KR20010086183A - A method for manufacturing ferritic stainless steel having improvable formability and ridging resistance - Google Patents

A method for manufacturing ferritic stainless steel having improvable formability and ridging resistance Download PDF

Info

Publication number
KR20010086183A
KR20010086183A KR1019990056176A KR19990056176A KR20010086183A KR 20010086183 A KR20010086183 A KR 20010086183A KR 1019990056176 A KR1019990056176 A KR 1019990056176A KR 19990056176 A KR19990056176 A KR 19990056176A KR 20010086183 A KR20010086183 A KR 20010086183A
Authority
KR
South Korea
Prior art keywords
less
slab
hot
rolling
cold
Prior art date
Application number
KR1019990056176A
Other languages
Korean (ko)
Other versions
KR100435457B1 (en
Inventor
유도열
김광육
최염호
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1999-0056176A priority Critical patent/KR100435457B1/en
Publication of KR20010086183A publication Critical patent/KR20010086183A/en
Application granted granted Critical
Publication of KR100435457B1 publication Critical patent/KR100435457B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: A method is provided that manufactures ferritic stainless steel having superior forming property and ridging resistance by adding B and a stabilizing element Nb, and optimizing casting conditions, hot and cold rolling conditions and hot and cold annealing conditions for securing an equiaxed grain ratio during continuous casting. CONSTITUTION: The method for manufacturing ferritic stainless steel having superior forming property and ridging resistance comprises the processes of casting a steel slab comprising 0.02 wt.% or less of C, 1.0 wt.% or less of Si, 1.0 wt.% or less of Mn, 0.02 wt.% or less of P, 0.003 wt.% or less of S, 14 to 20 wt.% of Cr, 1.0 wt.% or less of Mo, 0.02 wt.% or less of N, 0.6 wt.% or less of Cu, 0.6 wt.% or less Nb, 0.01 wt.% or less of B and a balance of Fe and inevitably added impurities, wherein C+N is 0.03 wt.% or less, and Nb/(C+N) is controlled to 8 to 15 by controlling a casting temperature to 1538 deg.C or less and ΔT(degree of superheat) to 30 deg.C or less; reheating the slab in the temperature range of 1150 to 1220 deg.C, and hot rolling the reheated slab at a finishing rolling temperature ranging from 750 to 900 deg.C; hot annealing the hot rolled slab in the temperature range of 980 to 1020 deg.C, and rapidly cooling the hot annealed slab in a cooling rate of 15 deg.C/sec or more before pickling and cold rolling the rapidly cooled slab; cold annealing the cold rolled slab at a temperature of 950 to 970 deg.C, rapidly cooling the cold annealed slab in a cooling rate of 15 deg.C/sec or more, and then pickling the rapidly cooled slab.

Description

성형성 및 리찡 저항성이 우수한 페라이트계 스테인레스강의 제조방법{A METHOD FOR MANUFACTURING FERRITIC STAINLESS STEEL HAVING IMPROVABLE FORMABILITY AND RIDGING RESISTANCE}A method for manufacturing ferritic stainless steel with excellent formability and resistance to stiffness {A METHOD FOR MANUFACTURING FERRITIC STAINLESS STEEL HAVING IMPROVABLE FORMABILITY AND RIDGING RESISTANCE}

본 발명은 각종 주방기기, 세탁조 드럼 및 자동차 배기계용 등으로 사용되는 페라이트계 스테인레스강의 제조방법에 관한 것으로, 보다 상세하게는 우수한 성형성 및 리찡 저항성(ridging resistance)을 보이는 페라이트계 스테인레스강을 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing ferritic stainless steel used for various kitchen appliances, washing tank drums and automobile exhaust systems, and more particularly, to produce ferritic stainless steel exhibiting excellent moldability and ridging resistance. It is about a method.

일반적으로, 페라이트계 스테인레스강은 Ni을 첨가하지 않기 때문에, STS304 오스테나이트계 스테인레스강보다 가격면에서는 유리하지만, 내식성과 연신율이 낮고 성형성이 STS304강 대비 나쁘다. 또한, 성형시 페라이트계 스테인레스강의 문제점인 표면에 요곡부가 발생하는 리찡 현상때문에, 심가공용으로 사용되는 경우 용도가 제한을 받는 문제점이 있다.In general, ferritic stainless steel does not add Ni, which is advantageous in terms of cost than STS304 austenitic stainless steel, but has lower corrosion resistance and elongation and worse moldability than STS304 steel. In addition, there is a problem in that the use is limited when used for deep processing, because of the rim phenomenon that the curved portion occurs on the surface which is a problem of ferritic stainless steel during molding.

그러나, 최근 제강 정련기술의 발달로 침입형원소인 C 및 N를 극저로 관리하고, 안정화원소(Ti, Nb, Al, Zr 등)를 첨가하여 내식성 및 가공성을 높이고, 동시에 Mo을 첨가하여 STS304강과 동등한 내식성 및 가공성을 얻고자 하는 노력이 활발하게 시도되고 있다. 이와 같은 추세에 따라 주방기기, 세탁기 드럼 및 자동차 배기계용으로 사용되는 안정화 페라이트계 스테인레스강의 수요와 용도는 날로 증가하는 경향을 보인다.However, with recent advances in steelmaking refining technology, C and N, which are invasive elements, are managed extremely low, and stabilization elements (Ti, Nb, Al, Zr, etc.) are added to increase corrosion resistance and workability, and Mo is added to STS304 steel and Efforts have been actively made to obtain equal corrosion resistance and processability. As such a trend, the demand and use of stabilized ferritic stainless steel used for kitchen appliances, washing machine drums and automobile exhaust systems tend to increase day by day.

상기와 같은 안정화 원소를 첨가하여 페라이트계 스테인레스강을 제조하는 것에 관한 종래기술로는 일본 특개소 51-149116호 및 일본특개소 56-158850호가 대표적이다.Japanese Patent Laid-Open No. 51-149116 and Japanese Patent Laid-Open No. 56-158850 are typical examples of the production of ferritic stainless steel by adding the stabilizing elements as described above.

상기 일본 특개소 51-149116호는 C:0.03% 이하, Si:1% 이하, Mn:0.5% 이하, S:0.005% 이하, Cr:14~20%, Mo:1~3%, Ti:0.1~1.2%, Nb:0.1~1.2%, N:0.02% 이하, 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성되고, 상기 C+N은 0.04% 이하이고 (Ti+Nb)/(C+N)는 8~30으로 유지되는 강을 970~1170℃온도범위로 소둔하여 페라이트계 스테인레스강을 제조하는 방법에 관한 것으로, 리찡성개선의 효과가 있다.Japanese Patent Application Laid-Open No. 51-149116 discloses C: 0.03% or less, Si: 1% or less, Mn: 0.5% or less, S: 0.005% or less, Cr: 14-20%, Mo: 1-3%, Ti: 0.1 ˜1.2%, Nb: 0.1-1.2%, N: 0.02% or less, residual Fe and other unavoidably contained impurities, wherein C + N is 0.04% or less and (Ti + Nb) / (C + N) The present invention relates to a method for producing ferritic stainless steel by annealing a steel maintained at 8 to 30 at a temperature range of 970 to 1170 ° C., and has an effect of improving the reforming properties.

상기 일본특개소 56-158850호는 C:0.0015% 이하, Si:0.6% 이하, Mn:0.5% 이하, S:0.005% 이하, Cr:15~20%, Mo:0.5% 이하, Ni:1.0% 이하, Cu: 0.1~1.0%, Ti:0.1~0.5%, Nb:0.1~0.5%, N:0.02% 이하, Al:0.1%, W 또는 V을 단독 혹은 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성되고, 상기 C+N은 0.04% 이하이고 (Ti+Nb)/(C+N)는 8~30으로 유지되는 강을 970~1170℃온도범위로 소둔하여 페라이트계 스테인레스강을 제조하는 방법에 관한 것으로, 리찡성개선의 효과가 있다.Japanese Patent Application Laid-Open No. 56-158850 is C: 0.0015% or less, Si: 0.6% or less, Mn: 0.5% or less, S: 0.005% or less, Cr: 15-20%, Mo: 0.5% or less, Ni: 1.0% Cu: 0.1-1.0%, Ti: 0.1-0.5%, Nb: 0.1-0.5%, N: 0.02% or less, Al: 0.1%, W or V alone or residual Fe and other unavoidable impurities In the method for producing a ferritic stainless steel, the C + N is 0.04% or less and (Ti + Nb) / (C + N) is annealed in the temperature range of 970 ~ 1170 ℃ to maintain a temperature of 8 ~ 30 It is related to, and has an effect of reforming.

그러나, 상기와 같은 페라이트계 스테인레스강에서는 Mo 및 Cr 함량, W, V 합금철 투입량이 많아지므로 제조원가가 상승하고 성형성이 저하하며, 페라이트계스테인레스강의 가장 큰 문제점인 리찡성 개선에 만족스럽지 못하는 문제점이 있다. 특히, 안정화원소 중 Ti을 첨가하면 연속주조시 노즐막힘 현상, Ti 산화물에 의한 표면결함, 및 광휘소둔시 템퍼드 칼라(Tempered Color)가 발생한다. 그리고 연신율은 Nb첨가강에 비해 높아 성형성은 양호하나 표면에 오렌지 필(Orange peel)현상이 발생하고, 압연방향과 45°방향으로 인장할 경우 새로운 리찡이 발생하는데, Ti첨가강은 소둔후 결정립도의 조대화로 오렌지 필 현상과 리찡이 복합으로 작용하여 성형후 표면의 굴곡높이가 더욱 높게 나타나는 문제점이 있다.However, in the ferritic stainless steel as described above, since the Mo and Cr content, W, V alloy ferrous input is increased, the manufacturing cost is increased, the moldability is lowered, and the problem is not satisfactory in the improvement of the rim, which is the biggest problem of the ferritic stainless steel There is this. In particular, when Ti is added among the stabilizing elements, nozzle clogging during continuous casting, surface defects caused by Ti oxide, and tempered color during light annealing occur. The elongation is higher than that of Nb-added steel, but the moldability is good. However, orange peel occurs on the surface, and new etching occurs when the sheet is stretched in the rolling direction and 45 ° direction. As a result of coarsening, the orange peel phenomenon and the rhythm act as a complex, resulting in a higher curvature of the surface after molding.

이에, 본 발명자는 상기한 문제점을 해결하고자 연구와 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 B과 안정화 원소인 Nb을 첨가하고 연주시 등축정율 확보를 위한 주조조건, 열간압연 및 냉간압연조건, 그리고 열연 및 냉연 소둔조건을 최적화함으로써, 성형성 및 리찡 저항성이 우수한 페라이트계 스테인레스강을 제조하는 방법을 제공하고자 하는데, 그 목적이 있다.Therefore, the present inventors conducted research and experiments to solve the above problems, and proposed the present invention based on the results. The present invention adds B and a stabilizing element, Nb, and casts to secure equiaxed crystallization during playing. An object of the present invention is to provide a method for manufacturing ferritic stainless steel having excellent formability and crush resistance by optimizing conditions, hot rolling and cold rolling conditions, and hot rolling and cold rolling annealing conditions.

본 발명은 중량%로 C:0.02% 이하, Si:1.0% 이하, Mn:1.0% 이하, P:0.02% 이하, S:0.003% 이하, Cr:14~20%, Mo:1.0% 이하, N:0.02% 이하, Cu:0.6% 이하, Nb:0.6% 이하, B:0.01% 이하를 첨가하되, 상기 C+N는 0.03% 이하, Nb/(C+N)는 8~15로 제어하고, 나머지 Fe 및 불가피하게 첨가되는 불순물로 조성되는 강 슬라브를, 주조온도를 1538℃ 이하로 제어하여 ΔT(과열도)가 30℃ 이하인 온도에서 주조하고, 1150~1220℃ 온도범위에서 슬라브를 재가열하고 마무리압연온도를 750~900℃범위로 하여 열간압연한 후 980~1020℃범위에서 열연소둔을 실시하고 산세 및 냉간압연한 다음 950~970℃로 냉연소둔하는데 있어서, 상기 열연 및 냉연소둔후 냉각속도를 15℃/초 이상으로 하여 급냉하는 것을 특징으로 하는 성형성 및 리찡저항성이 우수한 페라이트계 스테인레스강의 제조방법에 관한 것이다.In the present invention, C: 0.02% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.02% or less, S: 0.003% or less, Cr: 14-20%, Mo: 1.0% or less, N : 0.02% or less, Cu: 0.6% or less, Nb: 0.6% or less, B: 0.01% or less, but C + N is controlled to 0.03% or less, and Nb / (C + N) is controlled to 8 to 15, A steel slab composed of the remaining Fe and inevitably added impurities is cast at a temperature of ΔT (superheat) of 30 ° C. or less by controlling the casting temperature to 1538 ° C. or lower, and reheating and finishing the slab at a temperature range of 1150 to 1220 ° C. After hot rolling with a rolling temperature in the range of 750 to 900 ° C., hot rolling annealing at 980 to 1020 ° C., pickling and cold rolling, and then cold rolling at 950 to 970 ° C., the cooling rate after the hot rolling and cold rolling annealing is performed. The present invention relates to a method for producing ferritic stainless steel having excellent moldability and resistance to quenching at 15 ° C / sec or more.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

상기 C 및 N는 탄질화물 형성원소로 침입형으로 존재하는데, 강도의 상승과 충격인성, 내식성 및 성형성의 저하를 초래하기 때문에 낮게 유지할수록 바람직하다. 따라서, 본 발명에서는 그 함량을 각각 0.02% 이하로 설정하고, C+N는 0.03% 이하로 설정하였다.The C and N are present as the carbonitride-forming element in an invasive type, and the lower the C and the N, the higher the strength and the impact toughness, the corrosion resistance and the moldability. Therefore, in the present invention, the content was set to 0.02% or less, and C + N was set to 0.03% or less.

상기 Si은 페라이트 형성원소로, 함량이 증가하면 페라이트상의 안정성이 높아지게 되고 내산화성도 향상되지만, 1.0% 이상 첨가하면 경도 및 강도를 높이고 연신율을 저하시켜 성형성에 불리하기 때문에, 1.0% 이하로 설정하는 것이 바람직하다.The Si is a ferrite forming element, the content is increased to increase the stability of the ferrite phase and the oxidation resistance is also improved, but when added to more than 1.0% to increase the hardness and strength and lower the elongation, which is disadvantageous to formability, it is set to 1.0% or less It is preferable.

상기 Mn은 함량이 높아지면 MnS를 용출하며 내공식성을 저하시키기 때문에 1.0% 이하로 한정하는 것이 바람직하다.The Mn is preferably limited to 1.0% or less because the content of Mn elutes MnS and lowers pitting resistance.

상기 P 및 S은 MnS를 형성하여 내식성 및 열간가공성을 저해하므로 가능한 낮게 관리하는 것이 바람직하기 때문에, P은 0.02% 이하, S은 0.003% 이하로 한정한다.Since P and S form MnS and inhibit corrosion resistance and hot workability, P and S are preferably controlled as low as possible, so that P is limited to 0.02% or less, and S to 0.003% or less.

상기 Cr은 14% 이하로 첨가되면 내식성이 저하하고, 많이 첨가되면 내식성은 향상되나 20% 이상이면 강도가 높고 연신율이 낮아 성형성이 저하할 뿐 아니라, 특히 시그마상이 석출할 우려가 높기 때문에, 그 함량은 14~20%로 하는 것이 바람직하다.When the Cr is added at 14% or less, the corrosion resistance decreases, and when a large amount is added, the corrosion resistance is improved, but when 20% or more is used, the strength is high and the elongation is low, so that the moldability is lowered, and in particular, there is a high risk of precipitation of sigma phase. The content is preferably 14-20%.

상기 Mo은 내식성 개선뿐 아니라 판두께 중심부의 결정립 미세화효과도 있는 원소로, 그 함량은 1.0% 이하로 하는 것이 바람직하다. 그 이유는, 1% 이상 첨가하면 경도 및 강도가 증가하로 연신율이 저하하여 성형성이 나빠지기 때문이다.Mo is an element having not only improved corrosion resistance but also grain refinement effect at the center of the plate thickness, and the content thereof is preferably 1.0% or less. The reason is that when 1% or more is added, the elongation decreases due to the increase in hardness and strength, resulting in poor moldability.

상기 Nb은 탄질화물 석출에 의한 소둔재결정의 집합조직 제어로 인한 리찡성을 개선하고, 또한 C,N와 결합해 탄질화물을 형성하여 Cr탄화물 석출을 억제함으로써 내식성을 향상시킨다. 그러나, Nb을 0.6% 이상으로 과잉 첨가하면 연신율 및 성형성이 저하하기 때문에 그 함량을 0.6% 이하로 한정하는 것이 바람직하다.The Nb improves the corrosion resistance due to the control of the texture of the annealing material crystal by the precipitation of carbonitride, and also forms the carbonitride by combining with C and N to suppress the precipitation of Cr carbide to improve the corrosion resistance. However, when excessive addition of Nb to 0.6% or more reduces elongation and moldability, it is preferable to limit the content to 0.6% or less.

그리고, 상기 Nb과 C+N의 관계로부터, Nb/(C+N)를 8~15로 하는 것이 바람직하다. 그 이유는 상기 중량비가 8 이하이면 입계부식성이 발생하고, 15 이상이면 성형성 및 연신율이 저하하여 내식성 및 성형성을 동시에 만족시키지 못하기 때문이다.And it is preferable to make Nb / (C + N) into 8-15 from the relationship of said Nb and C + N. This is because when the weight ratio is 8 or less, grain boundary corrosion occurs, and when 15 or more, moldability and elongation are lowered, and thus corrosion resistance and moldability are not satisfied at the same time.

상기 B은 소둔조직을 미세화하여 성형성 및 리찡 저항성을 개선하는 원소로, 연신율 및 성형성을 고려하여 그 함량은 0.01% 이하로 한정하는 것이 바람직하다.The B is an element for minimizing the annealing structure to improve the formability and the rhythm resistance, the content is preferably limited to 0.01% or less in consideration of elongation and formability.

상기와 같이 조성된 강 슬라브를 이용하여 본 발명의 페라이트계 스테인레스강을 제조하는데 있어서, ΔT는 30℃ 이하로 조절하고 슬라브 연주시 주조온도를 1538℃ 이하로 제어하는 것이 바람직하다. 그 이유는, ΔT가 30℃ 이하로 조절되어야 페라이트계 스테인레스강의 성형성 및 리찡저항성 개선을 위한 슬라브내 등축정율을 50% 이상으로 확보할 수 있기 때문이다.In producing the ferritic stainless steel of the present invention using the steel slab prepared as described above, ΔT is preferably controlled to 30 ° C. or lower and the casting temperature is controlled to 1538 ° C. or lower when the slab is played. The reason is that ΔT must be adjusted to 30 ° C. or lower to ensure an equiaxed crystal rate in the slab for improving the formability and resistance to the ferritic stainless steel to 50% or more.

상기 공정에 있어서, 슬라브 재가열온도와 마무리압연온도는 낮을수록 성형성 및 리찡저항성이 개선되지만, 상기 열간압연온도가 너무 낮아지면 슬라브 표층부가 열간압연 롤(Roll)에 묻어나서 스티킹(Sticking) 현상을 유발한다. 따라서, 상기 슬라브 재가열온도와 마무리압연온도는 열연코일표면상의 결함발생 문제와 산업현장에서 형상 및 열간압연기 작업성을 고려하여, 각각 1150~1220℃, 750~900℃ 범위로 하는 것이 바람직하다.In the above process, the lower the slab reheating temperature and the finish rolling temperature, the better the formability and the crushing resistance, but if the hot rolling temperature becomes too low, the slab surface layer is buried on the hot rolled roll and sticking phenomenon. Cause. Accordingly, the slab reheating temperature and the finish rolling temperature are preferably in the range of 1150 to 1220 ° C. and 750 to 900 ° C., in consideration of defect occurrence problems on the hot rolled coil surface and shape and hot rolling workability in the industrial field.

상기와 같은 열간압연 후 열연소둔은 980~1020℃ 온도범위에서 실시하는 것이 바람직하다. 그 이유는 980℃ 이하에서 열연소둔 할 경우 Nb첨가강에서는 재결정 및 결정립성장이 불충분하여 연신율 및 성형성이 저하하고, 열연소둔온도가 1020℃ 이상이면 결정립이 조대하여 연신율 및 성형성이 저하하고 성형후 오렌지 필 발생 및 리찡성이 나빠지기 때문이다.After hot rolling as described above, hot rolling annealing is preferably performed at a temperature range of 980 to 1020 ° C. The reason is that when hot-annealed at 980 ℃ or lower, Nb-added steels have insufficient recrystallization and grain growth, and elongation and formability are deteriorated. If hot-annealing temperature is 1020 ℃ or higher, grains are coarse to reduce elongation and formability. This is because the orange peel occurs and the erosion worsens.

다음, 산세처리후 냉간압연하는데 있어서, 상기 냉간압연은 1단계 혹은 2단계로 할 수 있다. 상기 냉간압연을 2단계로 실시할 경우, 각 단계의 냉간압연율은 50~70%로 하는 것이 바람직한데, 그 이유는 상기 냉간압연율이 50% 미만이면 리찡성 및 표면특성이 좋지 않고, 70%보다 높으면 성형후 귀발생값이 커지기 때문이다.Next, in cold rolling after pickling, the cold rolling may be performed in one or two stages. When the cold rolling is carried out in two stages, the cold rolling ratio of each stage is preferably 50 to 70%. The reason is that if the cold rolling ratio is less than 50%, the stiffness and surface properties are not good. If it is higher than%, the ear generation value increases after molding.

상기와 같은 조건의 열연소둔 및 냉연소둔후에는 냉각이 행해지는데, 이때의 냉각은 15℃/초 이상의 냉각속도로 급냉시키는 것이 바람직하다. 이는 상기와 같은 냉각속도로 급냉시키면 고온취화를 방지하고 양호한 내식성 및 기계적 성질을 얻을 수 있기 때문이다.After hot-rolling annealing and cold-rolling annealing under the above conditions, cooling is performed, and the cooling at this time is preferably quenched at a cooling rate of 15 ° C / sec or more. This is because quenching at the cooling rate as described above can prevent high temperature embrittlement and obtain good corrosion resistance and mechanical properties.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

하기 표1과 같이 조성되는 스테인레스강을 진공유도 용해로에서 용해하여30kg 주괴를 제조하였다. 이 때 등축정율 변화를 보기 위해, 하기 표2와 같이 ΔT 온도 및 주조온도를 변화시켜 주괴를 주조한 다음, 가열온도를 변화시켜 각 온도에서 150분간 가열하고, 마무리압연온도는 800℃로 일정하게 하여 압연한 후 3mm 두께의 열연판을 제조하고, 700℃에서 권취한 다음 열연소둔온도를 변화시켜 5분간 소둔하고 15℃/초의 냉각속도로 급냉한 다음 산세처리하였다.The stainless steel composition as shown in Table 1 was dissolved in a vacuum induction melting furnace to prepare a 30 kg ingot. At this time, in order to see the change of equiaxed rate, cast the ingot by changing the ΔT temperature and the casting temperature as shown in Table 2, and then the heating temperature is changed to heat for 150 minutes at each temperature, the finish rolling temperature is constant at 800 ℃ After rolling, a hot rolled sheet having a thickness of 3 mm was manufactured, wound at 700 ° C., and then annealed for 5 minutes by varying the hot rolling temperature, and quenched at a cooling rate of 15 ° C./sec, followed by pickling treatment.

상기 열연판을 83.3% 압연율로 냉간압연하여 0.5mm 두께의 냉연판을 제조하고, 냉연소둔온도를 변화시켜 각 온도에서 3분간 냉연소둔하고 급냉한 다음 산세처리하고, 1% 냉간압연율로 조질압연하여 각 시편을 제조하였다. 또한, 냉간압연을 2단계로 한 경우의 효과를 조사하기 위해, 1단계 냉간압연율을 60%로 하여 냉간압연하고 냉연소둔 및 급냉한 후 산세처리한 다음, 다시 2단계 냉간압연율을 60%로 하여 냉간압연하고 냉연소둔, 급냉, 산세처리, 및 조질압연하여 최종 두께가 0.48mm인 각 시편을 제조하였다.The hot rolled sheet was cold rolled at a 83.3% rolling rate to prepare a cold rolled sheet having a thickness of 0.5 mm, cold-rolled annealing temperature was changed at 3 ° C for 3 minutes, quenched and pickled, and then tempered at 1% cold rolling rate. Each specimen was prepared by rolling. In addition, in order to investigate the effect of cold rolling in two stages, cold rolling was carried out at 60% of the first stage, cold-rolled annealing and quenched, followed by pickling, and then 60% of the second stage was cold rolled. Cold-rolled, cold-annealed, quenched, pickled, and temper-rolled to prepare each specimen with a final thickness of 0.48 mm.

상기와 같이 제조된 시편의 성형성을 평가하기 위해, JIS 13B를 이용해 압연방향과 평행한 0°, 45°및 90°방향의 인장시편을 가공하여 12% 인장시험을 실시한 후 폭변화를 측정하여값을 측정하고 그 결과를 하기 표2에 나타내었다. 또한, 리찡성 평가를 위해 압연방향과 평행한 JIS 5호 인장시편을 가공하여 15% 인장시험한 후, 표면조도기를 이용하여 표면의 리찡높이를 표면 형상의 최대높이인 Rt값으로 측정하고 그 결과를 하기 표2에 나타내었다.In order to evaluate the formability of the specimen prepared as described above, by using a 13% tensile test by processing the tensile specimen in the 0 °, 45 ° and 90 ° direction parallel to the rolling direction using JIS 13B to measure the width change The values were measured and the results are shown in Table 2 below. In addition, after the 15% tensile test by processing JIS No. 5 tensile test specimen parallel to the rolling direction for evaluation of the refrigerating property, using the surface roughness was measured by the surface roughness height Rt value of the maximum height of the surface shape It is shown in Table 2 below.

강종Steel grade CC SiSi MnMn PP SS CrCr MoMo CuCu NbNb NN BB Nb/(C+N)Nb / (C + N) 발명강1Inventive Steel 1 0.0140.014 0.300.30 0.300.30 0.0150.015 0.0020.002 19.2519.25 0.10.1 0.520.52 0.2550.255 0.01150.0115 0.0020.002 1010 발명강2Inventive Steel 2 0.0130.013 0.310.31 0.280.28 0.0140.014 0.0020.002 19.2019.20 0.10.1 0.500.50 0.2580.258 0.01100.0110 0.0020.002 10.7510.75 발명강3Invention Steel 3 0.0140.014 0.300.30 0.330.33 0.0150.015 0.0020.002 19.2519.25 0.10.1 0.520.52 0.2570.257 0.01200.0120 0.0020.002 9.889.88 발명강4Inventive Steel 4 0.0140.014 0.300.30 0.300.30 0.0150.015 0.0020.002 19.2519.25 0.10.1 0.520.52 0.2550.255 0.01150.0115 0.0020.002 1010 비교강1Comparative Steel 1 0.0150.015 0.320.32 0.330.33 0.0150.015 0.0020.002 19.2019.20 0.10.1 0.500.50 0.2600.260 0.01150.0115 9.819.81 비교강2Comparative Steel 2 0.0150.015 0.310.31 0.320.32 0.0150.015 0.0020.002 19.1019.10 0.10.1 0.500.50 0.4670.467 0.01250.0125 1717

시편번호Psalm Number 제조조건Manufacture conditions 측정결과Measurement result 주조온도(℃)Casting temperature (℃) ΔT(℃)ΔT (℃) 슬라브가열온도(℃)Slab heating temperature (℃) 열연소둔온도(℃)Hot Annealing Temperature (℃) 냉연소둔온도(℃)Cold Rolling Annealing Temperature (℃) 1단계압연율(%)Stage 1 rolling rate (%) 2단계압연율(%)Two stage rolling rate (%) 등축정율(%)Equivalence rate (%) value 리찡높이(㎛)Resizing Height (㎛) 발명재1Invention 1 발명강1Inventive Steel 1 15371537 2929 15121512 10101010 960960 83.383.3 5252 1.391.39 38.238.2 발명재2Invention 2 2929 15121512 10101010 6060 6060 5252 1.61.6 20.120.1 발명재3Invention 3 발명강2Inventive Steel 2 15301530 2222 12101210 10001000 83.383.3 6060 1.431.43 35.035.0 발명재4Invention 4 2222 12101210 10001000 6060 6060 6060 1.651.65 18.018.0 비교재1Comparative Material 1 발명강3Invention Steel 3 15451545 3737 12151215 10101010 83.383.3 3232 1.171.17 46.446.4 비교재2Comparative Material 2 발명강4Inventive Steel 4 15371537 2929 12501250 10101010 5252 1.151.15 48.048.0 비교재3Comparative Material 3 15371537 12151215 950950 1.101.10 46.046.0 비교재4Comparative Material 4 15391539 10301030 1.171.17 47.047.0 비교재5Comparative Material 5 15391539 10501050 0.960.96 52.052.0 비교재6Comparative Material 6 15391539 10101010 10001000 0.950.95 54.054.0 비교재7Comparative Material7 비교강1Comparative Steel 1 15371537 960960 1.201.20 47.547.5 비교재8Comparative Material 8 비교강2Comparative Steel 2 15391539 0.980.98 50.150.1

상기 표1, 표2에서 알 수 있는 바와 같이, 본 발명강으로 제조된 발명재들은 성분 및 제조조건에 있어서 본 발명의 범위를 벗어나는 비교재에 비해값이 높고, 리찡높이가 낮았다. 한편, 냉간압연을 2단계로 실시한 발명재(2),(4)의 경우 비교재는 물론이고 냉간압연을 1단계로 실시한 본 발명의 발명재(1),(3)보다도 현저하게 높은값을 갖았고, 리찡 높이도 낮아진 것을 확인할 수 있었다.As can be seen in Table 1 and Table 2, the invention materials produced by the present invention steel compared to the comparative material outside the scope of the present invention in terms of components and manufacturing conditions The value was high and the Rimow height was low. On the other hand, in the case of the invention materials (2) and (4) subjected to cold rolling in two stages, not only the comparative material but also significantly higher than the invention materials (1) and (3) of the invention which carried out cold rolling in one stage It had a value, and it was confirmed that the height of the richam was lowered.

상술한 바와 같이, 본 발명에 따라 B 및 Nb을 첨가하고 과열도 및 여러 제조온도를 제어하여 스테인레스강을 제조하면, 등축정율이 50%이상이고 성형성 및 리찡 저항성이 우수한 스테인레스강을 얻을 수 있는 효과가 있다.As described above, according to the present invention, if B and Nb are added and superheat degree and various manufacturing temperatures are controlled to produce stainless steel, a stainless steel having an equiaxed crystallinity of 50% or more and excellent moldability and crushing resistance can be obtained. It works.

Claims (2)

중량%로 C:0.02% 이하, Si:1.0% 이하, Mn:1.0% 이하, P:0.02% 이하, S:0.003% 이하, Cr:14~20%, Mo:1.0% 이하, N:0.02% 이하, Cu:0.6% 이하, Nb:0.6% 이하, B:0.01% 이하를 첨가하되, 상기 C+N는 0.03% 이하, Nb/(C+N)는 8~15로 제어하고, 잔부 Fe 및 불가피하게 첨가되는 불순물로 조성되는 강 슬라브를, 주조온도 1538℃ 이하이며 ΔT(과열도)가 30℃ 이하가 되도록 제어하여 주조하고, 1150~1220℃ 온도범위에서 슬라브를 재가열하고 마무리압연온도를 750~900℃범위로하여 열간압연한 다음 980~1020℃범위에서 열연소둔을 실시하고 냉각속도를 15℃/초 이상으로 하여 급냉한 후 산세 및 냉간압연하고, 950~970℃로 냉연소둔하고 냉각속도를 15℃/초 이상으로 하여 급냉한 다음 산세처리하는 것을 특징으로 하는 성형성 및 리찡저항성이 우수한 페라이트계 스테인레스강의 제조방법By weight% C: 0.02% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.02% or less, S: 0.003% or less, Cr: 14-20%, Mo: 1.0% or less, N: 0.02% Cu: 0.6% or less, Nb: 0.6% or less, B: 0.01% or less, but C + N is 0.03% or less, Nb / (C + N) is controlled to 8-15, and the balance Fe and The steel slab, which is inevitably added to the impurity, is cast at a casting temperature of 1538 ° C. or less and ΔT (superheat) is 30 ° C. or less, and the slab is reheated at a temperature range of 1150 to 1220 ° C. and the finish rolling temperature is 750. Hot rolling in the range of ~ 900 ℃ and hot rolling annealing in the range of 980 ~ 1020 ℃, quenching at a cooling rate of 15 ℃ / sec or more, pickling and cold rolling, cold rolling annealing at 950 ~ 970 ℃ and cooling rate Is a method of manufacturing ferritic stainless steel with excellent moldability and resistance to rinsing, which is quenched at 15 ° C./sec or higher and then pickled. 제 1항에 있어서, 상기 냉간압연을 2단계로 할 경우, 1단계 냉간압연을 50~70%의 냉간압연율로 실시한 후 950~970℃에서 냉연소둔하고 급냉 및 산세처리하고, 다음 2단계 냉간압연을 50~70%의 냉간압연율로 실시하는 것을 특징으로 하는 성형성 및 리찡저항성이 우수한 페라이트계 스테인레스강의 제조방법The method of claim 1, wherein when the cold rolling is made in two stages, one stage cold rolling is performed at a cold rolling rate of 50 to 70%, followed by cold rolling at 950 to 970 ° C., followed by quenching and pickling, followed by two stages of cold rolling. Process for producing ferritic stainless steel with excellent formability and resistance to etching, characterized in that rolling is carried out at a cold rolling rate of 50 to 70%
KR10-1999-0056176A 1999-12-09 1999-12-09 A method for manufacturing ferritic stainless steel having improvable formability and ridging resistance KR100435457B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0056176A KR100435457B1 (en) 1999-12-09 1999-12-09 A method for manufacturing ferritic stainless steel having improvable formability and ridging resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0056176A KR100435457B1 (en) 1999-12-09 1999-12-09 A method for manufacturing ferritic stainless steel having improvable formability and ridging resistance

Publications (2)

Publication Number Publication Date
KR20010086183A true KR20010086183A (en) 2001-09-10
KR100435457B1 KR100435457B1 (en) 2004-06-10

Family

ID=19624568

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0056176A KR100435457B1 (en) 1999-12-09 1999-12-09 A method for manufacturing ferritic stainless steel having improvable formability and ridging resistance

Country Status (1)

Country Link
KR (1) KR100435457B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434879B1 (en) * 1999-12-30 2004-06-07 주식회사 포스코 a method of manufacturing the ferritic stainless steel with good workability
KR100543296B1 (en) * 2001-12-11 2006-01-20 주식회사 포스코 Continuous casting method for ridging improvement of ferritic stainless steel
KR100782786B1 (en) * 2001-12-26 2007-12-05 주식회사 포스코 MANUFACTURING METHOD OF Cu CONTAINING HOT ROLLED STEEL SHEET WITH GOOD SURFACE QUALITY
KR20160077280A (en) * 2014-12-22 2016-07-04 주식회사 포스코 Ferritic stainless steel and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182092B1 (en) 2010-12-27 2012-09-19 주식회사 포스코 Ferritic stainless steel with good workability and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123327A (en) * 1980-02-29 1981-09-28 Sumitomo Metal Ind Ltd Production of highly formable ferritic stainless steel sheet of good surface characteristic
JPS58199822A (en) * 1982-05-15 1983-11-21 Nippon Steel Corp Manufacture of ferritic stainless steel sheet causing no ridging
JPS6024326A (en) * 1983-07-19 1985-02-07 Kawasaki Steel Corp Production of ferritic stainless steel plate having excellent formability
JPH05112826A (en) * 1991-04-26 1993-05-07 Nippon Steel Corp Manufacture of ferritic stainless steel sheet excellent in corrosion resistance and workability
JP3709709B2 (en) * 1998-04-30 2005-10-26 Jfeスチール株式会社 Ferritic stainless steel with excellent formability and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434879B1 (en) * 1999-12-30 2004-06-07 주식회사 포스코 a method of manufacturing the ferritic stainless steel with good workability
KR100543296B1 (en) * 2001-12-11 2006-01-20 주식회사 포스코 Continuous casting method for ridging improvement of ferritic stainless steel
KR100782786B1 (en) * 2001-12-26 2007-12-05 주식회사 포스코 MANUFACTURING METHOD OF Cu CONTAINING HOT ROLLED STEEL SHEET WITH GOOD SURFACE QUALITY
KR20160077280A (en) * 2014-12-22 2016-07-04 주식회사 포스코 Ferritic stainless steel and method for manufacturing the same

Also Published As

Publication number Publication date
KR100435457B1 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
US6500280B2 (en) Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
EP3231882B1 (en) Stainless steel and production method therefor
CN106232838A (en) Ferritic stainless steel that mouldability and wrinkle resistance are improved and manufacture method thereof
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
KR100435457B1 (en) A method for manufacturing ferritic stainless steel having improvable formability and ridging resistance
CN114717478A (en) Light high-strength steel and production method thereof
CN114836688A (en) Reverse phase transformation niobium microalloyed light high-strength steel and production method thereof
KR0146798B1 (en) Method for manufacturing ferritic stainless steel
KR100276319B1 (en) The manufacturing method of ferrite stainless steel with excellent corrosion resistance and formability
JP2995526B2 (en) Manufacturing method of cold rolled steel sheet which has excellent formability, has paint bake hardenability, and has little fluctuation in paint bake hardenability in the width direction
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
KR101035767B1 (en) Hot-rolled steel sheet with good formability, and method for producing the same
KR100415666B1 (en) A ferritic stainless steel having improved formability, ridging resistance and a method for manufacturing it
KR102497439B1 (en) Ferritic stainless steel with improved ridging resistance and its manufacturing method
KR100276301B1 (en) The manufacturing method of ferrite stainless steel with high corrosion resistance and high formability
KR20140083166A (en) Stainless steel based on ferrite and method for manufacturing the same
KR102523533B1 (en) Ferritic stainless steel with improved grain boundary erosion and its manufacturing method
KR20190022127A (en) Ferritic stainless steel with improved impact toughness at low temperature and method of manufacturing the same
KR20130072881A (en) High carbon hot/cold rolled steel coil and manufactureing method thereof
KR940007495B1 (en) Making method of ferrite stainless steel
KR20110075408A (en) Ferritic stainless steel and method for manufacturing the same
CN116635561A (en) High-strength cold-rolled steel sheet excellent in material uniformity, high-strength plated steel sheet, and method for producing same
CN118401690A (en) Cold-rolled steel sheet and galvanized steel sheet excellent in press workability, and method for producing same
CN118703877A (en) Ultra-deep drawing IF steel and preparation method thereof
KR20230059478A (en) Ferritic stainless hot-rolled steel plate excellent in formability and method for production thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130530

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140530

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160602

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170530

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee