KR200173293Y1 - The blade type of axial fan - Google Patents
The blade type of axial fan Download PDFInfo
- Publication number
- KR200173293Y1 KR200173293Y1 KR2019990020525U KR19990020525U KR200173293Y1 KR 200173293 Y1 KR200173293 Y1 KR 200173293Y1 KR 2019990020525 U KR2019990020525 U KR 2019990020525U KR 19990020525 U KR19990020525 U KR 19990020525U KR 200173293 Y1 KR200173293 Y1 KR 200173293Y1
- Authority
- KR
- South Korea
- Prior art keywords
- axial fan
- degrees
- angle
- blade
- tip
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/38—Blades
- F04D29/384—Blades characterised by form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/666—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/667—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
본 고안은 축류팬 날개구조에 관한 것으로, 특히 축류팬 날개의 팁부분이 꺽여지도록 형성하여 날개 팁부위에서 와류의 발생을 억제함으로써 소음이 저감되고 풍량이 증대되도록 된 것이다.The present invention relates to an axial fan blade structure, in particular, the tip portion of the axial fan blade is formed to be bent to suppress the generation of vortex at the wing tip to reduce noise and increase the air volume.
이를 위해 본 발명에 따른 축류팬 날개는, 측면에서 보았을 때 날개 팁부분이 후방으로 꺽여져 형성되되, 이 꺽인 부위의 꺽임위치(L1/L2)는 0.75∼0.90이며, 꺽임각도(θ)는 65°∼85°가 되도록 형성되며, 피치각(α)은 허브측에서 42°∼48°, 팁측에서는 28°∼34°가 되도록 형성되고, 스윕각(β)은 29°∼35°이고, 최대캠버위치(P)는 0.6∼0.66, 최대캠버량(M)은 허브측에서 4%∼6%, 팁측에서는 9%∼11%이며, 내외경비(I/O)는 0.22∼0.28이 되도록 형성된다.To this end, the axial fan blade according to the present invention, when viewed from the side, the blade tip portion is formed to be rearward bent, the bending position (L1 / L2) of this bending portion is 0.75 to 0.90, the angle of rotation (θ) is 65 It is formed so as to be 85 degrees to 85 degrees, the pitch angle (alpha) is formed so that 42 degrees-48 degrees on the hub side, and 28 degrees-34 degrees on the tip side, and the sweep angle (beta) is 29 degrees-35 degrees, maximum The camber position P is 0.6 to 0.66, the maximum camber amount M is 4% to 6% at the hub side and 9% to 11% at the tip side, and the inner and outer ratio I / O is formed to be 0.22 to 0.28. .
Description
본 고안은 축류팬의 날개의 구조에 관한 것으로, 특히 축류팬의 송풍효율을 증대시키고 소음을 저감시킬 수 있도록 된 축류팬 날개구조에 관한 것이다.The present invention relates to the structure of the blade of the axial fan, and more particularly, to an axial fan blade structure that can increase the blowing efficiency of the axial fan and reduce the noise.
일반적으로, 축류팬(axial fan)은 모터의 구동에 의해 회전하면서 그 주요구성부인 날개를 통해 전방의 외기를 강제로 인입하여 축방향으로 후방으로 송풍시킴으로써 환기 또는 냉각 등을 수행할 수 있도록 된 장치로, 선풍기나 공조기와 같은 가전제품 뿐만 아니라 항공기나 발전기 등의 다양한 산업 설비에도 이용된다.In general, an axial fan is a device that is capable of performing ventilation or cooling by forcibly drawing outside air in front of it through a wing, which is a main component thereof, while being driven by a motor, and blowing it rearward in the axial direction. Furnace, as well as home appliances such as fans and air conditioners are used in a variety of industrial equipment, such as aircraft and generators.
한편, 상기와 같은 축류팬은 도 1에 도시된 바와 같이 모터(도시안됨)의 구동축(도시안됨)에 결합되는 허브(1)와, 이 허브(1)의 외주부에 방사상으로 형성되어 공기를 송풍시키는 다수의 날개(2)로 이루어지며, 상기 날개(2)는 공기유동을 일으키는 주요한 구성요소로서, 날개의 3차원적인 형상은 축류팬에서 얻어지는 공기의 유동특성을 결정하게 되는데, 이러한 날개의 3차원적인 형상은 공기역학 분야에서 잘 알려진 여러 가지 인자들로 나타낼 수 있다.Meanwhile, as shown in FIG. 1, the axial fan as shown in FIG. 1 has a hub 1 coupled to a drive shaft (not shown) of a motor (not shown), and is radially formed at an outer circumference of the hub 1 to blow air. It consists of a plurality of wings (2), the wing (2) is the main component causing the air flow, the three-dimensional shape of the wing determines the flow characteristics of the air obtained from the axial flow fan, The dimensional shape can be represented by a number of factors that are well known in the field of aerodynamics.
예컨대, 날개의 형상은 도 1과 도 2에 도시된 것과 같은 스윕각(β;sweep angle)과, 내외경비(I/O), 피치각(α;pitch angle), 최대캠버량(M; maximum camber) 및 최대캠버위치(P) 등의 구성인자들로 표현할 수 있으며, 상기 각 구성인자들에 대하여 상세히 설명하면 다음과 같다.For example, the shape of the blade has a sweep angle β as shown in FIGS. 1 and 2, internal and external ratio I / O, pitch angle α, and maximum camber amount M; camber) and the maximum camber position (P), and the like, and each of the above-described components will be described in detail.
상기 스윕각(β)은 회전방향에 대한 날개(2)의 쏠림 정도를 나타내는 것으로 허브(1)에서의 스윕각은 0이며 중심에서 반경방향으로 멀어질수록 쏠림 정도가 커지고 이에 따라 해당 함수에 의해 스윕각(β)이 결정되게 된다.The sweep angle β represents the degree of deflection of the blade 2 with respect to the rotational direction. The sweep angle at the hub 1 is 0, and as the distance from the center to the radial direction increases, the degree of deflection increases, and according to the corresponding function, The sweep angle β is determined.
상기 내외경비(I/O)는 날개(2)가 회전할 때 날개의 팁이 그리는 궤적의 직경인 회전직경(O)에 대한 허브(1)의 직경(I)의 비율로 나타낸다.The internal and external ratio I / O is expressed as the ratio of the diameter I of the hub 1 to the rotation diameter O, which is the diameter of the trajectory the blade tip draws as the blade 2 rotates.
한편, 도 2는 축류팬의 외주측, 즉 날개의 팁측에서 바라본 날개(2)의 측면도로, 2차원 평면상에 표현된 날개에서 축류팬의 회전방향에 대해 날개(2)의 앞쪽 끝부분에 해당하는 앞전(2a;leading edge)에서부터 날개의 뒤쪽 끝부분에 해당하는 날개의 뒷전(2b;trailing edge)을 이은 선분을 코드라인(C;chord line)으로 정의하고, 날개의 굴곡면들의 상부면과 하부면 사이의 1/2 지점을 구하여 이 점들을 연결하면 평균캠버라인(MC;mean camber line)을 구할 수 있다.2 is a side view of the wing 2 viewed from the outer circumferential side of the axial fan, that is, from the tip of the wing, at the front end of the wing 2 with respect to the rotational direction of the axial fan in the wing represented on a two-dimensional plane. The line from the corresponding leading edge to the trailing edge of the wing corresponding to the trailing edge of the wing is defined as a chord line, and the upper surface of the curved surfaces of the wing. The mean camber line (MC) can be obtained by connecting 1/2 points between the bottom and the bottom surface.
상기와 같은 방식으로 얻어진 평균캠버라인(MC)과 상기 코드라인(C) 사이의 거리가 최대가 되는 곳에서 코드라인(C) 상의 지점이 최대캠버위치(P)가 되고, 그 사이의 거리를 전체 코드라인(C)의 길이에 대한 비로 나타낸 것을 최대캠버량(M)으로 정의한다. 이때, 상기 최대캠버위치(P)는 상기 코드라인(C)을 무차원화하여 날개의 앞전(2a)을 1로, 뒷전(2b)을 0으로 했을 때 앞전(2a)에서부터의 거리로 표시한다.Where the distance between the average camber line MC and the codeline C obtained in the above manner becomes maximum, the point on the codeline C becomes the maximum camber position P, and the distance between them What is represented by the ratio with respect to the length of the entire code line C is defined as the maximum camber amount M. At this time, the maximum camber position (P) is expressed as the distance from the front 2a when the front line (2a) of the wing to 1, and the rear edge (2b) of 0 by dimensioning the code line (C).
상기와 같이 구해진 캠버량은 날개의 굴곡정도를 나타내는 척도가 된다.The amount of camber obtained as described above is a measure of the degree of bending of the blade.
그리고, 상기 코드라인(C)이 평면과 이루는 각, 즉 코드라인이 X축과 이루는 각을 피치각(α)으로 정의하고 이 피치각(α)은 날개의 비틀림정도를 나타내는 척도로 이용된다.In addition, the angle formed by the code line C with the plane, that is, the angle formed by the code line with the X axis is defined as the pitch angle α, and the pitch angle α is used as a measure of the degree of twist of the wing.
이상과 같이 축류팬은 여러 구성인자들로 표현될 수 있으며, 상기 구성인자들은 통상적으로 축류팬의 종류에 따라 상이한 수치의 값을 갖는다.As described above, the axial fan may be represented by a number of components, and the components have different values according to the type of the axial fan.
그러나, 종래의 축류팬들은 상기와 같은 구성인자들의 수치가 다르게 형성되지만 그 기본적인 형상은 모두 유사하게 형성되는데, 도 1에서 알 수 있는 바와 같이 날개가 허브(1) 측에서는 폭이 좁고 허브(1)에서 멀어질수록 그 폭이 점차 넓어지는 형상을 하고 있다.However, the conventional axial flow fans are formed with different values of the above-described components, but the basic shapes are all similarly formed. As can be seen in FIG. 1, the wings are narrow on the hub 1 side and the hub 1 is narrow. As it moves away from it, its width gradually widens.
그러나, 이와 같은 종래의 축류팬들은 허브 측과 팁 측의 피치각(α)이 작고 최대캠버위치(P)가 코드라인(C)의 중심에 위치해 있어서 많은 풍량을 낼 수 없을 뿐만 아니라, 도 3에 도시된 바와 같이 회전시 날개의 팁 부근에서 와류(Vortex)가 발생하여 소음이 증가하는 문제점이 있었다.However, these conventional axial fans have a small pitch angle α between the hub side and the tip side, and the maximum camber position P is located at the center of the cord line C. As shown in the figure, there is a problem in that noise is increased by generating a vortex (Vortex) near the tip of the blade during rotation.
이에 본 고안은 상기와 같은 문제점을 감안하여 안출된 것으로, 축류팬 날개의 형상을 적절히 변형하여 회전시 풍량은 증가하면서도 소음은 저감될 수 있도록 된 축류팬 날개구조를 제공함에 그 목적이 있다.Accordingly, the present invention has been made in view of the above problems, and an object thereof is to provide an axial fan blade structure in which the shape of the axial fan blade is properly modified to reduce the noise while increasing the air volume during rotation.
도 1은 일반적인 축류팬의 정면도1 is a front view of a typical axial flow fan
도 2는 도 1 축류팬 날개의 측면도Figure 2 is a side view of the axial fan blade of Figure 1
도 3은 도 1의 축류팬의 날개 팁부위에서 발생하는 유동을 가시화하여 나타낸 상태도Figure 3 is a state diagram showing the flow generated from the blade tip portion of the axial fan of Figure 1
도 4는 본 발명에 따른 축류팬의 날개구조를 나타내기 위하여 축류팬의 일부만이 도시된 축류팬의 측면도Figure 4 is a side view of the axial fan showing only a portion of the axial fan to show the wing structure of the axial fan according to the invention
도 5는 도 3의 대응도로서 본 발명에 따른 날개구조를 갖는 축류팬의 날개 팁부위에서의 유동을 가시화하여 나타낸 상태도FIG. 5 is a state diagram visually showing a flow at a blade tip portion of an axial fan having a wing structure according to the present invention as a corresponding diagram of FIG.
도면의 주요부분에 대한 부호의 설명Explanation of symbols for main parts of the drawings
1 - 허브 2 - 날개1-Hub 2-Wings
2a - 앞전 2b- 뒷전2a-forward 2b-backward
α- 피치각 β- 스윕각α- pitch angle β- sweep angle
M - 최대캠버량 P - 최대캠버위치M-Maximum camber amount P-Maximum camber position
I - 허브직경 O - 축류팬 회전직경I-Hub Diameter O-Axial Fan Rotation Diameter
I/O - 내외경비 L1/L2 - 꺽임위치I / O-Internal L / L L1 / L2-Bending
θ - 꺽임각 C - 코드라인θ-bend angle C-codeline
상기와 같은 목적을 달성하기 위하여 본 고안에 따른 축류팬 날개의 구조는, 측면에서 보았을 때 날개의 팁 부분이 후방으로 꺽어져 형성되고, 날개의 피치각이 허브측과 팁측에서 소정의 각도로 상이하게 형성되고, 스윕각과, 내외경비, 상기 팁측의 꺽인 부위의 꺽임위치 및 꺽임각, 최대캠버량 및, 최대캠버위치가 소정의 수치범위내로 형성된다.In order to achieve the above object, the structure of the axial fan blade according to the present invention, the tip portion of the blade is formed to be bent rearward when viewed from the side, the pitch angle of the blade is different at a predetermined angle from the hub side and the tip side And the sweep angle, the internal and external ratio, the bending position and the bending angle of the tip portion, the maximum camber amount, and the maximum camber position are formed within a predetermined numerical range.
이하 본 고안을 첨부된 도면에 의거하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 4는 본 고안에 따른 날개의 구조를 나타내기 위하여 축류팬 일부분을 도시한 축류팬의 측면도로, 본 고안에 따른 축류팬 날개는, 측면에서 보았을 때 날개(20) 팁부분이 후방으로 꺽여져 형성되고, 이 꺽인 부위의 꺽임위치(L1/L2)는 0.75∼0.90이 되도록 형성되고, 꺽임각도(θ)는 65°∼85°가 되도록 형성된다.Figure 4 is a side view of the axial fan showing a portion of the axial fan in order to show the structure of the blade according to the present invention, the axial fan blade according to the present invention, the tip of the wing 20 is bent rearwards when viewed from the side The bending position L1 / L2 of this bent portion is formed so as to be 0.75 to 0.90, and the bending angle θ is formed to be 65 to 85 degrees.
여기서, 상기 꺽임위치(L1/L2)는 허브(1) 중심에서부터 날개 상단 팁까지의 거리(L2)와 꺽이는 지점까지의 거리(L1)의 비로 정의하는데, 참고로 꺽이는 지점은 꺽이는 부위에서 각 점에 대한 법선을 그었을 때 도면상 수직선에 대하여 오른쪽으로 기울어지기 시작하는 점을 기점으로 하고, 꺽임각(θ)은 이 꺽이기 시작하는 점에서 팁을 이은 선분이 수평선과 이루는 각으로 정의한다..Here, the bending position (L1 / L2) is defined as the ratio of the distance (L1) from the center of the hub (1) to the tip of the wing (L2) and the bending point, for reference, the bending point is each point at the bending site When the normal line is drawn, the point starts to incline to the right with respect to the vertical line in the drawing, and the angle of angle (θ) is defined as the angle formed by the line segment with the horizontal line at the point where the angle starts.
또한, 피치각(α)은 허브측에서 42°∼48°, 팁측에서는 28°∼34°가 되도록 형성되고, 스윕각(β)은 29°∼35°이고, 최대캠버위치(P)는 0.6∼0.66, 최대캠버량(M)은 허브측에서 4%∼6%, 팁측에서는 9%∼11%이며, 내외경비(I/O)는 0.22∼0.28이 되도록 형성된다.The pitch angle α is formed to be 42 ° to 48 ° at the hub side and 28 ° to 34 ° at the tip side, the sweep angle β is 29 ° to 35 °, and the maximum camber position P is 0.6. The maximum camber amount M is 4% to 6% at the hub side and 9% to 11% at the tip side, and the internal and external cost ratio (I / O) is formed to be 0.22 to 0.28.
상기 피치각(α)과 스윕각(β), 최대캠버위치(P), 최대캠버량(M) 및 내외경비(I/O)는 앞서 종래의 기술에서 설명을 하였는바, 그 상세한 설명은 생략한다.The pitch angle α, the sweep angle β, the maximum camber position P, the maximum camber amount M, and the internal and external expense I / O have been described in the prior art, and the detailed description thereof is omitted. do.
한편, 도 5는 상기와 같이 형성된 날개에서 발생하는 유동특성을 개략적으로 나타낸 것으로, 날개의 팁이 꺽여져서 형성되므로 이 꺽인 팁부위에서 와류가 발생하지 않게 되어 유동특성이 향상됨을 알 수 있다.On the other hand, Figure 5 schematically shows the flow characteristics generated in the blade formed as described above, it can be seen that since the tip of the blade is formed bent vortex does not occur in the bent tip portion is improved flow characteristics.
이상과 같이 형성된 본 고안에 따른 축류팬 날개와 종래의 축류팬 날개를 비교하여 실험한 결과를 아래의 표 1과 표 2에 나타내었는데, 표 1은 본 고안 축류팬 날개(B)의 일 실시예의 형상과 종래의 축류팬 날개(A)의 형상을 비교하여 나타낸 것이고, 표 2는 표 1의 날개들로 실험한 결과치를 나타낸다.The results of experiments by comparing the axial fan blades according to the present invention and the conventional axial fan blades formed as described above are shown in Table 1 and Table 2 below, Table 1 of the embodiment of the axial fan blades (B) of the present invention The shape is shown by comparing the shape of the conventional axial fan blade (A), Table 2 shows the experimental results with the blades of Table 1.
상기 표 1과 표 2에서와 같이, 동일 풍량에서 본 고안에 따른 날개는 종래의 날개보다 더 적은 회전수를 필요로 하며, 소음 역시 더 적게 발생함을 알 수 있다.As shown in Table 1 and Table 2, the wing according to the present invention at the same amount of air requires less rotational speed than the conventional wing, it can be seen that less noise also occurs.
상기와 같이 본 고안에 따르면, 축류팬의 회전시 날개 끝부분에서 와류가 발생하지 않으므로 종래의 날개에서 보다 상대적으로 많은 풍량을 얻을 수 있으며, 소음이 저감되는 효과가 있다.According to the present invention as described above, since the vortex does not occur at the tip of the blade during the rotation of the axial fan, it is possible to obtain a relatively larger amount of air than the conventional blade, there is an effect that noise is reduced.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2019990020525U KR200173293Y1 (en) | 1999-09-22 | 1999-09-22 | The blade type of axial fan |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2019990020525U KR200173293Y1 (en) | 1999-09-22 | 1999-09-22 | The blade type of axial fan |
Publications (1)
Publication Number | Publication Date |
---|---|
KR200173293Y1 true KR200173293Y1 (en) | 2000-03-15 |
Family
ID=19589890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR2019990020525U KR200173293Y1 (en) | 1999-09-22 | 1999-09-22 | The blade type of axial fan |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR200173293Y1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110319057A (en) * | 2019-07-18 | 2019-10-11 | 江阴市精亚风机有限公司 | A kind of front bended sweepforward fills formula blade, impeller and its axial flow blower partially |
-
1999
- 1999-09-22 KR KR2019990020525U patent/KR200173293Y1/en active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110319057A (en) * | 2019-07-18 | 2019-10-11 | 江阴市精亚风机有限公司 | A kind of front bended sweepforward fills formula blade, impeller and its axial flow blower partially |
CN110319057B (en) * | 2019-07-18 | 2024-04-26 | 江苏精亚风机有限公司 | Forward bending forward-swept offset blade, impeller and axial flow fan thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100332539B1 (en) | Axial flow fan | |
KR100818407B1 (en) | High-efficiency, inflow-adapted, axial-flow fan | |
JP2001501284A (en) | Axial fan | |
JP2005264944A (en) | Axial fan | |
KR101251130B1 (en) | Propeller fan | |
EP1455095B1 (en) | Axial-flow fan | |
JP3677214B2 (en) | Axial fan | |
CN110036209B (en) | Propeller fan | |
KR200173293Y1 (en) | The blade type of axial fan | |
KR200314840Y1 (en) | Low noise type fan | |
WO2018124257A1 (en) | Axial flow fan and blower unit | |
KR20080004099A (en) | Noise reduction a propeller fan | |
KR101160991B1 (en) | Cooling Fan for Auto Mobile | |
KR100852950B1 (en) | Blade Structure of Axial Flow Fan | |
KR20040026882A (en) | Axial Flow Fan | |
KR100487338B1 (en) | axial flow fan | |
KR100504480B1 (en) | axial flow fan | |
CN211573863U (en) | Axial flow fan blade, air interchanger and air conditioner | |
US20240344525A1 (en) | Blade for a low-noise industrial axial fan with terminal member, industrial axial fan and process for manufacturing a blade of an industrial axial fan | |
KR100648087B1 (en) | Axial flow fan | |
KR100459192B1 (en) | centripetal type axial flow fan | |
KR100326997B1 (en) | Axial flow fan | |
KR100487375B1 (en) | axial flow fan | |
JPH08170599A (en) | Blower impeller | |
KR100487334B1 (en) | axial flow fan apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REGI | Registration of establishment | ||
LAPS | Lapse due to unpaid annual fee | ||
T201 | Request for technology evaluation of utility model | ||
T701 | Written decision to grant on technology evaluation | ||
G701 | Publication of correction |