KR20010065415A - Method of de-oxidization utilization for vacuum - Google Patents

Method of de-oxidization utilization for vacuum Download PDF

Info

Publication number
KR20010065415A
KR20010065415A KR1019990065299A KR19990065299A KR20010065415A KR 20010065415 A KR20010065415 A KR 20010065415A KR 1019990065299 A KR1019990065299 A KR 1019990065299A KR 19990065299 A KR19990065299 A KR 19990065299A KR 20010065415 A KR20010065415 A KR 20010065415A
Authority
KR
South Korea
Prior art keywords
slag
vacuum
sucking
deoxidizing
steel
Prior art date
Application number
KR1019990065299A
Other languages
Korean (ko)
Inventor
김원채
채성은
이행권
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019990065299A priority Critical patent/KR20010065415A/en
Publication of KR20010065415A publication Critical patent/KR20010065415A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D25/00Devices or methods for removing incrustations, e.g. slag, metal deposits, dust; Devices or methods for preventing the adherence of slag
    • F27D25/008Devices or methods for removing incrustations, e.g. slag, metal deposits, dust; Devices or methods for preventing the adherence of slag using fluids or gases, e.g. blowers, suction units

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: A method for deoxidizing a slag using vacuum is provided to improve cleanliness of melting steel by sucking slag of the upper part of a ladle using pre-evacuation of the slag that is first deoxidized in a base oxygen furnace, thereby preventing re-oxidation of the melting steel. CONSTITUTION: The method for deoxidizing a slag (5) using vacuum comprises the processes of deoxidizing a slag inside a vacuum vessel (500) by promptly sucking the slag on the upper part of melting steel (1) which is treated using pre-evacuation; and treating the sucked dust without pollution by sucking dust generated during deoxidization of the slag using vacuum. The method comprises the process of carrying out second slag deoxidization by sucking a slag into a vacuum vessel using pre-evacuation after completing RH treatment, thereby deoxidizing low class oxides in slag so as to guide to reduction resistance, that is, lowering the degree of oxidation of slag (FeO+MnO) so as to improve cleanliness during treating of an ultra-low carbon steel.

Description

진공을 이용한 슬라그 탈산 방법{Method of de-oxidization utilization for vacuum}Slag deoxidation method using vacuum {Method of de-oxidization utilization for vacuum}

본 발명은 알에이치(RH) 처리 완료 후 예비 진공을 이용해서 슬라그을 진공조 내부로 흡상시켜 2차 슬라그 탈산을 실시하는 방법에 관한 것으로, 슬라그 중 저급 산화물을 탈산하여 내환원성으로 유도하며 즉 슬라그 산화도(FeO+MnO)를 낮추어 극저 탄소강의 처리시 청정도를 향상시킬 수 있는 진공을 이용한 슬라그 탈산 방법에 관한 것이다.The present invention relates to a method for performing secondary slag deoxidation by drawing up slag into a vacuum chamber using preliminary vacuum after completion of RH treatment, and deoxidizing lower oxides in slag to induce reduction resistance. That is, the present invention relates to a slag deoxidation method using a vacuum that can improve the cleanliness in treating ultra-low carbon steel by lowering the slag oxidation degree (FeO + MnO).

일반적으로, 제강공정에서의 슬라그는 성분제어와 개재물 흡수 등 정련상 필수적인 요소이지만 슬라그가 가진 역기능(즉, 복린, 재산화)등에 의해 용강을 오염시키기도 한다.In general, slag in the steelmaking process is an essential element in refining, such as control of ingredients and absorption of inclusions, but it also contaminates molten steel due to its dysfunctional function (i.e., bilin, reoxidation).

극저 탄소강을 제외한 일반강(RH 중 처리)은 출강 후 탈산을 실시하고, 2차 정련(BAF, LF, RH) 과정 중 교반(bubbling, RH 환류)에 의해 슬라그가 충분히 탈산된다.General steel (treated in RH) except for extremely low carbon steel is deoxidized after tapping, and slag is sufficiently deoxidized by bubbling (reflux of RH) during secondary refining (BAF, LF, RH).

그러나, 극저 탄소강은 RH에서 탈탄 후 탈산을 실시하기 때문에 슬라그가 용강 중 탈산제(Sol-Al)에 의해 탈산되는 기간은 탈산 이후 15~20분으로 짧을 뿐만 아니라 침적관(snorkel)에 의해 계면반응(slag/metal) 면적이 적기 때문에 극저 탄소강의 슬라그 중 저급 산화물(T, Fe, CaO, SiO2, Al203, MgO, MnO, P205...)은 일반 강 수준으로 탈산되지 못하고, 주조시 용강중의 탈산제(Sol-Al)와 반응하여 탈산 로스(loss)를 유발하며, 용강의 청정도를 저하시키는 것이 극저 탄소강 제조 공정 상 문제점이 있었다.However, since ultra-low carbon steel is deoxidized after decarburization in RH, the duration of deoxidation of slag by deoxidizer (Sol-Al) in molten steel is not only short to 15-20 minutes after deoxidation, but also interfacial reaction by snorkel. Due to the small slag / metal area, the lower oxides (T, Fe, CaO, SiO 2 , Al 2 0 3 , MgO, MnO, P 2 0 5 ...) in the slag of ultra low carbon steel are not deoxidized to the general steel level. In the case of casting, it reacts with the deoxidizer (Sol-Al) in molten steel to cause deoxidation loss and reduce the cleanliness of the molten steel.

통상적으로, 슬라그 중 중요 저급 산화물(FeO+MnO)의 감소에 따라 용강의 청정도가 개선되었다는 보고는 많은 자료에서 접할 수 있으며, 슬라그 산화도를 낮추기 위해 현재 출강중 생성회(CaO) 1.2Ton과 함께 형석(CaF2)을 투입하여 슬라그 개질을 실시함과 동시에 알루미늄 불순물((Al-Dross)을 투입하여 래들(ladle) 슬라그를 탈산하고있는데 본 방법의 적용에 있어 RH 처리 후 슬라그 중 FeO+MnO가 6~7%수준으로 용강 청정도의 지수인 전체(total) 산소의 12ppm 이하로, 관리에 어려움을 겪고 있고, 고 청정강 확보에 문제가 대두되고 있는 실정이다.Typically, reports show that the cleanliness of molten steel has been improved due to the reduction of significant lower oxides (FeO + MnO) in slag, and many reports indicate that the slag oxidation rate is currently 1.2Ton to reduce slag oxidation. The slag is reformed by adding fluorite (CaF 2 ) and aluminum impurities ((Al-Dross) is added to de-ladle the ladle slag. FeO + MnO is 6 ~ 7%, which is less than 12ppm of total oxygen, which is an index of molten steel cleanliness, and it is difficult to manage and has a problem of securing high clean steel.

따라서, 본 발명은 상기와 같이 제반 문제점을 최소화하기 위한 것으로, 통상적으로 전로에서 1차 탈산 된 슬라그 예비 진공(pre evacuation)을 이용해 래들 상부의 슬라그를 흡상시켜 용강의 재산화를 방지하여 용강의 청정도를 향상시킬 수 있는 진공을 이용한 슬라그 탈산 방법을 제공하는 데 그 목적이 있다.Accordingly, the present invention is to minimize all the problems as described above, by using the first slag pre-vacuum degassing in the converter to suck up the slag on the upper ladle to prevent reoxidation of the molten steel An object of the present invention is to provide a slag deoxidation method using a vacuum that can improve cleanliness.

상술한 목적을 달성하기 위한 본 발명에 따른 진공을 이용한 슬라그 탈산 방법은 예비진공을 이용하여 처리완료 된 용강 상부의 슬라그를 신속하게 흡상하여진공조 내부에서 슬라그를 탈산하고, 상기 슬라그 탈산시 발생되는 분진을 진공을 이용해 흡상하여 무공해로 처리하는 것을 특징으로 한다.The slag deoxidation method using a vacuum according to the present invention for achieving the above object is rapidly sucked up the slag of the upper molten steel using a pre-vacuum to deoxidize the slag in the vacuum chamber, and occurs during the slag deoxidation It is characterized in that the dust is sucked up using a vacuum to be treated pollution-free.

도 1은 종래의 작업 공정도.1 is a conventional work flow chart.

도 2는 본 발명에 따른 진공을 이용한 슬라그 탈산 방법을 설명하기 위해 도시한 개략도.Figure 2 is a schematic diagram for explaining the slag deoxidation method using a vacuum according to the present invention.

도 3은 본 발명의 진공 설비의 구성도.3 is a block diagram of a vacuum installation of the present invention.

도 4는 본 발명의 반응 범위를 나타낸 개략도.4 is a schematic view showing the reaction range of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

100. 전로(basic oxygen furnace) 200. 래들(ladle)100. basic oxygen furnace 200. ladle

300. 수강대차(ladle transfer car) 400. 합금철 슈트(alloy chute)300. ladle transfer car 400. alloy chute

500. 진공조(vessel) 1. 용강(melting steel)500. Vessel 1. Melting steel

2. 익스팬션 조인트(expansion joint) 3. 탈산제2. expansion joint 3. deoxidizer

4. 환류가스(circuit gas) 5. 슬라그(slag)4. circuit gas 5. slag

6. 가스 쿨러(cass cooler) 7. 메인 슬라이딩 게이트6. Cas cooler 7. Main sliding gate

8 내지 10. 부스터(booster) 11 내지 15. 콘덴서(condenser)8 to 10. Booster 11 to 15. Condenser

16 내지 20. 이젝터(ejector)16 to 20. Ejector

이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 보다 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail.

도 1에서 도시한 종래의 슬라그 탈산 방법은 전로(100)에서 출강된 용강(1)상부에 합금철 슈트(400)를 통해 개질 및 탈산제를 투입한다. 여기서 설명되지 않은 도면부호 200은 래들, 그리고, 300은 수강대차를 각각 나타낸다.In the conventional slag deoxidation method illustrated in FIG. 1, the reforming and deoxidizer is introduced through the ferroalloy chute 400 on the molten steel 1 cast out of the converter 100. Reference numeral 200, which is not described herein, represents a ladle, and 300 represents a water cart.

도 2는 본 발명에 따른 진공을 이용한 슬라그 탈산 방법을 설명하기 위해 도시한 개략도이고, 도 3은 본 발명의 진공 설비의 구성도로서, 메인 슬라이딩 게이트(7)를 기준으로 펌프(pump)측에 진공도를 150mbar~200mbar 유지시켜주며, 극저 탄소강 처리시에 초기 배기를 단축시켜 초기에 고 진공도를 확보하기 위해 통상 사용되는 설비이다.FIG. 2 is a schematic view illustrating a slag deoxidation method using a vacuum according to the present invention, and FIG. 3 is a configuration diagram of a vacuum installation of the present invention, and is a pump side based on a main sliding gate 7. It maintains the vacuum level of 150mbar ~ 200mbar and it is a facility normally used to secure high vacuum at the initial stage by shortening the initial exhaust during ultra low carbon steel treatment.

도 2에 도시된 바와 같이, 전로(1)에서 1차적으로 탈산된 슬라그(5)를 RH 처리된 예비진공 실시 여부를 결정후 처리 완료한다. 복압 후 래들(200)을 L1위치(침적관과 용강의 경계점)까지 하강한 후 재차 래들(200)을 L2위치(침적관이 400mm이상 잠긴 상태)까지 상승한 후 진공도를 350~400mbar로 설정한다. 이는 슬라그가 진공조 바닥에서 100mm 정도 흡상된 진공도이며, 통상 용강의 교반은 300mbar 이하에서 이루어지므로 진공조(500)의 진공도 설정 후 처리개시 한다. 여기서 설명되지 않은 도면부호 2는 익스팬션 조인트, 그리고 3은 탈산제를 각각 나타낸다.As shown in FIG. 2, the slag 5 deoxidized primarily in the converter 1 is processed after determining whether or not to perform RH-treated prevacuum. After the back pressure, the ladle 200 is lowered to the L1 position (the boundary between the immersion tube and the molten steel), and then the ladle 200 is raised to the L2 position (the immersion tube is locked more than 400 mm), and the vacuum degree is set to 350 to 400 mbar. This is the degree of vacuum sucked by the slag 100mm from the bottom of the vacuum chamber, since the stirring of the molten steel is usually performed at 300 mbar or less, and then the treatment is started after setting the vacuum degree of the vacuum chamber 500. Reference numeral 2 not described herein denotes an expansion joint, and 3 denotes a deoxidizer, respectively.

도 3에서, 도면부호 6은 가스 쿨러, 7은 메인 슬라이딩 게이트, 8 내지 10은 부스터(S1 내지 S3), 11 내지 15는 콘덴서(R1 내지 R5), 16에서 20은 이젝터(S4, 5A, 5B, 6A, 6B)를 각각 나타낸다. 상기 메인 슬라이딩 게이트(7)가 열리면서 진공조(500)의 진공도는 350mbar~400mbar로 유지되고, 용강 상부의 침적관(snorkel 650mbar)의 구경만큼의 슬라그는 순식간에 진공조(500) 바닥에 흡상된다.In Fig. 3, reference numeral 6 denotes a gas cooler, 7 main sliding gates, 8 to 10 boosters S1 to S3, 11 to 15 condensers R1 to R5, and 16 to 20 ejectors S4, 5A, and 5B. , 6A, 6B). As the main sliding gate 7 is opened, the vacuum degree of the vacuum chamber 500 is maintained at 350 mbar to 400 mbar, and slag as large as the diameter of the snorkel 650 mbar above the molten steel is sucked up to the bottom of the vacuum chamber 500 at once. .

이때, Al 불순물(Al-Dross)의 경우는 100kg, Al의 경우 50kg을 합금철 설비의 익스팬션 조인트(expansion joint)를 통해 진공조(500) 내부로 투입한다.At this time, 100 kg of Al impurities (Al-Dross) and 50 kg of Al are introduced into the vacuum chamber 500 through an expansion joint of the ferroalloy facility.

진공조(500) 내부에서 반응 분진이 진공에 의해 완전히 포집되는 것을 모니터(I-TV)를 통해 확인되면, 복압(진공조 내부를 질소를 이용해 대기압 상태로)한 후 래들(200)을 하강한다.When it is confirmed through the monitor (I-TV) that the reaction dust is completely collected by the vacuum in the vacuum chamber 500, the ladle 200 is lowered after the double pressure (the inside of the vacuum chamber is brought to atmospheric pressure using nitrogen). .

이때, 탈산된 슬라그(5)는 도 4에 도시한 바와 같이, 5A 구역의 슬라그는 용해(melting) 상태, 5B 구역은 비 용해 상태이므로, 5A 구역의 슬라그는 진공도 내부에서 불출된 슬라그에 의해 탈산되는 구역을 나타내고 있다. 이는 슬라그를 내환원성으로 유도해 슬라그의 산화도를 낮추게 된다.At this time, as the deoxidized slag 5 is shown in Figure 4, since the slag in the 5A zone is a melting (melting) state, 5B zone is a non-melting state, the slag of the 5A zone is due to the slag discharged in the vacuum degree inside. The area to be deoxidized is shown. This induces the slag to be resistant to reducing the degree of oxidation of the slag.

상술한 바와 같이 본 발명에 의하면, 진공을 이용해 슬라그를 흡상하여 진공조 내부 탈산으로 슬라그 산화도(WT%) FeO+MnO를 현재 6~7%에서 4~5%(2%↓)대로 유지함으로써, 연질 B/P 재의 욕수준(total [0] 12ppm 이하 확보)에 기여하고, 현 수준보다 이상의 고 청정강을 제조할 수 있는 효과가 있다.As described above, according to the present invention, the slag is sucked up using vacuum to maintain the slag oxidation degree (WT%) FeO + MnO at the current 6-7% to 4-5% (2% ↓) by deoxidation inside the vacuum chamber. By doing so, it contributes to the bath level (total 12ppm or less of total B0P material) of soft B / P ash, and has the effect of manufacturing high clean steel more than the present level.

이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함으로 전술한 실시 예 및 첨부된 도면에 한정되는 것이 아니다.The present invention described above can be variously substituted, modified and changed within the scope without departing from the technical spirit of the present invention for those skilled in the art to which the present invention pertains and the accompanying drawings. It is not limited to.

Claims (1)

예비진공을 이용하여 처리완료 된 용강 상부의 슬라그를 신속하게 흡상하여 진공조 내부에서 슬라그를 탈산하고, 상기 슬라그 탈산시 발생되는 분진을 진공을 이용해 흡상하여 무공해로 처리하는 것을 특징으로 하는 진공을 이용한 슬라그 탈산 방법.Rapidly drawing up the slag on the finished molten steel using the preliminary vacuum to desorb the slag from the inside of the vacuum chamber, and sucking the dust generated during the deoxidation of the slag by using the vacuum to process the vacuum without pollution. Slag deoxidation method used.
KR1019990065299A 1999-12-29 1999-12-29 Method of de-oxidization utilization for vacuum KR20010065415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990065299A KR20010065415A (en) 1999-12-29 1999-12-29 Method of de-oxidization utilization for vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990065299A KR20010065415A (en) 1999-12-29 1999-12-29 Method of de-oxidization utilization for vacuum

Publications (1)

Publication Number Publication Date
KR20010065415A true KR20010065415A (en) 2001-07-11

Family

ID=19632496

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990065299A KR20010065415A (en) 1999-12-29 1999-12-29 Method of de-oxidization utilization for vacuum

Country Status (1)

Country Link
KR (1) KR20010065415A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614814B1 (en) * 2004-08-23 2006-08-22 이철영 Hazardous Exhaust Gas Reduction Cream
KR100878663B1 (en) * 2002-10-07 2009-01-15 주식회사 포스코 Method of refining the molten steel in an efficient manner
KR100885117B1 (en) * 2002-11-14 2009-02-20 주식회사 포스코 A method for manufacturing of low carbon steel having high cleaness and low phosphorous
KR101045972B1 (en) * 2003-12-17 2011-07-04 주식회사 포스코 Refining method of highly clean ultra low carbon steel for soft two-piece can

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100878663B1 (en) * 2002-10-07 2009-01-15 주식회사 포스코 Method of refining the molten steel in an efficient manner
KR100885117B1 (en) * 2002-11-14 2009-02-20 주식회사 포스코 A method for manufacturing of low carbon steel having high cleaness and low phosphorous
KR101045972B1 (en) * 2003-12-17 2011-07-04 주식회사 포스코 Refining method of highly clean ultra low carbon steel for soft two-piece can
KR100614814B1 (en) * 2004-08-23 2006-08-22 이철영 Hazardous Exhaust Gas Reduction Cream

Similar Documents

Publication Publication Date Title
CN110205436B (en) Smelting method for producing IF steel in full-flow low-oxygen level
CN115595397A (en) Accurate nitrogen control method for nitrogen-containing high-strength steel
JP4207820B2 (en) How to use vacuum degassing equipment
KR20010065415A (en) Method of de-oxidization utilization for vacuum
JP2008063610A (en) Method for producing molten steel
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
JPH0734117A (en) Production of extra-low carbon steel having excellent cleanliness
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
KR100387931B1 (en) Refining method of ultra-low carbon steel with carbon content less than 0.01%
JP3002599B2 (en) Melting method for ultra low carbon steel with high cleanliness
JP3002593B2 (en) Melting method of ultra low carbon steel
JP3752801B2 (en) Method for melting ultra-low carbon and ultra-low nitrogen stainless steel
JP5315669B2 (en) Method for refining molten steel with RH vacuum degassing equipment
JPH10140227A (en) Production of high alloy steel by joining two molten steels
JPH11279631A (en) Method for refining molten stainless steel
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JPH07268440A (en) Deoxidizing method of molten steel
KR100328031B1 (en) A Refining Method for Cleanliness Lmproving of Molten Steel in Ultra-low Carbon Steel Making Process
JPH0741824A (en) Production of high cleanliness steel
JP2985720B2 (en) Vacuum refining method for ultra low carbon steel
KR100922058B1 (en) Method for refining the ferrit stainless hot metal having high Cr
JP3424163B2 (en) Method for producing ultra low carbon steel with low V content
KR100402005B1 (en) A METHOD FOR REFINING ULTRA LOW CARBON Al-KILLED STEEL OF HIGH CLEANINESS
JP3253138B2 (en) Melting method of high cleanness ultra low carbon steel
JP3127733B2 (en) Manufacturing method of ultra clean ultra low carbon steel

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination