5 mm or less.
KR1020000038506A 2000-07-06 2000-07-06 Heat exchanger KR20020004531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000038506A KR20020004531A (en) 2000-07-06 2000-07-06 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000038506A KR20020004531A (en) 2000-07-06 2000-07-06 Heat exchanger

Publications (1)

Publication Number Publication Date
KR20020004531A true KR20020004531A (en) 2002-01-16

Family

ID=19676525

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000038506A KR20020004531A (en) 2000-07-06 2000-07-06 Heat exchanger

Country Status (1)

Country Link
KR (1) KR20020004531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624379B1 (en) * 2004-11-17 2006-09-18 엘지전자 주식회사 A heat pump air conditioner whith cooling and heating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624379B1 (en) * 2004-11-17 2006-09-18 엘지전자 주식회사 A heat pump air conditioner whith cooling and heating

Similar Documents

Publication Publication Date Title
KR100382523B1 (en) a tube structure of a micro-multi channel heat exchanger
KR100382341B1 (en) Heat exchanger
KR20020004530A (en) Heat exchanger
JP4073850B2 (en) Heat exchanger
US7059394B2 (en) Heat exchanger
US4866830A (en) Method of making a high performance, uniform fin heat transfer tube
KR20020004531A (en) Heat exchanger
JPH04263792A (en) Heat transfer tube for heat exchanger
JPH02166394A (en) Heat exchanger with fin
JPS6048496A (en) Heat transfer pipe for double-pipe type condenser
JP2006234290A (en) Heat exchanger and refrigerating machine
JPS6115092A (en) Heat transfer tube for use in heat exchanger
KR20030088169A (en) Heat exchanger
KR20050116051A (en) Form rolling forming disk and high capability high efficiency fin tube
JPS61140791A (en) Heat exchanger tube
EP0074384B1 (en) Heat exchanger
JP2008101907A (en) Heat exchanger
JPS6361895A (en) Heat transfer pipe
JPH07109354B2 (en) Heat exchanger
JPS5938596A (en) Heat exchanger
JP2006029615A (en) Evaporator
JPH03122499A (en) Boiling type heat transfer tube
JPS62248995A (en) Evaporator
JPS60196598A (en) Heat transfer pipe
JPH0238233Y2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E601 Decision to refuse application