KR20010057369A - Nonaqueous battery electrolyte - Google Patents

Nonaqueous battery electrolyte Download PDF

Info

Publication number
KR20010057369A
KR20010057369A KR1019990060379A KR19990060379A KR20010057369A KR 20010057369 A KR20010057369 A KR 20010057369A KR 1019990060379 A KR1019990060379 A KR 1019990060379A KR 19990060379 A KR19990060379 A KR 19990060379A KR 20010057369 A KR20010057369 A KR 20010057369A
Authority
KR
South Korea
Prior art keywords
carbonate
battery
methyl
electrolyte solution
nonaqueous electrolyte
Prior art date
Application number
KR1019990060379A
Other languages
Korean (ko)
Other versions
KR100860441B1 (en
Inventor
김종섭
김영규
이종욱
김진성
Original Assignee
안복현
제일모직주식회사
김순택
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안복현, 제일모직주식회사, 김순택, 삼성에스디아이 주식회사 filed Critical 안복현
Priority to KR1019990060379A priority Critical patent/KR100860441B1/en
Publication of KR20010057369A publication Critical patent/KR20010057369A/en
Application granted granted Critical
Publication of KR100860441B1 publication Critical patent/KR100860441B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: A non-aqueous electrolytic solution for battery is provided to prolong the life of battery without reducing an efficiency of charge and discharge of battery and performance at low temperature. CONSTITUTION: The non-aqueous electrolytic solution consisting of organic solution and lithium salt comprises phenyl sulfonyl compounds represented by formula 1. Wherein R and R' are H or alkyl group having 1 to 4 carbon atoms. The content of phenyl sulfonyl compounds is 0.1 to 5 wt.% based on total non-aqueous electrolytic solution. The organic solution is one and more selected from the group consisting of ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methylpropionic acid, ethylpropionic acid and fluorobenzene.

Description

전지용 비수전해액{NONAQUEOUS BATTERY ELECTROLYTE}Nonaqueous Electrolyte for Battery {NONAQUEOUS BATTERY ELECTROLYTE}

본 발명은 전지등에 사용되는 전지용 비수전해액에 관한 것으로, 더욱 상세하게는 환상 카보네이트 화합물(Cyclic carbonate)과 선형 카보네이트 화합물(Chain carbonate)이 혼합된 유기용매에 리튬염을 용해시킨 것을 기본 전해액으로 하고 여기에 페닐술폰(Phenyl sulfone)류 화합물을 첨가한 것을 특징으로 하는 전지의 충·방전 수명 성능이 향상된 전지용 비수전해액에 관한 것이다.The present invention relates to a non-aqueous electrolyte solution for batteries used in batteries, and more particularly, wherein a lithium salt is dissolved in an organic solvent in which a cyclic carbonate compound and a linear carbonate compound are mixed. It relates to a nonaqueous electrolyte solution for batteries with improved charge and discharge life performance of the battery, characterized in that the phenyl sulfone (Phenyl sulfone) compound is added to.

종래에 노트북 컴퓨터, 켐코더, 휴대폰 등에 사용되는 소형화 및 슬림화된 리튬 이온 2차 전지는 리튬 금속 혼합 산화물을 양극 활물질로 하고, 탄소 재료 또는 금속 리튬 등을 음극으로 하며, 유기용매에 리튬염을 적당량 용해시킨 것을 전해액으로 하여 구성되었다.Conventionally, miniaturized and slimmed lithium ion secondary batteries used in notebook computers, camcorders, mobile phones, etc. have a lithium metal mixed oxide as a positive electrode active material, a carbon material or metal lithium as a negative electrode, and dissolve an appropriate amount of lithium salt in an organic solvent. What was made was comprised as electrolyte solution.

보다 구체적으로 기존에 리튬 2차 전지에서 전해액으로 사용되는 유기용매로는 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 에틸프로필카보네이트(EPC) 등으로부터 2종 이상이 선택 사용되고, 용질로는 LiPF6등의 리튬염이 사용되고 있으나, 유기용매는 사용되는 음극활물질의 종류에 따라 다르게 선택된다. 결정질 흑연을 음극으로 사용하는 전지 시스템에서 유전도가 높은 환상 카보네이트로는 에틸렌카보네이트가 주로 사용되고 있고, 선형 카보네이트로는 점도가 낮은 디메틸카보네이트, 디에틸카보네이트, 에틸, 메틸카보네이트등이 주로 사용된다.More specifically, conventional organic solvents used as electrolyte in lithium secondary batteries include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), Two or more kinds are selected from ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), etc., and lithium salts such as LiPF 6 are used as the solute. It depends on the type. In a battery system using crystalline graphite as a negative electrode, ethylene carbonate is mainly used as a high dielectric constant cyclic carbonate, and dimethyl carbonate, diethyl carbonate, ethyl, methyl carbonate, etc. having a low viscosity are mainly used as a linear carbonate.

그러나, 최근 전지의 성능 향상 특히, 우수한 충·방전 수명 성능에 대한 요구가 증가되고 있기 때문에, 이러한 기술적 요구를 충족시키기 위하여 전해액에 특정 화합물을 첨가하여 전지의 성능을 개량하는 기술의 개발이 활발하게 진행되고 있다.However, in recent years, there is an increasing demand for improved battery performance, in particular, excellent charge and discharge life performance. Accordingly, in order to satisfy these technical demands, development of a technology for improving the performance of a battery by adding a specific compound to an electrolyte solution has been actively conducted. It's going on.

예를 들어, 일본특개평 9-63649호에서는 1% 이상의 CO2를 첨가함으로써 전지의 충방전 수명을 향상시키는 방법을 제시하였고, 동 8-306388호에서는 0.01~10중량%의 벤자락톤(Benzalactone)을 전해액에 첨가하여 전지의 수명 성능 및 충방전 효율을 향상시키는 방법을 제시하였으며, 동 7-192761호에서는 0.01~5중량%의 락타이드(Lactide)류를 전해액에 첨가하여 전지의 충방전 수명 성능을 향상시키는 방법을 제안하였다.For example, Japanese Patent Application Laid-Open No. 9-63649 proposes a method of improving the charge / discharge life of a battery by adding 1% or more of CO 2 , and in No. 8-306388, 0.01 to 10% by weight of benzalactone ) Was added to the electrolyte solution to improve the lifespan performance and charging and discharging efficiency of the battery, and in the 7-192761 the addition of 0.01 to 5% by weight of lactide (Lactide) to the electrolyte solution charge and discharge life A method for improving performance is proposed.

이상의 방법들은 전지의 수명 성능을 개선하기 위해서 소량의 유기물 또는 무기물을 첨가하므로 음극 표면에 적절한 피막(SEI: Solid Electrolyte Interface)을 형성시키는 방법을 사용하고 있다. 그러나 이러한 방법들에서는 첨가되는 화합물 고유의 전기화학적 특성에 따라 전지의 초기 충방전시 그 화합물이 전지 음극인 카본과 상호작용하여 분해되거나 불안정한 피막을 형성하여, 그 결과로 전자내 이온 이동성이 저하되고, 전지 내부에 기체를 발생시키며, 내압을 상승시킴으로써 오히려 전지의 수명 성능 및 용량을 악화시키는 문제점이 있었다.The above methods use a method of forming an appropriate film (SEI: Solid Electrolyte Interface) on the surface of a negative electrode because a small amount of organic or inorganic material is added to improve battery life performance. In these methods, however, depending on the intrinsic electrochemical properties of the added compound, the compound interacts with carbon, which is the battery's negative electrode, to form a decomposed or unstable film during initial charging and discharging of the battery, resulting in a decrease in ion mobility in the electrons. By generating gas inside the battery and increasing the internal pressure, there was a problem of worsening the life performance and capacity of the battery.

본 발명의 목적은 상기와 같은 종래 기술의 문제점을 극복하는 것으로, 유기용매 및 리튬염으로 이루어진 전지용 비수전해액에 특정의 페닐술폰(Phenyl sulfone)류 화합물을 첨가함으로써 전지의 충방전 효율 및 저온 성능의 감소없이 충방전 수명 성능을 더욱 향상시킬 수 있는 전지용 비수전해액을 제공하는 것이다.An object of the present invention is to overcome the problems of the prior art as described above, by adding a specific phenyl sulfone compound to the battery non-aqueous electrolyte consisting of an organic solvent and lithium salt of the charge and discharge efficiency and low temperature performance of the battery It is to provide a non-aqueous electrolyte for batteries that can further improve the charge and discharge life performance without reduction.

즉, 본 발명은 유기용매 및 리튬염으로 이루어진 전지용 비수전해액에 있어서, 하기 화학식 1의 페닐술폰 화합물을 포함하는 것을 특징으로 하는 전지용 비수전해액을 제공하는 것이다.That is, the present invention provides a battery non-aqueous electrolyte comprising a phenyl sulfone compound of formula (1) in a battery non-aqueous electrolyte consisting of an organic solvent and a lithium salt.

상기 식에서, R 및 R'은 H 또는 탄소수가 1 내지 4인 알킬기이다.Wherein R and R 'are H or an alkyl group having 1 to 4 carbon atoms.

도 1은 본 발명에 따른 전해액을 사용하는 전지와 기본 전해액의 충방전 수명 성능을 비교한 그래프이다.1 is a graph comparing charge and discharge life performance of a battery using an electrolyte according to the present invention and a basic electrolyte.

이하, 본 발명을 첨부 도면을 참조하여 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

본 발명의 전지용 비수전해액은 결정질 흑연 또는 리튬 금속을 음극으로 사용하고, 리튬 금속산화물을 양극으로 사용하는 리튬이온 2차 전지에서 전지의 초기 충방전시 음극 표면에 적절한 피막을 형성시킬 수 있는 페닐술폰 화합물을 포함하는 것을 특징으로 한다.The nonaqueous electrolyte solution for batteries of the present invention is a phenyl sulfone capable of forming an appropriate film on the surface of a negative electrode during initial charge and discharge of a battery in a lithium ion secondary battery using crystalline graphite or lithium metal as a negative electrode and lithium metal oxide as a positive electrode. It is characterized by including a compound.

전지에 사용되는 전해액은 음극을 구성하는 탄소와 반응하여 음극 표면에 엷은 막을 형성하나, 형성되는 막의 종류는 전해액에 사용되는 용매나 첨가제 등에 따라서 크게 달라져 전지 성능에 큰 영향을 미치는 것으로 알려져 있는데, 본 발명에서와 같이 상기 화학식 1로 표현되는 화합물을 전해액에 첨가할 경우 전지의 충방전 수명이 크게 증가한다.The electrolyte used in the battery reacts with the carbon constituting the negative electrode to form a thin film on the surface of the negative electrode. However, the type of the formed membrane is greatly influenced by the solvent or additive used in the electrolyte and is known to have a great effect on the battery performance. As in the invention, when the compound represented by Chemical Formula 1 is added to the electrolyte, the charge and discharge life of the battery is greatly increased.

본 발명에서 바람직하게 비수전해액 유기용매로는 환상카보네이트 화합물(Cyclic carbonate), 선형 카보네이트 화합물(Chain carbonate) 또는 이들의 혼합 유기용매를 사용하는데, 바람직한 환상 카보네이트 화합물(Cyclic carbonate)로는 에틸렌카보네이트, 프로필렌카보네이트, γ-부틸로락톤 등을 사용할 수 있다. 본 발명에서 사용가능한 선형 카보네이트 화합물(Chain carbonate)의 예는 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 메틸프로필카보네이트, 에틸메틸카보네이트, 에틸프로필카보네이트 등 및 그외에 프로필아세테이트, 메틸아세테이트, 에틸아세테이트, 부틸아세테이트, 메틸프로피온산, 에틸프로피온산, 플루오로벤젠류를 포함한다. 더욱 바람직하게는 이들 유기 용매중에서 2종 이상을 선택 혼합하여 사용하는 것이 유리하다.In the present invention, a non-aqueous electrolyte organic solvent is preferably a cyclic carbonate compound (Cyclic carbonate), a linear carbonate compound (Chain carbonate) or a mixed organic solvent thereof. , γ-butyrolactone and the like can be used. Examples of linear carbonate compounds usable in the present invention include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl methyl carbonate, ethyl propyl carbonate, and the like, and propyl acetate, methyl acetate, ethyl acetate, Butyl acetate, methyl propionic acid, ethyl propionic acid, and fluorobenzenes. More preferably, it is advantageous to select and use two or more kinds in these organic solvents.

본 발명에서 유기 용매에 첨가되는 리튬염으로는 LiPF6, LiClO4, LiAsF5, LiBF4, LiSO3CF3로 구성되는 그룹중에서 선택되는 1종 또는 2종 이상을 사용하는 것이 좋고, 이 때 리튬염의 사용 농도는 바람직하게 0.7 내지 2.0몰 범위이다. 본 발명의 전지용 비수전해액에서 리튬염의 농도가 0.7몰 미만이면 전해액의 전도도가 낮아지므로 전해액 성능이 떨어지고, 2.0몰을 초과하는 경우에는 저온에서의 점도 증가에 따라 저온 성능이 떨어지는 문제점이 발생하므로, 본 발명에서 리튬염의 함량은 상기 범위내인 것이 필수적이다.As the lithium salt added to the organic solvent in the present invention, it is preferable to use one or two or more selected from the group consisting of LiPF 6 , LiClO 4 , LiAsF 5 , LiBF 4 , and LiSO 3 CF 3 . The concentration of salt used is preferably in the range from 0.7 to 2.0 moles. In the nonaqueous electrolyte solution for batteries of the present invention, when the lithium salt concentration is less than 0.7 mol, the conductivity of the electrolyte is lowered. Thus, the electrolyte performance is lowered. When the lithium salt concentration is higher than 2.0 mol, the low temperature performance decreases due to the increase in viscosity at low temperatures. In the invention, the content of the lithium salt is essential to be in the above range.

본 발명에서 특징적으로 사용되는 상기 화학식 1의 페닐술폰류 화합물은 0.1중량% 이상 그리고 5중량% 미만으로 사용하는 것이 바람직하다. 페닐술폰 화합물의 함량이 0.1 중량% 미만이면 본 발명의 목적인 수명 성능 향상을 기대하기 어렵고, 또한 5중량%를 초과하여 사용할 경우 전지의 초기 충방전 효율과 저온 효율이 사용량 증가에 따라 감소하는 문제점이 발생한다.Phenylsulfone compounds of the general formula (1) used in the present invention is preferably used in more than 0.1% by weight and less than 5% by weight. If the content of the phenylsulfone compound is less than 0.1% by weight, it is difficult to expect the improvement in lifespan performance, which is the purpose of the present invention, and when used in excess of 5% by weight, the initial charge and discharge efficiency and low temperature efficiency of the battery decrease with increasing usage. Occurs.

본 발명의 전지용 비수전해액은 양극 활물질로 리튬 코발트산화물(LiCoO2), 리튬 코발트 니켈산화물(LiCoxNi1-xO2, 0.01<X<0.99), 리튬망간산화물을 사용하는 리튬전지에서 우수한 충방전 수명 성능을 보인다.The nonaqueous electrolyte solution for batteries of the present invention has excellent charge in lithium batteries using lithium cobalt oxide (LiCoO 2 ), lithium cobalt nickel oxide (LiCo x Ni 1-x O 2 , 0.01 <X <0.99), and lithium manganese oxide as positive electrode active materials. Discharge life performance.

본 발명의 바람직한 양상에 있어서, 전지용 비수전해액의 조성의 일례를 살펴보면, 비수전해액은 에틸렌카보네이트, 디메틸카보네이트 및 디에틸카보네이트가 2:2:1의 비율로 혼합된 용매에 용질로 LiPF6를 1몰 용해시킨 것을 기본 전해액으로 하고, 이 기본 전해액에 대하여 상기 화학식 1의 페닐술폰류 화합물을 0.1 내지 5중량% 포함한다.In a preferred aspect of the present invention, looking at an example of the composition of the battery non-aqueous electrolyte, the non-aqueous electrolyte is 1 mol of LiPF 6 as a solute in a solvent mixed with ethylene carbonate, dimethyl carbonate and diethyl carbonate in a ratio of 2: 2: 1 What melt | dissolved is used as a base electrolyte solution, and 0.1-5 weight% of phenyl sulfone compounds of the said General formula (1) is contained with respect to this base electrolyte solution.

이하, 본 발명을 실시예를 들어 더욱 상세히 설명하고자 하나 본 발명이 하기 실시예에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples.

실시예 1Example 1

에틸렌카보네이트, 디메틸카보네이트 및 디에틸카보네이트를 2:2:1의 비율로 혼합한 용매에 용질로서 LiPF6를 1몰 용해시킨 것을 기본 전해액으로 하고 이 기본 전해액에 페닐술폰(Phenyl sulfone)을 2중량% 첨가하여 최종 전해액을 수득하고, 이를 이용하여 18650 원통형 전지를 제조하였다. 이 때, 음극의 활물질로는 결정성 흑연(상품명: MCF)을, 결착제로는 불화비닐리덴수지(Ploy Vinylidene Fluoride, PVDF)를 92:8의 비율로 혼합하여 사용하였고, 양극의 활물질로는 LiCoO2를, 결착제로는 PVDF를 사용하였고, 도전체는 아세틸렌블랙을 92:4:4의 비율로 혼합하여 사용하였다. 제조된 전지의 1 사이클 충방전효율 및 -20℃ 저온 방전 효율(%)을 평가하여 그 결과를 하기 표 1에 나타내고, 충방전 수명을 평가하여 도 1에 나타내었다.1 mol of LiPF 6 was dissolved as a solute in a solvent in which ethylene carbonate, dimethyl carbonate and diethyl carbonate were mixed at a ratio of 2: 2: 1, and 2 wt% of phenyl sulfone was added to the basic electrolyte. Was added to obtain a final electrolyte, to prepare an 18650 cylindrical cell. In this case, crystalline graphite (trade name: MCF) was used as an active material of the negative electrode, and vinylidene fluoride (Ploy Vinylidene Fluoride, PVDF) was used as a binder in a ratio of 92: 8, and LiCoO was used as an active material of the positive electrode. 2 , PVDF was used as a binder, and the conductor was used by mixing acetylene black in the ratio of 92: 4: 4. 1 cycle charge and discharge efficiency of the produced battery and -20 ℃ low temperature discharge efficiency (%) was evaluated and the results are shown in Table 1, and the charge and discharge life is shown in Figure 1 to evaluate.

실시예 2Example 2

양극활물질로 LiCo0.2Ni0.8O2를 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후 동일한 방법으로 전지성능을 평가하여 그 결과를 하기 표 1 및 도 1에 함께 나타내었다.Except for using LiCo 0.2 Ni 0.8 O 2 as the positive electrode active material was carried out in the same manner as in Example 1 and the battery performance was evaluated in the same manner and the results are shown in Table 1 and Figure 1 together.

실시예 3Example 3

첨가제인 페닐술폰을 0.5중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후, 동일한 방법으로 전지성능을 평가하여 그 결과를 하기 표 1 및 도 1에 함께 나타내었다.Except for using 0.5% by weight of the additive phenyl sulfone was carried out in the same manner as in Example 1, the battery performance was evaluated in the same manner and the results are shown in Table 1 and Figure 1 together.

실시예 4Example 4

첨가제로 4-에틸페닐 페닐술폰(4-Ethyl Phenyl Phenyl Sulfone)을 1중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후, 동일한 방법으로 전지성능을 평가하여 그 결과를 하기 표 1 및 도 1에 함께 나타내었다.Except for using 1% by weight of 4-ethylphenyl phenylsulfone (4-Ethyl Phenyl Phenyl Sulfone) as an additive was carried out in the same manner as in Example 1, and then evaluated the battery performance in the same manner as shown in Table 1 and Figure 1 is shown together.

비교예 1Comparative Example 1

첨가제인 페닐술폰을 6중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후, 동일한 방법으로 전지성능을 평가하여 그 결과를 하기 표 1 및 도 1에 함께 나타내었다.Except for using the phenyl sulfone as an additive 6% by weight was carried out in the same manner as in Example 1, the battery performance was evaluated in the same manner and the results are shown in Table 1 and Figure 1 together.

비교예 2Comparative Example 2

페닐 술폰을 첨가하지 않은 기본 전해액을 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후, 동일한 방법으로 전지성능을 평가하여 그 결과를 하기 표 1 및 도 1에 함께 나타내었다.Except for using the basic electrolyte solution without the addition of phenyl sulfone was carried out in the same manner as in Example 1, the battery performance was evaluated in the same manner and the results are shown together in Table 1 and FIG.

구 분division 초기 1 사이클 방전양/충전양(%)Initial 1 cycle discharge amount / charge amount (%) 공칭용량대비 -20℃저온 방전효율(%)-20 ℃ low temperature discharge efficiency (%) relative to nominal capacity 실시예 1Example 1 93.0%93.0% 80.4%80.4% 실시예 2Example 2 93.1%93.1% 80.5%80.5% 실시예 3Example 3 92.5%92.5% 80.7%80.7% 실시예 4Example 4 92.5%92.5% 80.5%80.5% 비교예 1Comparative Example 1 90.2%90.2% 77.4%77.4% 비교예 2Comparative Example 2 92.3%92.3% 80.7%80.7%

물성 평가 방법Property evaluation method

* 충방전 수명 시험: 충방전 실험조건은 1C에서 4.1V까지 충전후 1C에서 2.75V까지 방전하는 것으로 300 사이클까지 실시하였다 (25℃의 항온화)* Charging and discharging life test: Charging and discharging test conditions were conducted up to 300 cycles by charging from 1C to 4.1V and discharging from 1C to 2.75V (incubation at 25 ° C).

*저온성능시험: 0.2C에서 4.1V까지 충전시켜 -20℃에서 16시간 방치후 0.2C에서 2.75V까지 방전시킬 경우의 용량 감소를 측정하였다.* Low temperature performance test: Capacity reduction when charged to 0.2V at 4.1C and discharged at 0.2C to 2.75V after 16 hours at -20 ° C was measured.

상기 표 1 및 도 1의 결과를 통해서 확인되는 바와 같이, 본 발명의 전지용 비수전해액을 사용하는 경우 충방전 효율 및 저온방전 효율의 감소 없이, 전지의 충방전 수명성능을 크게 향상시킬 수 있었다. 또한, 비교예 1에 제시한 바와 같이 페닐술폰의 첨가량이 본 발명에서 한정한 5중량%를 초과할 경우 전지의 초기 충방전 효율과 저온 효율이 오히려 감소됨을 확인할 수 있다.As confirmed through the results of Table 1 and FIG. 1, when the nonaqueous electrolyte solution for batteries of the present invention was used, the charge and discharge life performance of the battery could be greatly improved without decreasing the charge and discharge efficiency and the low temperature discharge efficiency. In addition, as shown in Comparative Example 1 it can be seen that the initial charge and discharge efficiency and low temperature efficiency of the battery is rather reduced when the addition amount of phenyl sulfone exceeds 5% by weight defined in the present invention.

Claims (4)

유기용매 및 리튬염으로 이루어진 전지용 비수전해액에 있어서, 하기 화학식 1의 페닐술폰 화합물을 포함하는 것을 특징으로 하는 전지용 비수전해액.A nonaqueous electrolyte solution for batteries comprising an organic solvent and a lithium salt, wherein the nonaqueous electrolyte solution for a battery comprises a phenyl sulfone compound represented by the following general formula (1). [화학식 1][Formula 1] 단, R 및 R'은 H 또는 탄소수 1 내지 4의 알킬기이다.Provided that R and R 'are H or an alkyl group having 1 to 4 carbon atoms. 제 1항에 있어서, 상기 페닐술폰 화합물의 함량이 전체 비수전해액에 대하여 0.1~5중량%인 것을 특징으로 하는 전지용 비수전해액.The nonaqueous electrolyte solution for batteries according to claim 1, wherein the content of the phenylsulfone compound is 0.1 to 5% by weight based on the total nonaqueous electrolyte. 제 1항에 있어서, 상기 유기용매는 에틸렌카보네이트, 프로필렌카보네이트, γ-부틸로락톤, 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 메틸아세테이트, 에틸아세테이트, 프로필아세테이트, 메틸프로피온산, 에틸프로피온산, 플루오로벤젠으로 이루어진 군으로부터 선택되는 1종 또는 2종 이상인 것을 특징으로 하는 전지용 비수전해액.The method of claim 1, wherein the organic solvent is ethylene carbonate, propylene carbonate, γ-butylolactone, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl acetate, ethyl acetate, propyl acetate, Battery non-aqueous electrolyte, characterized in that one or two or more selected from the group consisting of methyl propionic acid, ethyl propionic acid, fluorobenzene. 제 1항에 있어서, 상기 리튬염은 LiPF6, LiClO4, LiAsF5, LiBF4, LiCF3SO3로 구성되는 군으로부터 선택되는 1종 또는 2종 이상이고, 그 첨가량이 0.7 내지 2.0몰인 것을 특징으로 하는 전지용 비수전해액.According to claim 1, wherein the lithium salt is one or two or more selected from the group consisting of LiPF 6 , LiClO 4 , LiAsF 5 , LiBF 4 , LiCF 3 SO 3 , characterized in that the addition amount is 0.7 to 2.0 mol. A nonaqueous electrolyte solution for batteries.
KR1019990060379A 1999-12-22 1999-12-22 Nonaqueous battery electrolyte KR100860441B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990060379A KR100860441B1 (en) 1999-12-22 1999-12-22 Nonaqueous battery electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990060379A KR100860441B1 (en) 1999-12-22 1999-12-22 Nonaqueous battery electrolyte

Publications (2)

Publication Number Publication Date
KR20010057369A true KR20010057369A (en) 2001-07-04
KR100860441B1 KR100860441B1 (en) 2008-09-25

Family

ID=19628109

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990060379A KR100860441B1 (en) 1999-12-22 1999-12-22 Nonaqueous battery electrolyte

Country Status (1)

Country Link
KR (1) KR100860441B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004813A1 (en) * 2005-07-01 2007-01-11 Lg Chem, Ltd. Additive for nonaqueous electrolyte and secondary battery using the same
US11637310B2 (en) 2017-08-16 2023-04-25 Samsung Electronics Co., Ltd. Lithium secondary battery including sulfone-based additive

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR830001195B1 (en) * 1979-12-06 1983-06-21 고다게 다다시 Manufacturing method of thermoplastic resin composition with excellent heat resistance
KR830001325B1 (en) * 1980-03-19 1983-07-09 미쓰이도오아쓰가가꾸가부시끼가이샤 Method for preparing bisphenol sulfone derivative
JP3396990B2 (en) * 1995-03-02 2003-04-14 日本電池株式会社 Organic electrolyte secondary battery
KR0153175B1 (en) * 1995-09-12 1998-12-01 김은영 Bis phenols polymer for dentistry
JP2000348763A (en) * 1999-06-07 2000-12-15 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolytic solution for secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004813A1 (en) * 2005-07-01 2007-01-11 Lg Chem, Ltd. Additive for nonaqueous electrolyte and secondary battery using the same
US7910249B2 (en) 2005-07-01 2011-03-22 Lg Chem, Ltd. Additive for nonaqueous electrolyte and secondary battery using the same
US11637310B2 (en) 2017-08-16 2023-04-25 Samsung Electronics Co., Ltd. Lithium secondary battery including sulfone-based additive

Also Published As

Publication number Publication date
KR100860441B1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
KR20040043993A (en) An electrolyte for a lithium ion battery and a lithium ion battery comprising the same
KR100328151B1 (en) Nonaqueous Battery Electrolyte
KR100370387B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100860441B1 (en) Nonaqueous battery electrolyte
KR100370384B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100328153B1 (en) Nonaqueous Battery Electrolyte
KR100328152B1 (en) Nonaqueous Battery Electrolyte
KR100510869B1 (en) Nonaqueous Electrolyte Battery and secondary battery comprising the electrolyte
KR100642435B1 (en) Nonaqueous Electrolyte for Battery
KR100534011B1 (en) Nonaqueous Electrolyte for Battery and Secondary Battery comprising the Electrolyte
KR100370385B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370386B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370389B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100510865B1 (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR100406480B1 (en) Nonaqueous electrolyte battery
KR100370383B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100546781B1 (en) Nonaqueous electrolyte battery
KR20010055830A (en) Nonaqueous battery electrolyte
KR100572284B1 (en) Non-aqueous electrolyte for lithium battery
KR100591580B1 (en) Non-aqueous electrolyte for Lithium battery
KR100511519B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte
KR100534010B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte
KR100510863B1 (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR100642434B1 (en) Nonaqueous electrolyte battery
KR100370388B1 (en) Non-aqueous electrolyte solution for lithium battery

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
E801 Decision on dismissal of amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20060329

Effective date: 20070529

Free format text: TRIAL NUMBER: 2006101002778; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20060329

Effective date: 20070529

J2X1 Appeal (before the patent court)

Free format text: APPEAL AGAINST DECISION TO DECLINE REFUSAL

Free format text: TRIAL NUMBER: 2007201006171; APPEAL AGAINST DECISION TO DECLINE REFUSAL

J302 Written judgement (patent court)

Free format text: JUDGMENT (PATENT COURT) FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20070706

Effective date: 20080530

Free format text: TRIAL NUMBER: 2007201006171; JUDGMENT (PATENT COURT) FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20070706

Effective date: 20080530

J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20080630

Effective date: 20080730

Free format text: TRIAL NUMBER: 2008131000024; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20080630

Effective date: 20080730

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120823

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130827

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140822

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150820

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170809

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190822

Year of fee payment: 12