KR20010066115A - planari-zation method and polishing material for a insulator film of a semiconductor device - Google Patents

planari-zation method and polishing material for a insulator film of a semiconductor device Download PDF

Info

Publication number
KR20010066115A
KR20010066115A KR1019990067699A KR19990067699A KR20010066115A KR 20010066115 A KR20010066115 A KR 20010066115A KR 1019990067699 A KR1019990067699 A KR 1019990067699A KR 19990067699 A KR19990067699 A KR 19990067699A KR 20010066115 A KR20010066115 A KR 20010066115A
Authority
KR
South Korea
Prior art keywords
trench
oxide layer
layer
nitride film
abrasive
Prior art date
Application number
KR1019990067699A
Other languages
Korean (ko)
Other versions
KR100355865B1 (en
Inventor
김용식
Original Assignee
황인길
아남반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황인길, 아남반도체 주식회사 filed Critical 황인길
Priority to KR1019990067699A priority Critical patent/KR100355865B1/en
Publication of KR20010066115A publication Critical patent/KR20010066115A/en
Application granted granted Critical
Publication of KR100355865B1 publication Critical patent/KR100355865B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Abstract

PURPOSE: A planarizing method and a slurry therefor are to increase etching selectivity to a nitride layer and an oxide layer so that final abrasing is completed at constant position even variance of the oxide layer in density, thereby preventing damage of an active region and generation of impurity particle. CONSTITUTION: A pad thermal oxide layer(12) is deposited on a silicon substrate(11), which serves to an anti-stress layer to a nitride layer to be formed later. The nitride layer is formed by an LPCVD(low pressure chemical vapor deposition). A trench is formed by successively etching the nitride layer, the pad thermal oxide layer and the silicon substrate. A thin liner oxide layer(14) is formed on a wall face of the trench to relieve stress thereof. A thick oxide layer(15) is deposited by an APCVD(atmosphere pressure chemical vapor deposition) and annealed to densify the same. The oxide layer and the nitride layer are selectively polished using slurry including HF, and then the nitride layer is removed.

Description

반도체 소자용 절연막의 평탄화 방법 및 이에 사용되는 연마제{planari-zation method and polishing material for a insulator film of a semiconductor device}Planarization method and polishing material for a insulator film of a semiconductor device

본 발명은 반도체 소자용 절연막의 평탄화 방법 및 이에 사용되는 연마제에 관한 것이다.The present invention relates to a planarization method of an insulating film for a semiconductor device and an abrasive used therein.

일반적으로 반도체 소자 분리 방법으로 LOCOS(local oxidation of silicon) 소자 분리와 얕은 트렌치 소자 분리(STI : shallow trench isolation) 등이 있다.In general, semiconductor device isolation methods include local oxidation of silicon (LOCOS) device isolation and shallow trench isolation (STI).

LOCOS는 공정이 간소하고 생성되는 산화막질이 좋다는 이점이 있으나, 소자 분리 영역이 차지하는 면적이 크기 때문에 미세화에 한계가 있을 뿐만 아니라 버즈 비크(bird's beak)가 발생한다.LOCOS has the advantage of a simple process and good oxide film quality, but due to the large area occupied by the device isolation region, there is a limit to miniaturization and a bird's beak occurs.

반면에, 얕은 트렌치 소자 분리는 건식 식각을 이용하여 실리콘 기판에 얕은 트렌치를 만들고 그 속에 절연물을 채우는 방법으로서, 버즈 비크와 관련된 문제가 적고, 채워진 트렌치는 표면을 평탄하게 하므로 소자 분리 영역이 차지하는 면적이 작아서 미세화에 유리하다.On the other hand, shallow trench isolation is a method of forming a shallow trench in a silicon substrate using dry etching and filling insulators therein, which is less trouble with the buzz beak and the filled trench flattens the surface, thus occupying the area of the isolation region. It is small and is advantageous for miniaturization.

그러면, 첨부한 도면을 참조하여 종래에 따른 소자 분리 영역 형성에 대하여 상세히 설명한다.Next, the device isolation region formation according to the related art will be described in detail with reference to the accompanying drawings.

먼저, 도 1a에 도시한 바와 같이, 규소 기판(1) 위에 패드(pad) 산화막(2)과 질화막(3)을 연속하여 형성한 다음, 질화막(3), 패드 산화막(2) 및 규소 기판(1)을 차례로 식각하여 트렌치(101)를 형성한다.First, as shown in FIG. 1A, a pad oxide film 2 and a nitride film 3 are successively formed on the silicon substrate 1, and then the nitride film 3, the pad oxide film 2, and the silicon substrate ( 1) is sequentially etched to form the trench 101.

다음, 도 1b에 도시한 바와 같이 트렌치(101)의 벽면에 얇은 라이너(liner) 산화막(4)을 형성한 다음, 두꺼운 산화막(5)을 증착하다. 이때, 산화막(5)은 트렌치(101)에 의한 단차로 인해 트렌치(101) 쪽으로 움푹 들어간 형태를 이룬다.Next, as shown in FIG. 1B, a thin liner oxide film 4 is formed on the wall surface of the trench 101, and then a thick oxide film 5 is deposited. At this time, the oxide film 5 has a recessed shape toward the trench 101 due to the step by the trench 101.

다음, 도 1c에 도시한 바와 같이 CMP(chemical-mechanical polishing)의 균일도를 향상시키기 위해 산화막(5)을 패터닝하여 트렌치(101) 상부를 제외한 부분을 제거한다.Next, as illustrated in FIG. 1C, the oxide film 5 is patterned to remove uniform portions except the upper portion of the trench 101 in order to improve the uniformity of chemical-mechanical polishing (CMP).

이어, 도 1d에 도시한 바와 같이 산화막(5)을 CMP 방법으로 연마한다.Next, as shown in FIG. 1D, the oxide film 5 is polished by the CMP method.

다음, 도 1e에 도시한 바와 같이 습식 식각 방법으로 질화막(3)을 제거한다.Next, as illustrated in FIG. 1E, the nitride film 3 is removed by a wet etching method.

이와 같이 얕은 트렌치 소자 분리는 트렌치에 의한 단차로 인해 트렌치 내에 절연물을 형성한 다음 평탄화하는 공정이 필요한데, 연마 방법으로 평탄화할 때 위치에 따라 절연물의 밀도가 달라 연마 속도 차이가 나므로 활성 영역이 과도하게연마된다.As described above, the shallow trench isolation requires a step of forming an insulating material in the trench and then flattening due to the step difference caused by the trench. To be polished.

연마 속도를 균일하게 하기 위해 절연막을 식각한 후 연마하게 되면 오염 입자(particle)가 발생되고 이러한 입자는 기판 표면에 스크래치를 유발시킨다.When the insulating film is etched and polished to make the polishing rate uniform, contaminating particles are generated and these particles cause scratches on the substrate surface.

또한, 연마 후 질화막을 제거할 때 활성 영역에 질화막이 남게되어 불량이 발생한다.In addition, when the nitride film is removed after polishing, a nitride film remains in the active region, thereby causing a defect.

본 발명의 과제는 절연막의 평탄화시 연마 속도의 균일성을 확보하는 것이다.An object of the present invention is to ensure uniformity in polishing rate when the insulating film is planarized.

본 발명의 다른 과제는 절연막의 평탄화시 오염 입자의 생성을 방지하는 것이다.Another object of the present invention is to prevent the generation of contaminating particles during planarization of the insulating film.

본 발명의 다른 과제는 반도체 소자의 활성 영역의 손상을 줄이는 것이다.Another object of the present invention is to reduce the damage of the active region of the semiconductor device.

도 1a 내지 도 1e는 종래의 기술에 따른 얕은 트렌치 소자 분리 제조 방법을 공정 순서에 따라 나타낸 단면도이고,1A to 1E are cross-sectional views illustrating a method of manufacturing a shallow trench isolation device according to a related art according to a process sequence;

도 2 내지 도 5는 본 발명에 따른 얕은 트렌치 소자 분리 제조 방법을 공정 순서에 따라 나타낸 단면도이다.2 to 5 are cross-sectional views showing a shallow trench device isolation manufacturing method according to the present invention in the order of process.

이러한 과제를 해결하기 위해 본 발명에서는 트렌치를 덮는 산화막을 식각하지 않고 HF를 포함하는 연마제로 연마한다.In order to solve this problem, in the present invention, the oxide film covering the trench is polished with an abrasive containing HF without etching.

본 발명에 따른 반도체 소자의 평탄화 방법에서는 반도체 기판 상부에 질화막을 형성한 다음, 질화막과 반도체 기판을 차례로 식각하여 트렌치를 형성한다. 트렌치 및 질화막 상부에 산화막을 형성하고 HF를 포함하는 연마제를 사용하여 산화막과 질화막을 선택적으로 연마한 후, 질화막을 제거한다.In the method of planarizing a semiconductor device according to the present invention, a nitride film is formed on the semiconductor substrate, and the nitride film and the semiconductor substrate are sequentially etched to form a trench. An oxide film is formed over the trench and the nitride film, and the oxide film and the nitride film are selectively polished using an abrasive containing HF, and then the nitride film is removed.

본 발명에서 연마 방법은 CMP 방법을 사용할 수 있다.In the present invention, the polishing method may use a CMP method.

여기서, 연마제는 연마 입자와 KOH, H2O2, 그리고 초순수를 더 포함할 수 있는데, 연마 입자는 SiO2, Al2O3및 Ce2O3중 어느 하나로 이루어질 수 있다.Here, the abrasive may further comprise abrasive particles and KOH, H 2 O 2 , and ultrapure water, the abrasive particles may be made of any one of SiO 2 , Al 2 O 3 and Ce 2 O 3 .

HF는 H2O와 49% HF의 혼합 비율이 100:1이며, HF의 중량비는 14.3±1 wt%인 것이 좋다.For HF, the mixing ratio of H 2 O and 49% HF is 100: 1, and the weight ratio of HF is 14.3 ± 1 wt%.

본 발명에서는 산화막을 연마할 때 산화막에 대한 연마 제거율이 높은 희석된 HF를 포함하는 연마제를 사용함으로써 산화막과 질화막의 연마 속도 선택비를 높일 수 있으므로, 산화막의 밀도 차이에 의해 활성 영역이 과도하게 연마되어 손상을 입히는 문제를 해결할 수 있다. 또한, 불순물 입자가 발생하지 않으며, 공정수가 감소된다.In the present invention, since the polishing rate selection ratio of the oxide film and the nitride film can be increased by using an abrasive containing diluted HF having a high removal rate for polishing the oxide film, the active region is excessively polished due to the difference in density of the oxide film. To solve the problem of damage. In addition, no impurity particles are generated and the number of steps is reduced.

그러면, 첨부한 도면을 참고로 하여 본 발명의 실시예에 따른 얕은 트렌치 소자 분리 제조 방법에 대하여 상세하게 설명한다.Next, a shallow trench device isolation manufacturing method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

먼저, 도 6에 도시한 바와 같이, (100) P형 에피(epi) 규소 기판(11) 위에 이후 형성될 질화막(13)과의 스트레스(stress) 방지층으로 패드 열산화막(12)을 150Å 정도의 두께로 증착하고, 이어, LPCVD(low pressure chemical vapor deposition) 방법으로 질화막(13)을 2,000Å 정도의 두께로 증착한다. 다음, 질화막(13), 패드 열산화막(12) 및 규소 기판(11)을 차례로 건식 식각하여 트렌치(111)를 형성한다. 여기서, 트렌치(111)의 깊이는 약 5,000Å 정도이다.First, as shown in FIG. 6, the pad thermal oxide film 12 is formed on the (100) P-type epi silicon substrate 11 as a stress preventing layer with the nitride film 13 to be formed later. After the deposition, the nitride film 13 is deposited to a thickness of about 2,000 kPa by low pressure chemical vapor deposition (LPCVD). Next, the trench 111 is formed by dry etching the nitride film 13, the pad thermal oxide film 12, and the silicon substrate 11 in order. Here, the depth of the trench 111 is about 5,000 kPa.

다음, 도 7에 도시한 바와 같이 트렌치(111)의 스트레스 완화를 위해 트렌치(111)의 벽면에 열산화 방법으로 얇은 라이너 산화막(14)을 형성한 다음,APCVD(atmosphere pressure chemical vapor deposition) 방법으로 두꺼운 산화막(15)을 8,000~10,500Å 정도 증착하고, 열처리하여 산화막(15)의 밀도를 높인다. 이때, 트렌치(111)에 의한 단차로 인해 트렌치(111) 상부의 산화막(15)은 트렌치(111) 쪽으로 움푹 들어간 형태를 이룬다.Next, as shown in FIG. 7, a thin liner oxide film 14 is formed on the wall of the trench 111 by thermal oxidation to relieve stress of the trench 111, and then, by APCVD (atmosphere pressure chemical vapor deposition) method. A thick oxide film 15 is deposited at about 8,000 to 10,500 kPa and heat treated to increase the density of the oxide film 15. At this time, due to the step by the trench 111, the oxide film 15 of the upper portion of the trench 111 forms a recessed side toward the trench 111.

다음, 도 8에 도시한 바와 같이 CMP 공정을 실시하여 산화막(15)의 표면이 질화막(13)과 거의 같아질 때까지 산화막(15)을 연마한다. 이때, 질화막(13)과 산화막(15)에 대해 높은 선택비를 가지는 연마제(slurry)를 사용하는데, 이러한 연마제의 성분은 다음과 같다. 연마 입자는 SiO2, Al2O3및 Ce2O3중 하나 이상으로 이루어지며 이들의 평균 입경은 200 nm 이하이다. 여기에 수화(hydration) 반응을 위한 KOH와 OH-이온 농도 유지를 위한 H2O2, 그리고 초순수(deionized water) 등을 포함하는 것이 기존의 연마제인데, 본 실시예에서는 산화막의 연마 제거율을 높이기 위한 희석된 HF(DHF : diluted HF)를 더 첨가한다. 기존 연마제로는 SiO2, KOH, H2O2및 초순수를 포함하는 Cavot사의 제품 SS11이 있는데 예를 들면 SS11 84.7 내지 86.7 wt%에 DHF를 13.3 내지 15.3 wt% 혼합하여 사용할 수 있다. DHF는 H2O와 49% HF의 혼합 비율이 100:1인 것을 사용한다.Next, as illustrated in FIG. 8, the oxide film 15 is polished until the surface of the oxide film 15 is substantially the same as the nitride film 13 by performing a CMP process. In this case, an abrasive having a high selectivity with respect to the nitride film 13 and the oxide film 15 is used, and the components of the abrasive are as follows. The abrasive particles consist of at least one of SiO 2 , Al 2 O 3 and Ce 2 O 3 , and their average particle diameter is 200 nm or less. The conventional abrasives include KOH for the hydration reaction, H 2 O 2 for maintaining the concentration of OH ions, and deionized water. In this embodiment, the polishing rate of the oxide film is increased. Add diluted HF (DHF: diluted HF). Conventional abrasives include SS11 manufactured by Cavot, Inc., which includes SiO 2 , KOH, H 2 O 2 and ultrapure water. For example, 13.11 to 15.3 wt% of DHF may be mixed with 84.7 to 86.7 wt% of SS11. DHF uses a mixture having a mixing ratio of H 2 O and 49% HF of 100: 1.

이와 같이 HF를 첨가하면 산화막(15)의 제거 속도가 빨라지므로, 산화막(15)의 밀도가 위치에 따라 달라 밀도가 낮은 지역이 먼저 연마되어 하부의 질화막(13)이 드러나더라도, 밀도가 높은 지역의 산화막(15)이 연마되어 그 하부의질화막(13)이 드러날 때까지 먼저 드러난 질화막(13)은 거의 연마되지 않는다. 따라서, 밀도가 달라 연마 후 활성 영역이 손상을 입는 것을 방지할 수 있다.As the HF is added, the removal rate of the oxide film 15 is increased. Therefore, even if the density of the oxide film 15 varies depending on the location, a region having a low density is polished first, and the lower nitride film 13 is exposed. The nitride film 13 exposed first is hardly polished until the oxide film 15 is polished to expose the lower nitride film 13. Therefore, since the density is different, it is possible to prevent the active region from being damaged after polishing.

다음, 도 9에 도시한 바와 같이 질화막(13)을 제거한다.Next, the nitride film 13 is removed as shown in FIG.

한편, 본 발명에서는 한 번의 사진 식각 공정으로만 트렌치를 형성하므로 공정수가 감소된다.Meanwhile, in the present invention, since the trench is formed by only one photo etching process, the number of processes is reduced.

본 발명에서는 질화막과 산화막의 연마 속도 선택비를 높여 산화막의 밀도가 위치에 따라 다르더라도 최종 연마는 균일한 위치에서 끝나므로 활성 영역이 거의 손상되지 않으면서, 불순물 입자의 생성을 방지할 수 있다. 또한, 공정수가 감소되어 비용을 줄일 수 있다.In the present invention, even if the density of the oxide film varies depending on the position by increasing the polishing rate selection ratio of the nitride film and the oxide film, the final polishing is finished at a uniform position, and thus the generation of impurity particles can be prevented without damaging the active region. In addition, the number of processes can be reduced to reduce costs.

Claims (8)

반도체 기판 상부에 질화막을 형성하는 단계,Forming a nitride film over the semiconductor substrate, 상기 질화막과 상기 반도체 기판을 차례로 식각하여 트렌치를 형성하는 단계,Sequentially etching the nitride film and the semiconductor substrate to form a trench; 상기 트렌치 및 상기 질화막 상부에 산화막을 증착하는 단계,Depositing an oxide film on the trench and the nitride film; HF를 포함하는 연마제를 사용하여 상기 산화막과 상기 질화막을 선택적으로 연마하는 단계,Selectively polishing the oxide film and the nitride film using an abrasive comprising HF, 상기 질화막을 제거하는 단계Removing the nitride film 를 포함하는 반도체 소자의 평탄화 방법.Planarization method of a semiconductor device comprising a. 제1항에서,In claim 1, 상기 연마 방법은 CMP 방법인 반도체 소자의 평탄화 방법.And the polishing method is a CMP method. 제2항에서,In claim 2, 상기 연마제는 연마 입자와 KOH, H2O2, 그리고 초순수를 더 포함하는 반도체 소자의 평탄화 방법.The polishing agent further comprises a polishing particle and KOH, H 2 O 2 , and ultrapure water. 제3항에서,In claim 3, 상기 HF는 H2O와 49% HF의 혼합 비율이 100:1이며, 상기 HF의 중량비는 14.3±1 wt%인 반도체 소자의 평탄화 방법.The HF has a mixing ratio of H 2 O and 49% HF is 100: 1, and the weight ratio of the HF is 14.3 ± 1 wt%. HF를 포함하는 반도체 소자용 연마제.An abrasive for semiconductor devices comprising HF. 제5항에서,In claim 5, 상기 연마제는 연마 입자와 KOH, H2O2, 그리고 초순수를 더 포함하는 반도체 소자용 연마제.The abrasive further includes abrasive particles and KOH, H 2 O 2 , and ultrapure water. 제6항에서,In claim 6, 상기 연마 입자는 SiO2, Al2O3및 Ce2O3중 어느 하나를 포함하는 반도체 소자용 연마제.The abrasive grain is an abrasive for semiconductor devices comprising any one of SiO 2 , Al 2 O 3 and Ce 2 O 3 . 제7항에서,In claim 7, 상기 HF는 H2O와 49% HF의 혼합 비율이 100:1이며, 상기 HF의 중량비는 14.3±1 wt%인 반도체 소자용 연마제.The HF is a mixture ratio of H 2 O and 49% HF is 100: 1, the weight ratio of the HF is 14.3 ± 1 wt% abrasive for semiconductor devices.
KR1019990067699A 1999-12-31 1999-12-31 planari-zation method and polishing material for a insulator film of a semiconductor device KR100355865B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990067699A KR100355865B1 (en) 1999-12-31 1999-12-31 planari-zation method and polishing material for a insulator film of a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990067699A KR100355865B1 (en) 1999-12-31 1999-12-31 planari-zation method and polishing material for a insulator film of a semiconductor device

Publications (2)

Publication Number Publication Date
KR20010066115A true KR20010066115A (en) 2001-07-11
KR100355865B1 KR100355865B1 (en) 2002-10-12

Family

ID=19634799

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990067699A KR100355865B1 (en) 1999-12-31 1999-12-31 planari-zation method and polishing material for a insulator film of a semiconductor device

Country Status (1)

Country Link
KR (1) KR100355865B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447975B1 (en) * 2001-12-28 2004-09-10 주식회사 하이닉스반도체 Slurry for CMP and method for fabricating the same and method for treating CMP using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109332A (en) * 1988-10-19 1990-04-23 Canon Inc Manufacture of semiconductor substrate
US5801082A (en) * 1997-08-18 1998-09-01 Vanguard International Semiconductor Corporation Method for making improved shallow trench isolation with dielectric studs for semiconductor integrated circuits
JP3063705B2 (en) * 1997-10-14 2000-07-12 日本電気株式会社 Method for manufacturing semiconductor device
US5976951A (en) * 1998-06-30 1999-11-02 United Microelectronics Corp. Method for preventing oxide recess formation in a shallow trench isolation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447975B1 (en) * 2001-12-28 2004-09-10 주식회사 하이닉스반도체 Slurry for CMP and method for fabricating the same and method for treating CMP using the same

Also Published As

Publication number Publication date
KR100355865B1 (en) 2002-10-12

Similar Documents

Publication Publication Date Title
US6541382B1 (en) Lining and corner rounding method for shallow trench isolation
KR100213196B1 (en) Trench device separation
US5926722A (en) Planarization of shallow trench isolation by differential etchback and chemical mechanical polishing
US6057210A (en) Method of making a shallow trench isolation for ULSI formation via in-direct CMP process
US5811345A (en) Planarization of shallow- trench- isolation without chemical mechanical polishing
US6015757A (en) Method of oxide etching with high selectivity to silicon nitride by using polysilicon layer
US6261923B1 (en) Method to solve the dishing issue in CMP planarization by using a nitride hard mask for local inverse etchback and CMP
US6331472B1 (en) Method for forming shallow trench isolation
US6537914B1 (en) Integrated circuit device isolation methods using high selectivity chemical-mechanical polishing
JP2000058637A (en) Forming method of shallow trench insulating structure to semiconductor substrate
JP4592262B2 (en) Floating gate forming method for flash memory device
US7041547B2 (en) Methods of forming polished material and methods of forming isolation regions
US6727161B2 (en) Isolation technology for submicron semiconductor devices
US6190999B1 (en) Method for fabricating a shallow trench isolation structure
KR100355865B1 (en) planari-zation method and polishing material for a insulator film of a semiconductor device
US6087262A (en) Method for manufacturing shallow trench isolation structure
KR100444311B1 (en) Method for manufacturing isolation layer of semiconductor device using two-step cmp processes
KR100475025B1 (en) Forming method for field oxide of semiconductor device
US20020110995A1 (en) Use of discrete chemical mechanical polishing processes to form a trench isolation region
KR100567070B1 (en) Method for forming isolation layer in semiconductor device
US20040009674A1 (en) Method for forming a filling film and method for forming shallow trench isolation of a semiconductor device using the same
US20020094659A1 (en) Method for forming isolation layer of semiconductor device
JP2000500920A (en) Efficient and economical method of planarizing multilayer metallization structures in integrated circuits using CMP
US20010053583A1 (en) Shallow trench isolation formation process using a sacrificial layer
KR100355871B1 (en) planarization method of semiconductor devices

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080630

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee