KR20010073280A - Activation Treatment Method of Ni/MH Secondary Battery - Google Patents

Activation Treatment Method of Ni/MH Secondary Battery Download PDF

Info

Publication number
KR20010073280A
KR20010073280A KR1020000001539A KR20000001539A KR20010073280A KR 20010073280 A KR20010073280 A KR 20010073280A KR 1020000001539 A KR1020000001539 A KR 1020000001539A KR 20000001539 A KR20000001539 A KR 20000001539A KR 20010073280 A KR20010073280 A KR 20010073280A
Authority
KR
South Korea
Prior art keywords
activation
alloy
impregnation
charging
current density
Prior art date
Application number
KR1020000001539A
Other languages
Korean (ko)
Inventor
이재영
유지상
이상민
이호
박정건
김승회
Original Assignee
윤덕용
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤덕용, 한국과학기술원 filed Critical 윤덕용
Priority to KR1020000001539A priority Critical patent/KR20010073280A/en
Priority to JP2000335525A priority patent/JP2001196056A/en
Priority to DE10054592A priority patent/DE10054592A1/en
Publication of KR20010073280A publication Critical patent/KR20010073280A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/34Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction
    • B60Q1/38Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction using immovably-mounted light sources, e.g. fixed flashing lamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/2696Mounting of devices using LEDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S362/00Illumination
    • Y10S362/80Light emitting diode

Abstract

PURPOSE: A method for activating a hydrogen storage alloy for a Ni/MH secondary cell is provided, to lower the activation treatment temperature and to reduce the number of cycles without affecting a Ni anode. CONSTITUTION: The method comprises the steps of dipping a hydrogen storage alloy with the composition of Zr0.7Ti0.3Cr0.3Mn0.3V0.4Ni1.0 into KOH solution at high temperature; and charging and discharging at low speed. Preferably the dipping process is carried out at 50-80 deg.C for 8-20 hours; and the charging and discharging process is carried out by charging the cell by the current density of 5-50 mA/g for 10-100 hours and discharging it by the same current density.

Description

NI/MH 2차 전지용 수소저장합금의 활성화 처리방법 {Activation Treatment Method of Ni/MH Secondary Battery }Activation Treatment Method of Ni / MH Secondary Battery Hydrogen Storage Alloy {Activation Treatment Method of Ni / MH Secondary Battery}

본 발명은 Ni/MH 2차 전지용 음극 재료로 사용되는 수소저장합금의 활성화 특성 개량방법에 관한 것이다. 보다 상세하게는 일반적으로 Ni/MH 2차 전지는 MH음극과 6M KOH 전해질, Ni(OH)2양극으로 구성되어 있는데, 이때 Ni/MH 2차전지의 활성화 특성은 활성화가 비교적 쉬운 양극보다 활성화가 어려운 MH 음극에 크게 영향을 받게 된다. 이는 수소저장합금이 Ni/MH 2차전지의 음극으로 제조될 때 공기중에 노출되게 되는데, 이때 수소저장합금의 표면에 산화막이 형성되고, 이로인해 수소저장합금의 수소화 반응시 수소의 흡수가 일어나지 않게 되는 결과를 낳게되기 때문이다.The present invention relates to a method for improving the activation characteristics of a hydrogen storage alloy used as a negative electrode material for Ni / MH secondary batteries. More specifically, the Ni / MH secondary battery is generally composed of an MH cathode, a 6M KOH electrolyte, and a Ni (OH) 2 positive electrode. The activation characteristics of the Ni / MH secondary battery are higher than those of a positive electrode which is relatively easy to activate. It is greatly affected by the difficult MH cathode. This is exposed to the air when the hydrogen storage alloy is manufactured as a negative electrode of the Ni / MH secondary battery, an oxide film is formed on the surface of the hydrogen storage alloy, so that the absorption of hydrogen does not occur during the hydrogenation reaction of the hydrogen storage alloy Because it will result in.

AB2계 합금은(A: 수소 친화력이 큰 원소, B : 천이 원소) 현재 상용화되어 있는 AB5계 합금과 비교할 때 높은 수소저장용량과 긴 수명특성을 보이기 때문에 차세대 Ni/MH 2차 전지의 음극재료로 유망한 재료이다. 그러나 전극 구성후 완전 활성화시키기가 어렵기 때문에 실제 사용에 있어 많은 제약이 따른다.The AB 2- based alloys (A: high hydrogen affinity element, B: transition element) have higher hydrogen storage capacity and longer lifespan compared to the commercially available AB 5- based alloys, so they are the negative electrode of the next-generation Ni / MH secondary battery. It is a promising material. However, since it is difficult to fully activate the electrode configuration, there are many limitations in actual use.

이와 같은 AB2계 합금의 활성화 특성을 향상시키기 위해 김수령(Kim, S. Ret al., J. Alloys Comp., 185:L1(1992))등은 ZrCrNi 합금에 적은 양의 희토류계 원소 (La, Mm, Nd)등을 첨가함으로써 활성화까지의 충/방전 사이클을 20사이클에서 5사이클 이내로 감소시켰다고 보고하고 있다. 또한 사와(Sawa, H. et al., Zeit. fur Phys. Chem., 164:1527(1989))등은 Zr계 AB2수소저장합금에 Zr 대신 Ti을 치환함으로써 활성화 특성을 개선시켰다고 보고하고 있다. 그러나 위의 결과는 합금내 새로운 원소를 치환함으로써 이론적 방전용량이 감소하는 결과를 낳고 있다. 이를 방지하기 위해 위의 결과와는 달리 전극 제조후 표면 전처리를 통해 활성화 특성을 개선하고자 하는 연구가 많이 진행되어 왔는데, 와카오(Wakao H. et al., "Int. Symp . on Metal HYdrogen Systems", September, 1990)등은 음극으로 제조된 Zr-V-Ni 전극을 KOH 용액내에 함침(immersion)함으로써 Zr계 합금 표면에 형성되었던 산화막을 제거하고, Ni-rich의 새로운 표면을 형성함으로써 5사이클 이내에서 활성화를 이루어내었다고 보고하고 있다. 이때 함침 온도가 높고, 함침 시간이 길어질수록 더 효과적인 활성화 처리가 이루어진다고 보고하고 있다. 또한 이존하(J. H. Lee,Ph.D. Thesis, KAIST(1993)) 등은 ZrCr0.8Ni1.2합금을 NaBH4용액 내에 함침함으로써 2-3사이클 이내에서 활성화를 이루어 내었고, HF+HNO3용액에 함침함으로써 10사이클 이내에서 활성화를 이루어 내었다고 보고하고 있다. 그러나 고온 함침의 경우(120℃) 전지를 구성하였을 때, 높은 온도에서 양극인 Ni(OH)2전극에 손상이 이루어질 수 있기 때문에 실제 전지제조 공정에서 사용될 수 없다. 또한 산(acid)을 통해 활성화 처리를 하는 경우 효과면에서 알칼리 용액에서의 활성화 처리에 비해 뒤떨어질 뿐 아니라, 복잡한 공정을 요하기 때문에 이 역시 실제 전지제조 공정에서는 사용될 수 없다. 또한 미국특허 5,874,824호의 고온함침 방법은 Ni 양극에 영향을 미치기 때문에 실제 전지 구성시 사용할 수 없는 문제가 있다.Kim, S. Ret., J. Alloys Comp., 185: L1 (1992), et al., Proposed to improve the activation characteristics of AB 2 based alloys. It has been reported that by adding Mm, Nd) and the like, the charge / discharge cycles until activation were reduced from 20 to 5 cycles. In addition, Sawa (H. et al., Zeit.fur Phys. Chem., 164: 1527 (1989)) reported that Zr-based AB 2 hydrogen storage alloys improved the activation characteristics by substituting Ti for Zr. . The above results, however, result in a decrease in theoretical discharge capacity by replacing new elements in the alloy. In contrast to the above results, many studies have been conducted to improve the activation characteristics through surface pretreatment after electrode fabrication. Waka H. et al., "Int. Symp. On Metal HYdrogen Systems" , September, 1990) and the like, by immersing a Zr-V-Ni electrode prepared as a cathode in a KOH solution to remove an oxide film formed on the surface of a Zr-based alloy and forming a new surface of Ni-rich within 5 cycles. Reports that activation has been accomplished. The higher the impregnation temperature and the longer the impregnation time, the more effective activation treatment is reported. In addition, JH Lee, Ph.D. Thesis, KAIST (1993), etc., achieved activation within 2-3 cycles by impregnating ZrCr 0.8 Ni 1.2 alloy in NaBH 4 solution and in HF + HNO 3 solution. It is reported that the impregnation achieved activation within 10 cycles. However, in the case of high temperature impregnation (120 ° C.), when the battery is constructed, the Ni (OH) 2 electrode, which is a positive electrode, may be damaged at a high temperature and thus cannot be used in the actual battery manufacturing process. In addition, the activation treatment through acid (acid) is not only inferior to the activation treatment in alkaline solution in terms of effect, but also requires a complicated process, this also can not be used in the actual battery manufacturing process. In addition, the high temperature impregnation method of US Pat. No. 5,874,824 has a problem that cannot be used in actual battery construction because it affects the Ni anode.

일반적으로 수소저장합금의 전극표면에 형성되는 산화피막은 활물질 감소 및 수소 흡/방출의 장벽으로 작용함으로써 접촉저항(contact resistance) 및 전하전달저항(charge transfer resistance)을 증가시켜 첫 사이클에서 합금이 최대 용량을 나타내지 못하게 된다. 이때 합금 표면에 형성된 산화피막은 사이클이 진행됨에 따라 수소의 흡/방출로 인해 조금씩 깨어지게 되고, 충분한 사이클이 진행된 후에 합금의 최대 용량을 나타내게 된다. 이와 같이 합금이 최대 용량을 나타낼 때까지 사이클을 진행시키는 것을 합금의 활성화 과정이라 하는데, 실제 전지를 구성하였을 경우 이와 같은 음극의 활성화 과정은 전지내에 많은 전류가 가해지게 되므로 양극에서의 과충전(overcharging)을 유발시킨다. 일반적으로 음극에서의 과충전은 크게 문제가 되지 않으나 양극의 경우 과충전이 발생하게 되면, 수소의 흡/방출이 이루어지지 않는 새로운 상으로의 비가역적 변태가 이루어지게 되어 전지의 성능을 크게 저하시키는 효과를 가져온다. 따라서 산업적으로 Ni/MH 2차 전지를 구성할 경우에는 이와 같은 음극의 활성화 과정을 짧게 하는 것이 필수적이라 하겠다.In general, the oxide film formed on the electrode surface of the hydrogen storage alloy acts as a barrier for reducing the active material and hydrogen absorption / emission, thereby increasing contact resistance and charge transfer resistance, thereby maximizing the alloy in the first cycle. It will not show capacity. At this time, the oxide film formed on the surface of the alloy is broken little by little due to the adsorption / release of hydrogen as the cycle progresses, showing the maximum capacity of the alloy after a sufficient cycle. As such, the process of activating the cycle until the alloy exhibits the maximum capacity is called an activation process of the alloy. When an actual battery is configured, such an activation process of the negative electrode causes a large current to be applied to the battery, thus overcharging at the positive electrode. Cause. In general, overcharging at the negative electrode is not a problem, but if overcharging occurs at the positive electrode, irreversible transformation into a new phase in which hydrogen is not absorbed / released is caused, which greatly reduces the performance of the battery. Bring. Therefore, it is essential to shorten the activation process of such a negative electrode when industrially constructing a Ni / MH secondary battery.

상기의 문제를 해결하고자 앞서 제시한 많은 방법들이 제시되었으나, 실제 사용하기에 많은 문제점을 안고 있어 새로운 활성화 처리가 필요한 실정이다. 이에 앞서의 결과에서 고온에서의 KOH 용액내에서의 함침방법은 다른 산에서의 함침에 비해 그 공정도 간단하고, 효과가 높기 때문에 고온 공정이라는 것을 제외하면 유망한 방법이라 할 수 있다.In order to solve the above problems, a number of the above-described methods have been proposed, but there are many problems in actual use, and thus a new activation process is required. In the above results, the impregnation method in the KOH solution at high temperature is a promising method except that it is a high temperature process because the process is simpler and the effect is higher than that in other acids.

따라서 본 발명에서는 상기 과제의 해결을 위한 방법으로 50~80℃ 정도의 비교적 낮은 온도에서의 함침후 저속 충전을 행함으로써 활성화 처리를 행하였다. 저속으로 충전을 할 경우 고속 충전에 비해 합금내로의 수소의 흡수가 원할하게 이루어지므로 활성화에 필요한 사이클이 감소될 것이라 생각할 수 있다.Therefore, in this invention, the activation process was performed by performing low charge after impregnation at the comparatively low temperature of about 50-80 degreeC as a method for solving the said subject. When charging at low speed, the absorption of hydrogen into the alloy is smoother than the fast charging, and thus the cycle required for activation may be reduced.

도 1은 함침온도를 달리 하였을 때 함침 온도에 따른 Zr0.7Ti0.3Cr0.3Mn0.3V0.4Ni1 .0합금의 활성화 거동을 나타낸 그래프이다.1 is a graph showing the activation behavior of Zr 0.7 Ti 0.3 Cr 0.3 Mn 0.3 V 0.4 Ni 1.0 alloy with different impregnation temperatures.

도 2는 80℃의 KOH 전해질 내에서 12시간 동안 함침 전(a)과 후(b)의 Zr0.7Ti0.3Cr0.3Mn0.3V0.4Ni1.0합금표면에 대한 AES 분석 결과를 나타낸 그래프이다.FIG. 2 is a graph showing the results of AES analysis on the surface of Zr 0.7 Ti 0.3 Cr 0.3 Mn 0.3 V 0.4 Ni 1.0 alloy before (a) and (b) impregnation for 12 hours in KOH electrolyte at 80 ° C.

도 3은 충전시 전류밀도를 변화(10∼100mA/g) 시켰을 때 Zr0.7Ti0.3Cr0.3Mn0.3V0. 4Ni1.0합금의 활성화 거동을 나타낸 그래프이다.3 is a graph showing the activation behavior of Zr 0.7 Ti 0.3 Cr 0.3 Mn 0.3 V 0.4 Ni 1.0 alloy when the current density during charging was varied (10-100 mA / g).

도 4(a)는 10mA/g의 전류밀도로 충전하고 10 사이클 후 Zr0.7Ti0.3Cr0.3Mn0.3V0.4Ni1.0합금의 SEM 사진이다.4 (a) is a SEM photograph of Zr 0.7 Ti 0.3 Cr 0.3 Mn 0.3 V 0.4 Ni 1.0 alloy after 10 cycles of charging at a current density of 10 mA / g.

도 4(b)는 100mA/g의 전류밀도로 충전하고 10 사이클 후 Zr0.7Ti0.3Cr0.3Mn0.3V0. 4Ni1.0합금의 SEM 사진이다.4 (b) is a SEM photograph of Zr 0.7 Ti 0.3 Cr 0.3 Mn 0.3 V 0.4 Ni 1.0 alloy after 10 cycles of charging at a current density of 100 mA / g.

도 5는 Zr0.7Ti0.3Cr0.3Mn0.3V0.4Ni1.0합금의 활성화 거동을 나타낸 그래프로서, (-□-)모양은 아무런 전처리를 행하지 않은 경우이고, (-▲-)모양은 80℃ KOH 용액에 12시간 함침 시킨 경우이고, (-▽-)모양은 80℃ KOH 용액에서 12시간 함침 후 첫 사이클에서 충/방전을 10mA/g의 전류밀도로 행한 경우이고, (-●-)모양은 10mA/ g의 전류밀도를 가진 샘플 사이클이다.5 is a graph showing the activation behavior of Zr 0.7 Ti 0.3 Cr 0.3 Mn 0.3 V 0.4 Ni 1.0 alloy, where (-□-) is the case without any pretreatment, and (-▲-) is 80 ° C. KOH solution (-▽-) is the case where charging / discharging was performed at the current cycle of 10mA / g in the first cycle after 12 hours of impregnation in 80 ℃ KOH solution, and (-●-) is 10mA Sample cycle with current density of / g.

도 6은 본 발명에서 설명하고자 한 고온 함침 후 저속 충전에 의한 활성화 처리가 합금에 미치는 영향을 대략적으로 나타낸 사진이다.Figure 6 is a photograph schematically showing the effect of the activation treatment by the low-speed charging after the high temperature impregnation to be described in the present invention.

본 발명은 상용화되어 있는 AB5형에 비해 용량은 크나, 활성화 특성이 좋지 않아 실제 전지를 구성할 수 없는 AB2형 합금의 활성화 특성을 개선시키고자 하는 것이다.The present invention is to improve the activation characteristics of the AB type 2 alloy, which has a larger capacity than the commercially available type AB 5 but has poor activation characteristics and thus cannot constitute an actual battery.

본 발명에 사용된 합금은 Zr0.7Ti0.3Cr0.3Mn0.3V0.4Ni1.0으로 아르곤 분위기 하에서 공지의 아크 멜팅(arc-melting)을 통하여 제조하여 사용하였다.The alloy used in the present invention was prepared by Zr 0.7 Ti 0.3 Cr 0.3 Mn 0.3 V 0.4 Ni 1.0 through a known arc-melting under argon atmosphere.

본 발명에서 사용된 활성화 처리 방법은 크게 두 가지 공정으로 나뉜다. 첫째 고온(50∼80℃) KOH 전해질 내에서 Zr0.7Ti0.3Cr0.3Mn0.3V0.4Ni1.0합금을 8∼20시간 동안 함침시키고, 둘째로 KOH 전해질 내에서 Zr0.7Ti0.3Cr0.3Mn0.3V0.4Ni1.0합금을 함침 후 첫 사이클에서 5∼50mA/g 의 전류밀도로 10∼100시간 저속 충전에 의하여 활성화시키는 방법이다. 이 각각의 공정은 AB2합금에서 활성화 과정에 미치는 영향이 서로 다르기 때문에 두 가지 공정을 동시에 사용함으로써 좀 더 효과적인 활성화 특성을 얻어낼 수 있다.The activation treatment method used in the present invention is largely divided into two processes. Firstly, Zr 0.7 Ti 0.3 Cr 0.3 Mn 0.3 V 0.4 Ni 1.0 alloy was impregnated for 8-20 hours in high temperature (50-80 ° C.) KOH electrolyte, and second, Zr 0.7 Ti 0.3 Cr 0.3 Mn 0.3 V 0.4 in KOH electrolyte. Ni 1.0 alloy is activated by slow charging for 10 to 100 hours at a current density of 5 to 50 mA / g in the first cycle after impregnation. Since each of these processes has different effects on the activation process in the AB 2 alloy, more effective activation characteristics can be achieved by using both processes simultaneously.

이하, 상기 언급된 수소저장합금의 활성화 처리 방법을 실시예에 의하여 보다 구체적으로 설명하고자 한다. 다만 이들 실시예는 본 발명을 예시하기 위한 것에 불과한 것으로 본 발명의 권리범위는 상기 실시예의 내용을 포함한 균등한 범위에까지 미친다는 것은 당업자에게 있어 자명한 사항이다.Hereinafter, the above-described activation process of the hydrogen storage alloy will be described in more detail by examples. However, these examples are merely for illustrating the present invention, it is obvious to those skilled in the art that the scope of the present invention to the equivalent range including the contents of the above embodiments.

<실시예 1>: 고온 함침에 의한 활성화 처리 및 합금에 미치는 영향<Example 1>: Effect on activation treatment and alloy by high temperature impregnation

본 발명에서 활성화 처리 방법으로 사용된 두 가지 공정이 각각 미치는 영향과 KOH 전해질에 고온 함침 시 합금에 미치는 영향에 대해 살펴보았다. 도 1은 함침온도를 달리 하였을 때 함침 온도에 따른 합금의 활성화 거동에 대해 나타난 것이다. 도 1에서 함침 온도가 증가함에 따라 활성화 특성이 향상되고 있음을 알 수있다. 이에 대한 원인을 살펴보고자 AES(Auger Electron Spectroscopy) 분석을 행하였다. 도 2는 고온 함침 후 합금 표면에 대한 AES 분석 결과를 나타낸 것이다. 함침 후 표면의 Zr 농도가 크게 감소하고 대신 Ni의 농도가 증가하고 있음을 알 수 있다. 상기 결과는 함침으로 인해 표면에 존재하는 Zr-oxide가 전해질 내로 용출되고, 대신 Ni이 표면에 풍부(enrich)하게 됨을 보여준다. 이와 같은 결과는 활성화 특성 향상에 큰 영향을 미친다. 그러나 함침 후 합금 내로의 산소 침투 정도가 크게 증가하고 있음을 알 수 있다. 또한 실험결과 이와 같은 산소 침투는 함침 온도가 높을수록 함침 시간이 길어질수록 깊어진다는 것을 알 수 있다. 따라서 고온 함침만을 통해 활성화 처리를 할 경우 이와 같은 산소 침투가 활성화 특성 향상에 악영향을 끼칠 것이라 사료된다.In the present invention, the effects of the two processes used as the activation treatment method and the effect on the alloy during high temperature impregnation of KOH electrolyte were examined. Figure 1 shows the activation behavior of the alloy according to the impregnation temperature at different impregnation temperatures. It can be seen from FIG. 1 that the activation characteristic is improved as the impregnation temperature increases. To find out the cause of this, AES (Auger Electron Spectroscopy) analysis was performed. 2 shows the results of AES analysis on the alloy surface after high temperature impregnation. It can be seen that after impregnation, the concentration of Zr on the surface is greatly reduced and the concentration of Ni is increasing instead. The results show that the impregnation causes the Zr-oxide present on the surface to elute into the electrolyte, and instead Ni is enriched on the surface. This result greatly affects the activation characteristics. However, it can be seen that the degree of oxygen penetration into the alloy is greatly increased after impregnation. In addition, the experimental results show that the higher the impregnation temperature, the deeper the impregnation time becomes. Therefore, when the activation treatment is performed only by high temperature impregnation, such oxygen penetration may be detrimental to the improvement of activation characteristics.

<실시예 2>: 저속 충방전에 의한 활성화 처리 및 합금에 미치는 영향Example 2 Effect on Activation Treatment and Alloy by Low-Speed Charge / Discharge

도 3은 충전 시 전류밀도를 변화 시켰을 때의 활성화 거동을 나타낸 것이다( 10∼100mA/g). 충전 전류밀도가 감소함에 따라 활성화 특성이 향상되는 것을 알 수 있다. 도 4는 전류밀도를 달리하여 충전하였을 때 10 사이클 후 합금의 SEM 사진은 나타낸 것이다. 상기 SEM 사진 결과 낮은 전류 밀도로 충전한 경우 높은 전류밀도로 충전한 경우에 비해 많은 크랙(crack)이 존재하여 좀 더 쉽게 수소가 흡수될 수 있음을 알 수 있다. 즉 저속 충전을 통해 합금 표면에 크랙을 형성시키고 그로 인해 활성화 특성을 향상시킬 수 있었다.Figure 3 shows the activation behavior when changing the current density during charging (10 ~ 100mA / g). As the charging current density decreases, it can be seen that the activation characteristics are improved. Figure 4 shows the SEM photograph of the alloy after 10 cycles when charged with different current density. As a result of the SEM photograph, it can be seen that hydrogen is more easily absorbed due to the presence of many cracks when charged with a low current density than when charged with a high current density. In other words, the low-speed filling formed cracks on the surface of the alloy, thereby improving the activation characteristics.

<실시예3>: 고온 함침 후 저속 충방전에 의한 활성화 처리 방법 (신 활성화 처리법)<Example 3>: Activation treatment method by low-speed charging and discharging after high temperature impregnation (new activation treatment method)

도 5는 위에서 설명한 각각의 방법과 위 두 가지 공정을 함께 처리한 합금에 대해 활성화 거동을 나타낸 것이다. 본 발명에서는 새로운 활성화 처리 방법으로 8 0℃ KOH 전해질 내에서 Zr0.7Ti0.3Cr0.3Mn0.3V0.4Ni1.0합금을 12시간 동안 함침시킨 후 첫 사이클에서 10mA/g의 전류밀도로 50시간 충전하고, 20mA/g의 전류밀도로 Hg/HgO 대비 -0.7V 까지 방전을 행하였다. 상기 도면에서 본 발명을 통해 새로이 제안된 고온 함침 후 저속 충방전에 의한 활성화 처리 방법이 고온 함침 법이나 저속 충전만을 행한 활성화 처리 방법에 비해 더 우수한 활성화 특성을 나타냄을 알 수 있었다. 도 6에서는 이 같은 활성화 처리 방법이 어떻게 시너지 효과를 발휘하는 지에 대해 나타내 주고 있다. 즉, 고온 함침을 통해 표면에 형성된 지르코늄 산화(Zr-oxide)층을 제거하고, 그 뒤 저속충전을 통해 표면에 크랙을 형성함으로써 수소의 흡/방출을 원활하게 할 수 있었다.Figure 5 shows the activation behavior for each of the methods described above and the alloy treated with the two processes together. In the present invention, after impregnating Zr 0.7 Ti 0.3 Cr 0.3 Mn 0.3 V 0.4 Ni 1.0 alloy for 12 hours in a KOH electrolyte with a new activation treatment method and charging 50 hours at a current density of 10 mA / g in the first cycle, Discharge was performed to -0.7 V compared to Hg / HgO at a current density of 20 mA / g. In the drawings, it can be seen that the newly proposed activation treatment method by low speed charge and discharge after the high temperature impregnation shows better activation characteristics than the activation treatment method using only the high temperature impregnation method or the low speed charging method. Fig. 6 shows how this activation processing method exerts a synergistic effect. In other words, by removing the zirconium oxide (Zr-oxide) layer formed on the surface through high temperature impregnation, and then cracks formed on the surface through low-speed charging it was able to facilitate the absorption / release of hydrogen.

본 발명은 Zr계 수소저장합금의 활성화 특성을 개선시키기 위한 방법으로써, 특히 기존의 방법이 끓는 KOH 전해질에서의 처리로 Ni 양극에 영향을 미쳐 실제 산업적으로 사용하지 못하는데 비해 본 발명의 활성화 처리 방법은 보다 낮은 온도에서 효과적으로 활성화 처리를 행할 수 있어 실제 산업적으로 사용이 가능하다. 또한 활성화 과정 역시 첫 사이클에서 최고 방전용량을 나타내어 지금까지 알려진 활성화 처리 방법 중 가장 좋은 결과를 나타내었다.The present invention is a method for improving the activation characteristics of the Zr-based hydrogen storage alloy, in particular, the conventional method affects the Ni anode by treatment in a boiling KOH electrolyte, which is not actually used industrially. The activation process can be effectively performed at a lower temperature, so that actual industrial use is possible. In addition, the activation process also showed the highest discharge capacity in the first cycle, showing the best results among the known activation methods.

Claims (3)

Zr계 합금에 있어서, Zr0.7Ti0.3Cr0.3Mn0.3V0.4Ni1.0조성의 수소저장합금을 고온에서 KOH 전해질 내에 함침한 후, 저속 충/방전하는 것을 특징으로 하는 Ni/MH 2차전지용 수소저장합금의 활성화 처리 방법.In the Zr-based alloy, Zr 0.7 Ti 0.3 Cr 0.3 Mn 0.3 V 0.4 Ni 1.0 hydrogen storage alloy is impregnated in KOH electrolyte at high temperature, and then charged / discharged at low speed, hydrogen storage for Ni / MH secondary battery Method of activation treatment of alloys. 제 1항에 있어서, 고온 함침은 50∼80℃ 사이의 KOH 전해질을 이용해 합금을 8∼20 시간 동안 함침 시키는 것을 특징으로 하는 Ni/MH 2차전지용 수소저장합금의 활성화 처리 방법.The method of claim 1, wherein the high temperature impregnation impregnates the alloy for 8 to 20 hours using a KOH electrolyte between 50 and 80 ° C. 제 1항에 있어서, 저속 충/방전은 5∼50mA/g 의 전류밀도로 10∼100시간 동안 충전한 후 동일한 범위의 전류 밀도로 방전을 하는 것을 특징으로 하는 Ni/MH 2차전지용 수소저장합금의 활성화 처리 방법.2. The hydrogen storage alloy of claim 1, wherein the low-speed charge / discharge is charged at a current density of 5 to 50 mA / g for 10 to 100 hours and then discharged at a current density in the same range. How to deal with activation.
KR1020000001539A 2000-01-13 2000-01-13 Activation Treatment Method of Ni/MH Secondary Battery KR20010073280A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020000001539A KR20010073280A (en) 2000-01-13 2000-01-13 Activation Treatment Method of Ni/MH Secondary Battery
JP2000335525A JP2001196056A (en) 2000-01-13 2000-11-02 METHOD OF ACTIVATING HYDROGEN STORAGE ALLOY FOR Ni/MH SECONDARY BATTERY
DE10054592A DE10054592A1 (en) 2000-01-13 2000-11-03 Activation of metal hydride alloy based on zirconium, for nickel-metal hydride secondary cell, comprises immersion in potassium hydroxide electrolyte, then slow charging and discharging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000001539A KR20010073280A (en) 2000-01-13 2000-01-13 Activation Treatment Method of Ni/MH Secondary Battery

Publications (1)

Publication Number Publication Date
KR20010073280A true KR20010073280A (en) 2001-08-01

Family

ID=19638336

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000001539A KR20010073280A (en) 2000-01-13 2000-01-13 Activation Treatment Method of Ni/MH Secondary Battery

Country Status (3)

Country Link
JP (1) JP2001196056A (en)
KR (1) KR20010073280A (en)
DE (1) DE10054592A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233273B2 (en) 2017-09-01 2022-01-25 Lg Chem, Ltd. Method for manufacturing electrochemical device using pretreatment discharge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152587A (en) * 2019-03-18 2020-09-24 一般財団法人ファインセラミックスセンター Method of producing ceramic powder, ceramic powder, and method of producing ceramic dense body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06215764A (en) * 1993-01-18 1994-08-05 Matsushita Electric Ind Co Ltd Manufacture of hydrogen absorbing electrode and metal oxide-hydrogen storage battery with hydrogen absorbing electrode
JPH07326353A (en) * 1994-04-04 1995-12-12 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy electrode
JPH09102308A (en) * 1995-10-05 1997-04-15 Toshiba Battery Co Ltd Alkaline secondary battery
KR19990024946A (en) * 1997-09-09 1999-04-06 손욱 Hydrogen storage alloy of nickel hydrogen battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06215764A (en) * 1993-01-18 1994-08-05 Matsushita Electric Ind Co Ltd Manufacture of hydrogen absorbing electrode and metal oxide-hydrogen storage battery with hydrogen absorbing electrode
JPH07326353A (en) * 1994-04-04 1995-12-12 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy electrode
JPH09102308A (en) * 1995-10-05 1997-04-15 Toshiba Battery Co Ltd Alkaline secondary battery
KR19990024946A (en) * 1997-09-09 1999-04-06 손욱 Hydrogen storage alloy of nickel hydrogen battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233273B2 (en) 2017-09-01 2022-01-25 Lg Chem, Ltd. Method for manufacturing electrochemical device using pretreatment discharge

Also Published As

Publication number Publication date
DE10054592A1 (en) 2001-07-26
JP2001196056A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
CN108011079A (en) A kind of surface modification method of lithium anode and application
CN111193005A (en) Copper foil current collector and preparation method and application thereof
CN106531967A (en) Preparation method of lithium battery negative electrode material of cobalt tetraoxide ferrate-carbon cloth
CN1087510C (en) Alkaline accumulator
KR102590571B1 (en) Manufacturing methods of composite cathode material for lithium secondary batteries and composite cathode material manufactured by the method
KR20010073280A (en) Activation Treatment Method of Ni/MH Secondary Battery
JPH06215765A (en) Alkaline storage battery and manufacture thereof
EP1111700B1 (en) Alkaline storage battery
CN1162926C (en) Nickel positive electrode plate for alkaline storage batteries and method for producing same
JPH11339814A (en) Manufacture of electrode for alkaline storage battery
US4139423A (en) Sintered negative plate
CN113636605A (en) Physical repair method for completely-failed ternary positive electrode material under low-cost air condition
KR100212180B1 (en) Activation treatment method of ni/mh secondary battery by hot charging
JP2005122922A (en) Manufacturing method of grid for lead acid battery and lead acid battery
CN1211085A (en) Electrode for alkali accumulator and its producing method and alkaline accumulator
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP2004273283A (en) Separator for alkali storage battery and alkali storage battery
KR100675699B1 (en) Separator for Alkaline Secondary Battery, Method for Preparing the Same and Alkaline Secondary Battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPH05174869A (en) Processing method for sealed type nickel-hydrogen battery
JPH0589876A (en) Manufacture of ni electrode for alkaline storage battery
KR100553728B1 (en) Method for processing electrode used in secondary battery
JP3127725B2 (en) Sintered substrate for alkaline storage battery and method for producing the same
JP2514103B2 (en) Manufacturing method of hydrogen storage electrode
JPH0513077A (en) Manufacture of hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application