KR20010099086A - controling methode torch and turntable for flame hydrolysis deposition - Google Patents

controling methode torch and turntable for flame hydrolysis deposition Download PDF

Info

Publication number
KR20010099086A
KR20010099086A KR1020010051989A KR20010051989A KR20010099086A KR 20010099086 A KR20010099086 A KR 20010099086A KR 1020010051989 A KR1020010051989 A KR 1020010051989A KR 20010051989 A KR20010051989 A KR 20010051989A KR 20010099086 A KR20010099086 A KR 20010099086A
Authority
KR
South Korea
Prior art keywords
turntable
torch
center
speed
substrate
Prior art date
Application number
KR1020010051989A
Other languages
Korean (ko)
Inventor
권순창
김영기
심경섭
Original Assignee
권순창
주식회사 아론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권순창, 주식회사 아론 filed Critical 권순창
Priority to KR1020010051989A priority Critical patent/KR20010099086A/en
Publication of KR20010099086A publication Critical patent/KR20010099086A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/453Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating passing the reaction gases through burners or torches, e.g. atmospheric pressure CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 화염 가수분해 증착장치의 토치와 테이블제어방법에 관한 것으로서, 그 목적은 토치를 턴테이블이 1회전될 때마다 턴테이블의 중심 또는 반경방향으로 1피치씩 이동시키면서 턴테이블의 외측(끝단) 또는 중심부분에서 그 중심 또는 끝단에 가까워지면 질수록 토치 또는 턴테이블의 속도를 증감시킴으로써 기판이 안착된 위치의 턴테이블 반경에 관계없이 기판과 토치의 상대적인 속도가 항시 일정하게 제어할 수 있으며 이에 따라서 평탄하고 균일한 산화물 미립자 증착층을 얻을 수 있도록 한 것이다.The present invention relates to a torch and a table control method of a flame hydrolysis deposition apparatus. The object of the present invention is to move the torch by one pitch in the center or radial direction of the turntable each time the turntable is rotated once, or at the outside (end) or center of the turntable. As the part gets closer to its center or end, the speed of the torch or the turntable increases and decreases so that the relative speed of the substrate and the torch can be constantly controlled regardless of the turntable radius of the position on which the substrate is seated. The oxide fine particle deposition layer was obtained.

본 발명은 턴테이블(10a)의 가장자리 부분에 각각 기판(12)을 안착시키고 턴테이블(10a)을 회전시키는 턴테이블 회전단계, 이 회전단계에 의해 회전되는 턴테이블(10a)의 상부에서 토치(14) 내에 원료(인 함유 가스와 실리콘 함유 가스)를 공급하여 연소반응으로 산화물 미립자를 생성시키면서 턴테이블(10a)의 중심 또는 그 반경 방향으로 이동시켜 턴테이블(10a) 상의 기판(12) 표면에 열처리로 고밀화된 유리박막을 증착시키는 토치 이송단계가 구비된 화염가수분해 증착장치의 제어방법에 있어서, 상기 토치 이송단계가 턴테이블(10a)을 일정하게 회전시키면서 턴테이블(10a)의 외측부분에서 그 중심에 가까워질수록 토치(14)의 속도가 증가되는 증속수단이 구비됨을 특징으로 한다.According to the present invention, a raw material is placed in the torch 14 at a turntable rotation step of seating the substrate 12 on the edge portion of the turntable 10a and rotating the turntable 10a, and at the top of the turntable 10a rotated by the rotation step. (Phosphorus-containing gas and silicon-containing gas) are supplied to the center of the turntable 10a or its radial direction while producing oxide fine particles by combustion reaction, and are densified by heat treatment on the surface of the substrate 12 on the turntable 10a. In the method for controlling a hydrolysis deposition apparatus having a torch transfer step of depositing the torch, the torch transfer step rotates the turntable 10a constantly while the torch is moved closer to the center of the outer portion of the turntable 10a. It is characterized in that the speed increase means for increasing the speed of 14).

Description

화염가수분해 증착장치의 토치와 턴테이블 제어방법{controling methode torch and turntable for flame hydrolysis deposition}Control methode torch and turntable for flame hydrolysis deposition

본 발명은 화염가수분해 증착장치에서 턴테이블의 등속회전에 따른 토치를제어하는 방법에 관한 것으로서, 보다 상세하게는 기판이 안착된 위치의 턴테이블 반경에 관계없이 웨이퍼와 토치의 상대적인 속도가 항시 일정하게 토치의 속도를 제어하여 평탄하고 균일한 증착두께를 얻을 수 있는 화염가수분해 증착장치의 제어방법에 관한 것이다.The present invention relates to a method for controlling a torch according to constant speed rotation of a turntable in a flame hydrolysis deposition apparatus, and more particularly, a relative speed of a torch is constantly constant regardless of a turntable radius of a position where a substrate is seated. It relates to a control method of a flame hydrolysis deposition apparatus that can obtain a flat and uniform deposition thickness by controlling the speed of.

통상, 화염가수분해 증착장치(apparatus for flame hydrolysis deposition)(이하, "FHD"라 약칭함)는 광섬유제조방법인 VAD(vacuum application deposition)장치에서 파생된 것으로 상압에서 토치 내에 원료를 공급하여 연소에 의한 반응으로 산화물 미립자를 기판에 증착시키는 장치이다.Usually, the Apparatus for Flame Hydrolysis Deposition (abbreviated as "FHD") is derived from VAD (vacuum application deposition) apparatus, which is an optical fiber manufacturing method, to supply raw materials in the torch at atmospheric pressure to burn. By depositing oxide fine particles on a substrate.

상기 FHD에 의해 제조된 완제품의 기판은 기판 표면에 석영을 주성분으로 하는 하부 클래드층과 코어층이 형성되며 이 하부 클래드층 위의 코어층을 반응성 이온 에칭 방법으로 코어가 형성되고 상기 코어가 매몰되도록 석영을 주성분으로 하는 상부클래드층이 형성된 것이다.The substrate of the finished product manufactured by the FHD has a lower cladding layer and a core layer mainly composed of quartz on the surface of the substrate, and a core is formed on the lower clad layer by a reactive ion etching method and the core is buried. An upper cladding layer containing quartz as a main component is formed.

이와 같이 FHD를 이용하여 기판에 상/하부 클래드층 및 코어층을 증착하는 종래의 방법은 턴테이블을 회전시키면서 토치를 이송시키는 방식과, 좌우(또는 전후)로 이송되는 이송테이블을 이송시킨 후에 토치를 단계적으로 이송시키는 방식이 있다.As described above, the conventional method of depositing the upper / lower cladding layer and the core layer on the substrate by using the FHD transfers the torch while rotating the turntable, and transfers the torch after transferring the left and right (or front and rear) transfer tables. There is a method of transferring in stages.

전자의 방식은 상압(대기압)인 반응실 내의 턴테이블 가장자리 부분에 동일한 반경을 갖도록 동일 간격으로 형성된 다수의 안착요홈에 각각 기판을 안착시키고 상기 턴테이블의 상부에서 인을 함유하는 가스와 실리콘을 함유한 가스를 토치에 공급하여 연속적인 연소에 의한 방법으로 반응시켜 산화물 미립자가 생성되도록한다.The former method involves placing a substrate on a plurality of seating recesses formed at equal intervals so as to have the same radius on the turntable edge portion of the reaction chamber at atmospheric pressure (atmospheric pressure), and a gas containing silicon and a gas containing silicon on top of the turntable. Is supplied to the torch and reacted by a continuous combustion method so that oxide fine particles are produced.

상기 토치의 산화물 미립자가 안정화되도록 분위기를 조성하면서 토치를 턴테이블의 기판 끝단반경보다 큰 위치, 즉 턴테이블의 가장자리 위치에 놓는다.The torch is positioned at a position larger than the substrate end radius of the turntable, i.e., at the edge of the turntable, while creating an atmosphere to stabilize the oxide fine particles of the torch.

이러한 상태에서 턴테이블을 일정한 회전수로 회전시킴과 동시에 상기 토치를 턴테이블의 중심방향으로 이동시킴으로써 턴테이블 상의 기판 표면에 열처리로 고밀화된 유리박막을 증착시키는 것이다.In this state, the turntable is rotated at a constant rotational speed, and at the same time, the torch is moved toward the center of the turntable, thereby depositing a densified glass thin film on the substrate surface on the turntable.

이때, 토치의 이송은 턴테이블의 중심방향으로 이동되는 것으로 설명하였으나 산화물미립자를 증착시키고자 하는 두께에 따라 턴테이블의 중심측 위치에서 그 반경방향으로 왕복 이송시킬 수 있으며 턴테이블 상에서의 토치괘적은 도 1과 같이 소용돌이 형상으로 나타낼 수 있다.At this time, the transfer of the torch is described as being moved in the center direction of the turntable, but it can be reciprocated in the radial direction from the position of the center side of the turntable according to the thickness of the oxide fine particles to be deposited. It can be represented as a swirl.

상기와 같이 턴테이블을 이용하는 전자의 방식에 있어서는 턴테이블과 토치의 이송속도가 동일하므로 소용돌이 형상의 토치 괘적으로 나타나고 상기 토치가 턴테이블의 중심을 향하여 가까워지면 질수록 그 회전반경이 작아지게 되며 이로 인하여 턴테이블의 중심에 가까운 부분의 선속도는 외측부분에 비해 상대적으로 저하되게 된다. 이에 따라서, 기판 표면에 증착되는 산화물 미립자층의 두께가 턴테이블의 외측 부분이 그 안쪽 부분 보다 얇게 증착되고 결과적으로 기판의 산화물 미립자층이 균일하지 못하여 제품의 수율이 저하되는 문제점이 있었다.In the former method using the turntable as described above, the feed rate of the turntable and the torch is the same, so that the vortex-shaped torch rule appears. As the torch nears the center of the turntable, the radius of rotation becomes smaller. The linear velocity of the portion near the center is relatively lower than that of the outer portion. Accordingly, there is a problem in that the thickness of the oxide fine particle layer deposited on the substrate surface is thinner than the inner part of the turntable than the inner part of the turntable, and as a result, the oxide fine particle layer of the substrate is not uniform and the yield of the product is lowered.

후자의 방식은 도 1에 나타낸 바와 같이, 상압(대기압)인 반응실(도시되지 않음) 내의 이송테이블(10) 위에 형성된 2∼4개의 안착요홈에 각각 웨이퍼인 기판(12)을 안착시키고 상기 이송테이블(10)의 상부에서 인을 함유하는 가스와 실리콘을 함유한 가스를 토치(14)에 공급하여 연속적인 연소에 의한 방법으로 반응시켜 산화물 미립자가 생성되도록 한다.In the latter method, as shown in Fig. 1, the substrate 12, which is a wafer, is placed on each of two to four seating recesses formed on a transfer table 10 in a reaction chamber (not shown), which is atmospheric pressure (atmospheric pressure). At the top of the table 10, a gas containing phosphorus and a gas containing silicon are supplied to the torch 14 to react by a method of continuous combustion to produce oxide fine particles.

이와 같이 토치(14)에서 산화물 미립자가 생성되는 상태에서 이송테이블(10)을 좌우로 이송시키는 반복하면서 그 한쪽으로 이동하여 정지하였을 때 토치(14)를 이송테이블(10)이 이송되는 방향과 직각방향(전후 방향)으로 이송시키는 과정을 반복함으로써 이송테이블(10) 상의 기판(12) 표면에 열처리로 고밀화된 유리 박막이 증착되는 것이다.As described above, when the transfer table 10 is moved left and right while the fine particles are generated in the torch 14, the torch 14 is perpendicular to the direction in which the transfer table 10 is transferred when the torch 14 is stopped. By repeating the process of transferring in the direction (front and rear direction), the glass thin film densified by heat treatment is deposited on the surface of the substrate 12 on the transfer table 10.

이때, 이송테이블(10)의 이송은 적어도 이송테이블(10) 양쪽끝단의 기판(12) 가장자리 위치를 지나 가속 및 감속되도록 충분한 이송행정이 확보되어야 하며 상기 이송테이블(10) 상에서의 토치 괘적은 도 2와 같이 지그재그 형상으로 나타낼 수 있다.At this time, the transfer of the transfer table 10 should be secured enough transfer stroke to accelerate and decelerate at least past the edge position of the substrate 12 at both ends of the transfer table 10, the torch rule on the transfer table 10 is shown in FIG. It can be represented in a zigzag shape as shown in 2.

상기와 같이 이송테이블을 이용하는 후자의 방식은 이송테이블(10) 상에서의 토치 괘적이 지그재그 형상으로 직선 이송되므로 토치(14)의 피치간격이 균일하고 기판 위를 통과하는 토치(14)의 속도가 일정하며 이로 인하여 기판(12) 표면에 증착되는 산화물 미립자층의 두께가 균일하여 제품의 수율이 턴테이블 방식보다 양호하였다.In the latter method using the transfer table as described above, the pitch of the torch 14 is uniform and the speed of the torch 14 passing through the substrate is constant because the torch rule on the transfer table 10 is linearly transferred in a zigzag shape. As a result, the thickness of the oxide fine particle layer deposited on the surface of the substrate 12 was uniform, so that the yield of the product was better than that of the turntable method.

그러나 이송테이블을 이용한 후자방식에 있어서는 작업조건을 고려할 때 이송테이블(10)에 2∼4개의 기판을 안착시킬 수밖에 없으므로 10여 개의 기판(12)을 안착시키는 턴테이블 방식에 비하여 대량생산이 불가능하다는 문제점이 있었다.However, in the latter method using the transfer table, in consideration of working conditions, it is inevitable to mount two to four substrates on the transfer table 10, which makes it impossible to mass-produce them compared to the turntable method of mounting ten or more substrates 12. There was this.

본 발명의 목적은 상기한 바와 같은 종래의 제반 문제점을 해결하기 위해 연구 개발한 것으로서, 토치를 턴테이블이 1회전될 때마다 턴테이블의 중심 또는 반경방향으로 1피치씩 이동시키면서 턴테이블의 외측부분에서 그 중심에 가까워지면 질수록 토치 또는 턴테이블의 속도를 증감시킴으로써 기판이 안착된 위치의 턴테이블 반경에 관계없이 기판과 토치의 상대적인 속도가 항시 일정하게 제어할 수 있으며 이에 따라서 평탄하고 균일한 산화물 미립자 증착층을 얻을 수 있도록 한 화염가수분해 증착장치의 토치와 턴테이블제어방법을 제공하는데 있다.An object of the present invention has been researched and developed to solve the conventional problems as described above, the torch centered at the outer portion of the turntable while moving the pitch of the turntable by one pitch in the center or radial direction each time the turntable is rotated once The closer to, the higher the speed of the torch or the turntable, so that the relative speed of the substrate and the torch can be constantly controlled regardless of the turntable radius of the position where the substrate is seated, thereby obtaining a flat and uniform oxide particle deposition layer. The present invention provides a torch and turntable control method of a flame hydrolysis deposition apparatus.

도 1은 종래 화염가수분해 증착장치의 토치와 테이블제어방법을 나타낸 평면도,1 is a plan view showing a torch and a table control method of a conventional flame hydrolysis deposition apparatus,

도 2는 본 발명에 따른 화염가수분해 증착장치의 토치와 턴테이블제어방법을 나타낸 측면도,Figure 2 is a side view showing a torch and a turntable control method of the flame hydrolysis deposition apparatus according to the present invention,

도 3은 본 발명의 방법에서 토치의 이동위치에 따른 토치의 이동속도를 나타낸 그래프이다.3 is a graph showing the moving speed of the torch according to the moving position of the torch in the method of the present invention.

〈도면의 주요 부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

10a: 턴테이블 12: 기판10a: turntable 12: substrate

14: 토치14: torch

본 발명은 상기와 같은 목적을 달성하기 위하여, 턴테이블의 가장자리 부분에 형성된 다수의 안착요홈에 각각 기판을 안착시키고 턴테이블을 회전시키는 턴테이블 회전단계, 이 회전단계에 의해 회전되는 턴테이블의 상부에서 토치 내에 원료(인 함유 가스와 실리콘 함유 가스)를 공급하여 연소 반응으로 산화물 미립자를 생성시키면서 턴테이블의 중심 또는 그 반경 방향으로 이동시켜 턴테이블 상의 기판 표면에 열처리로 고밀화된 유리박막을 증착시키는 토치 이송단계가 구비된 FHD의 제어방법에 있어서, 상기 토치 이송단계가 턴테이블을 일정하게 회전시키면서 턴테이블의 외측부분에서 그 중심에 가까워질수록 토치의 속도가 증가되는 증속수단이 구비됨을 특징으로 하는 FHD의 토치와 턴테이블제어방법이다.The present invention, in order to achieve the above object, the turntable rotation step of seating the substrate in each of the plurality of recess groove formed in the edge portion of the turntable and rotates the turntable, the raw material in the torch at the top of the turntable rotated by this rotation step A torch transfer step of supplying (phosphorus-containing gas and silicon-containing gas) to produce oxide fine particles by combustion reaction and moving in the center or radial direction of the turntable to deposit a glass thin film, which is densified by heat treatment, on the substrate surface on the turntable. In the control method of the FHD, the torch and the turntable control method of the FHD, characterized in that the increasing speed of the torch is increased as the torch transfer step rotates the turntable constantly, the closer to the center from the outer portion of the turntable. to be.

상기 토치 이송단계는 턴테이블의 중심부분에서 끝단으로 향하여 이동시킬때 턴테이블의 중심과 멀어질수록 토치의 속도가 감속되는 감속수단으로 마련할 수 있다.The torch transfer step may be provided as a deceleration means that the speed of the torch is decelerated as it moves away from the center of the turntable toward the end.

상기 토치 이동단계의 증속수단에서 V: 토치의 이송속도, R: 테이블 중앙에서 끝단까지의 거리(반경), r1: 테이블 끝단에서 초기위치까지의 거리, r2: 테이블 끝단에서 최종위치까지의 거리, V1: 토치의 초기 이송속도, V2: 토치의 최종이송속도, A&B: 사용자입력에 의한 변수라 할 때 V = A/(R-rx) +B 임을 특징으로 한다.In the speed increasing means of the torch moving step, V: the feed speed of the torch, R: distance from the center of the table to the end (radius), r1: distance from the end of the table to the initial position, r2: distance from the end of the table to the final position, V1: initial feed speed of the torch, V2: final feed speed of the torch, A & B: V = A / (R-rx) + B when it is a variable by user input.

이하, 본 발명에 따른 FHD의 토치와 턴테이블제어방법을 첨부 도면에 의거하여 상세하게 설명한다.Hereinafter, a torch and a turntable control method of an FHD according to the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 화염가수분해 증착장치의 토치와 턴테이블제어방법을 나타낸 평면도이고, 도 3은 도 2의 측면도이다.Figure 2 is a plan view showing a torch and a turntable control method of the flame hydrolysis deposition apparatus according to the present invention, Figure 3 is a side view of FIG.

회전단계: 턴테이블(10a)의 가장자리 부분에 형성된 다수의 안착요홈에 각각 기판(12)을 안착시키고 상기 턴테이블(10a)을 분당 일정한 회전수로 회전시킨다.Rotation step: The substrate 12 is seated in each of the plurality of seating recesses formed in the edge portion of the turntable 10a, and the turntable 10a is rotated at a constant rotation rate per minute.

토치 이송단계: 상기 회전단계에 의해 회전되는 턴테이블(10a)의 상부에서 토치(14) 내에 원료(인 함유 가스와 실리콘 함유 가스)를 공급하여 연소반응으로 산화물 미립자가 생성되도록 하고 턴테이블(10a)의 중심방향으로 이동시켜 턴테이블(10a) 상의 기판(12) 표면에 열처리로 고밀화된 유리박막을 증착시킨다.Torch transfer step: The raw material (phosphorus-containing gas and silicon-containing gas) is supplied to the torch 14 from the upper part of the turntable 10a rotated by the rotating step so that oxide fine particles are generated by the combustion reaction and the turntable 10a is By moving in the center direction, a glass thin film densified by heat treatment is deposited on the surface of the substrate 12 on the turntable 10a.

상기 토치 이송단계에는 턴테이블(10a)을 일정하게 회전시키면서 턴테이블(10a)의 외측부분에서 그 중심에 가까워질수록 토치(14)의 속도가 증가되는 증속수단이 구비된다.In the torch conveying step, a speed increasing means for increasing the speed of the torch 14 as the turntable 10a is constantly rotated is closer to the center of the outer portion of the turntable 10a.

상기 토치 이동단계의 증속수단에서In the speed increasing means of the torch moving step

V: 토치(14)14의 이송속도,V: feedrate of torch 14, 14

R: 턴테이블(10a) 중앙에서 끝단까지의 거리(반경),R: distance from the center of the turntable 10a to the end (radius),

r1: 턴테이블(10a) 끝단에서 초기위치까지의 거리,r1: distance from the end of turntable 10a to the initial position,

r2: 턴테이블(10a) 끝단에서 최종위치까지의 거리,r2: distance from the end of turntable 10a to the final position,

V1: 토치(14)의 초기이송속도,V1: initial feed rate of the torch 14,

V2: 토치(14)의 최종이송속도,V2: final feed rate of the torch 14,

A&B: 사용자입력에 의한 변수라 할 때, 토치(14)의 이송속도는 아래의 식으로부터 구할 수 있다.A & B: Given a variable by user input, the feed rate of the torch 14 can be obtained from the following equation.

V = A/(R-rx) +BV = A / (R-rx) + B

또 상기 토치 이송단계는 턴테이블(10a)의 끝단에서 중심을 향하여 토치(14)의 속도가 증가되는 것으로 설명하였으나 턴테이블(10a)의 중심부분에서 그 중심과 멀어질수록 토치(14)의 속도가 감속되는 감속수단으로 마련할 수도 있음은 물론이다.In the torch transfer step, the speed of the torch 14 is increased from the end of the turntable 10a toward the center, but as the distance from the center of the turntable 10a to the center increases, the speed of the torch 14 decreases. Of course, it can also be provided as a deceleration means.

상기와 같은 FHD의 토치와 턴테이블제어방법에 대한 하나의 실시 예를 들어 설명하고자 한다.An embodiment of the torch and turntable control method of the above-described FHD will be described.

먼저, 턴테이블(10a)의 안착요홈마다 각각 기판(12)을 안착시킨 다음 턴테이블(10a)을 분당 8∼15회전 정도로 구동시킨다. 이렇게 턴테이블(10a)이 회전되는 상태에서 V = A/(R-rx) +B의 식에 대입하여 얻은 값과 상응하는 속도로 토치(14)를 이송시켰다.First, the substrate 12 is seated for each mounting recess of the turntable 10a, and then the turntable 10a is driven at about 8 to 15 revolutions per minute. The torch 14 was transferred at a speed corresponding to the value obtained by substituting the equation V = A / (R-rx) + B while the turntable 10a was rotated.

이때, 턴테이블(10a)의 반경(R)은 450㎜이며 토치(14)의 초기속도는20㎜/min이고 토치(14)의 최종속도는 220㎜/min이며, 토치(14)의 초기위치(r1)는 20㎜이고 토치(14)의 최종위치(r2)는 160㎜이다.At this time, the radius R of the turntable 10a is 450 mm, the initial speed of the torch 14 is 20 mm / min, the final speed of the torch 14 is 220 mm / min, and the initial position of the torch 14 r1) is 20 mm and the final position r2 of the torch 14 is 160 mm.

상기 수식에서 토치(14)의 이동위치에 따른 토치(14)의 속도를 도 3과 같은 그래프의 곡선을 얻었다.In the above equation, the speed of the torch 14 according to the moving position of the torch 14 was obtained as shown in FIG. 3.

따라서, 기판(12)인 웨이퍼 상에 광도파막인 실리카의 증착이 편차 없이 균일한 두께로 증착됨을 확인할 수 있었다.Therefore, it was confirmed that the deposition of silica, which is an optical waveguide, on the wafer, which is the substrate 12, was deposited with a uniform thickness without variation.

이상에서 상세하게 설명한 바와 같이 본 발명에 따른 FHD의 토치와 턴테이블제어방법은 토치를 턴테이블이 1회전될 때마다 턴테이블의 중심 또는 반경방향으로 1피치씩 이동시키면서 턴테이블의 끝단 또는 중심부분에서 그 중심 또는 끝단에 가까워지면 질수록 토치 또는 턴테이블의 속도를 증감시킴으로써 기판이 안착된 위치의 턴테이블 반경에 관계없이 기판과 토치의 상대적인 속도가 항시 일정하게 제어할 수 있으며 이에 따라서 평탄하고 균일한 산화물 미립자 증착층을 얻을 수 있는 특유의 효과가 있다.As described in detail above, the FHD torch and turntable control method according to the present invention moves the torch by one pitch in the center or radial direction of the turntable each time the turntable is rotated by one or the center thereof at the end or the center of the turntable. As it gets closer to the tip, the speed of the torch or the turntable increases and decreases the relative speed of the substrate and the torch at any time, regardless of the turntable radius of the position on which the substrate is seated. There is a unique effect that can be obtained.

Claims (3)

턴테이블(10a)의 가장자리 부분에 형성된 다수의 안착요홈에 각각 기판(12)을 안착시키고 턴테이블(10a)을 회전시키는 턴테이블 회전단계, 이 회전단계에 의해 회전되는 턴테이블(10a)의 상부에서 토치(14) 내에 원료(인 함유 가스와 실리콘 함유 가스)를 공급하여 연소 반응으로 산화물 미립자를 생성시키면서 턴테이블(10a)의 중심 또는 그 반경 방향으로 이동시켜 턴테이블(10a) 상의 기판(12) 표면에 열처리로 고밀화된 유리박막을 증착시키는 토치 이송단계가 구비된 화염가수분해 증착장치의 토치와 턴테이블제어방법에 있어서,The turntable rotation step of seating the substrate 12 in each of the plurality of recessed grooves formed at the edge of the turntable 10a and rotating the turntable 10a, and the torch 14 at the top of the turntable 10a rotated by the rotation step. ) Supplying raw materials (phosphorus-containing gas and silicon-containing gas) to the center of the turntable 10a or its radial direction while producing oxide fine particles by combustion reaction, thereby densifying by heat treatment on the surface of the substrate 12 on the turntable 10a. In the torch and turntable control method of a flame hydrolysis deposition apparatus having a torch transfer step of depositing a thin glass film, 상기 토치 이송단계가 턴테이블(10a)을 일정하게 회전시키면서 턴테이블(10a)의 외측부분에서 그 중심에 가까워질수록 토치(14)의 속도가 증가되는 증속수단이 구비됨을 특징으로 하는 화염가수분해 증착장치의 토치와 턴테이블제어방법.Flame torch deposition apparatus characterized in that the torch conveying step is provided with a speed increasing means to increase the speed of the torch 14 closer to the center at the outer portion of the turntable (10a) while constantly rotating the turntable (10a) Torch and turntable control method. 제1항에 있어서, 상기 토치 이송단계는 턴테이블(10a)의 중심부분에서 그 끝단을 향하여 이동시키면서 턴테이블(10a)의 중심과 멀어질수록 토치(14)의 속도가 감속되는 감속수단으로 마련이 구비됨을 특징으로 하는 화염가수분해 증착장치의 토치와 턴테이블제어방법.According to claim 1, The torch conveying step is provided as a deceleration means that the speed of the torch 14 is reduced as the distance from the center of the turntable (10a) toward the end while moving toward the end of the turntable (10a) Torch and turntable control method of the flame hydrolysis deposition apparatus, characterized in that. 제1항에 있어서, 상기 토치 이동단계의 증속수단에서 V: 토치의 이송속도, R: 턴테이블 중앙에서 끝단까지의 거리(반경), r1: 턴테이블 끝단에서 초기위치까지의 거리, r2: 턴테이블 끝단에서 최종위치까지의 거리, V1: 토치의 초기 이송속도, V2: 토치의 최종이송속도, A&B: 사용자입력에 의한 변수라 할 때 V = A/(R-rx) +B 임을 특징으로 하는 화염가수분해 증착장치의 토치와 턴테이블제어방법.2. The speed increasing means of the torch moving step according to claim 1, wherein V is the conveying speed of the torch, R is the distance from the turntable center to the end (radius), r1 is the distance from the turntable end to the initial position, and r2 is at the turntable end. Distance to final position, V1: Initial feedrate of torch, V2: Final feedrate of torch, A & B: Flame hydrolysis characterized in that V = A / (R-rx) + B when it is variable by user input. Torch and turntable control method of deposition apparatus.
KR1020010051989A 2001-08-28 2001-08-28 controling methode torch and turntable for flame hydrolysis deposition KR20010099086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010051989A KR20010099086A (en) 2001-08-28 2001-08-28 controling methode torch and turntable for flame hydrolysis deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010051989A KR20010099086A (en) 2001-08-28 2001-08-28 controling methode torch and turntable for flame hydrolysis deposition

Publications (1)

Publication Number Publication Date
KR20010099086A true KR20010099086A (en) 2001-11-09

Family

ID=19713626

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010051989A KR20010099086A (en) 2001-08-28 2001-08-28 controling methode torch and turntable for flame hydrolysis deposition

Country Status (1)

Country Link
KR (1) KR20010099086A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239134A (en) * 1987-03-27 1988-10-05 Agency Of Ind Science & Technol Method for depositing glass corpuscles
JPH01239028A (en) * 1988-03-18 1989-09-25 Hitachi Cable Ltd Glass film deposition unit
JP2001281487A (en) * 2000-03-30 2001-10-10 Furukawa Electric Co Ltd:The Optical waveguide device and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239134A (en) * 1987-03-27 1988-10-05 Agency Of Ind Science & Technol Method for depositing glass corpuscles
JPH01239028A (en) * 1988-03-18 1989-09-25 Hitachi Cable Ltd Glass film deposition unit
JP2001281487A (en) * 2000-03-30 2001-10-10 Furukawa Electric Co Ltd:The Optical waveguide device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4425146A (en) Method of making glass waveguide for optical circuit
US5196041A (en) Method of forming an optical channel waveguide by gettering
JPH07140336A (en) Optical waveguide
US5660611A (en) Method for producing glass thin film
KR20140057349A (en) Thin glass sheet with tunable coefficient of thermal expansion and manufacturing process
US20080038524A1 (en) Selective Doping of a Material
CN1159590A (en) Improved method for producing plane optical waveguide
KR20010099086A (en) controling methode torch and turntable for flame hydrolysis deposition
KR101157674B1 (en) Fabrication Method of Porous Glass Preform for Optical Fiber, and Glass Preform Fabricated Thereby
JPS5826045A (en) Optical fiber manufacturing method and device
JP3825581B2 (en) Method for producing glass optical waveguide film
JP4348347B2 (en) Method for producing glass optical waveguide film
JPH0710323Y2 (en) Optical glass waveguide film manufacturing equipment
JPS6090305A (en) Manufacture of optical waveguide
JPS6136134A (en) Method and apparatus for producing preform for stress-imparted polarization-keeping optical fiber
CN1240410A (en) Organometallics for lightwave optical circuit applications
JPS62288802A (en) Manufacture of quartz optical waveguide
JPH10324532A (en) Membrane producing device for porously oxidized glass
JPH0720337A (en) Production of optical waveguide
KR100641941B1 (en) Method for fabricating multimode optical fiber for gigabit class transmission system having longitudnal uniformity
JPH04151601A (en) Production of distributed index lens
JPH03141133A (en) Production of porous glass matrix for optical fiber
JP2001042151A (en) Device and method for production of optical waveguide film
JPH1164662A (en) Formation of optical waveguide
JP3097698B2 (en) Manufacturing method of optical waveguide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application