KR20010053931A - High Strength Mn-Zn-Ca based alloys - Google Patents

High Strength Mn-Zn-Ca based alloys Download PDF

Info

Publication number
KR20010053931A
KR20010053931A KR1019990054499A KR19990054499A KR20010053931A KR 20010053931 A KR20010053931 A KR 20010053931A KR 1019990054499 A KR1019990054499 A KR 1019990054499A KR 19990054499 A KR19990054499 A KR 19990054499A KR 20010053931 A KR20010053931 A KR 20010053931A
Authority
KR
South Korea
Prior art keywords
alloy
strength
elongation
alloys
existing
Prior art date
Application number
KR1019990054499A
Other languages
Korean (ko)
Other versions
KR100343124B1 (en
Inventor
임수근
엄정필
허보영
Original Assignee
임수근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임수근 filed Critical 임수근
Priority to KR1019990054499A priority Critical patent/KR100343124B1/en
Publication of KR20010053931A publication Critical patent/KR20010053931A/en
Application granted granted Critical
Publication of KR100343124B1 publication Critical patent/KR100343124B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: An alloy is provided which has superior ordinary temperature strength and elongation by adding Ca to a Mg-Zn alloy. CONSTITUTION: The high strength Mg-Zn-Ca alloy comprises 5.0 to 6.5 wt.% of Zn, 0.1 to 0.5 wt.% of Ca and a balance of Mg. The tensile strength and elongation of the Mg-Zn-Ca alloy are much more increased compared to a Mg-6 wt.% Zn binary alloy due to grain micronization by addition of Ca according to the increase of an amount of Ca. On the contrary, the strength and elongation of the Mg-Zn-Ca alloy are decreased since a compound formed induces brittle fracture when the amount of Ca becomes 0.5 wt.% or more. Furthermore, the Mg-Zn-Ca alloy represents the similar to or more ordinary temperature tensile properties than an existing typical a Mg-Zn alloy of ZK61 and ZC63 alloys. The Mg-Zn-Ca alloy is suitable for a structural material of an automobile, airplane, etc. due to its light weight and can be used as a substitutional material for an existing Mg alloy structural material since the Mg-Zn-Ca alloy has the almost similar strength to an existing Mg-Zn-Zr alloy which represents the highest strength among the currently known Mg alloys and the Mg-Zn-Ca alloy is profitable in the aspects of production cost.

Description

고강도 Mg-Zn-Ca계 합금{High Strength Mn-Zn-Ca based alloys}High Strength Mn-Zn-Ca based alloys

본 발명은 고강도 Mg-Zn-Ca계 합금에 관한 것으로서, 더욱 상세하게는 Mg-Zn계 합금에 Ca를 첨가하여 상온강도 및 연신율이 우수한 합금에 관한 것이다.The present invention relates to a high strength Mg-Zn-Ca-based alloy, and more particularly, to an alloy having excellent room temperature strength and elongation by adding Ca to the Mg-Zn-based alloy.

현재 새로운 수송기기용 구조재료개발의 목표는 경량화에 의한 연비감소와 환경문제 해결에 있는 바, 이에 가장 적합한 Mg 합금의 사용이 최근 급격히 증가하고 있다.Currently, the goal of the development of new structural materials for transport equipment is to reduce fuel consumption and environmental problems due to light weight, and the use of the most suitable Mg alloy has recently increased rapidly.

이중 대표적 고강도 Mg 합금인 ZK(Mg-Zn-Zr)계는 지르코늄 첨가로 인한 결정립 미세화 효과로 인해 현재 개발·상용화된 합금 중에서 상온강도가 가장 우수한 합금계로 알려져 있다.Among them, ZK (Mg-Zn-Zr) system, which is a representative high strength Mg alloy, is known as the alloy system having the best room temperature strength among the alloys currently developed and commercialized due to the grain refinement effect due to the addition of zirconium.

또 다른 Mg-Zn계 합금으로서, 제 3원소로 희토류 금속을 첨가하여 결정립 미세화 시켜 고온강도를 향상시킨 ZE(Mg-Zn-RE)계 합금이 개발되어 실용화되어 있다.As another Mg-Zn-based alloy, a ZE (Mg-Zn-RE) -based alloy having improved high temperature strength by adding a rare earth metal as a third element to refine grains has been developed and put into practical use.

그리고, Mg-Zn 합금에 Cu 첨가한 ZC(Mg-Zn-Cu)계 합금도 개발되어 있다.In addition, a ZC (Mg-Zn-Cu) -based alloy in which Cu is added to the Mg-Zn alloy has also been developed.

그러나, 이중 Zr을 첨가한 합금은 현저한 결정립 미세화에 의해 강도 및 연신율은 증가하지만, Zr의 높은 융점으로 인하여 생산비가 증가되는 문제점이 있다.However, the alloy added with double Zr increases the strength and elongation due to remarkable grain refinement, but there is a problem that the production cost increases due to the high melting point of Zr.

그리고, Mg-Zn-Re계 합금이나 Mg-Zn-Cu계 합금의 경우는 비교적 최근에 개발된 합금으로서, 고온강도 특성은 우수하다고 알려져 있으나, 상온 강도 특성은 Mg-Zn-Zr합금에 미치지 못하는 문제점이 있다.In addition, Mg-Zn-Re-based alloys and Mg-Zn-Cu-based alloys are relatively recently developed alloys, and are known to have excellent high temperature strength properties, but the room temperature strength characteristics are inferior to those of Mg-Zn-Zr alloys. There is a problem.

이에 본 발명자는 이미 개발되어 실용화되어 있는 Mg-Zn-Zr(ZK)계 및 Mg-Zn-RE(ZE)계 합금과 상온 강도 및 연신율이 동등하거나 그 이상인 Mg합금을 개발하고자 노력한 결과, 현재까지 개발되어 있지 않은 합금원소로서 Ca을 첨가한 결과 우수한 상온 강도 및 연신율을 가짐을 알게되어 본 발명을 완성하게 되었다.Accordingly, the present inventors have made efforts to develop Mg alloys having the same or higher strength and elongation at room temperature and Mg-Zn-Zr (ZK) -based and Mg-Zn-RE (ZE) -based alloys that have been developed and put into practical use. As a result of adding Ca as an alloy element that has not been developed, it has been found to have excellent room temperature strength and elongation, thereby completing the present invention.

본 발명은 상온 강도가 우수하고 연신율이 우수한 Mg-Zn-Ca계 합금을 제공하는 데 그 목적이 있다.An object of the present invention is to provide an Mg-Zn-Ca-based alloy having excellent room temperature strength and excellent elongation.

이와같은 목적을 달성하기 위한 본 발명의 Mg-Zn-Ca계 합금은 Zn 5.0∼6.5중량%, Ca 0.1∼0.5중량% 및 그 나머지 Mg로 이루어진 것임을 그 특징으로 한다.Mg-Zn-Ca alloy of the present invention for achieving the above object is characterized by consisting of 5.0 to 6.5% by weight of Zn, 0.1 to 0.5% by weight of Ca and the remaining Mg.

본 발명은 Mg-Zn계 합금에 Ca를 첨가하여 조성된 합금에 관한 것으로서, Zn의 첨가량은 5,0∼6.5중량%인 것이 바람직하다.The present invention relates to an alloy formed by adding Ca to an Mg-Zn-based alloy, and the amount of Zn added is preferably 5,0 to 6.5% by weight.

일반적으로 Zn은 고용강화에 의한 강도 향상을 위해 첨가되는 것으로서, 그 첨가량이 5.0중량% 미만이면 적은 Zn 함량에 따른 강도 저하 및 열처리 효과의 감소 등의 문제가 있고 6.5중량% 초과면 공정상의 정출에 의해 재료가 취약해지는 문제가 발생될 수 있다.Generally, Zn is added to improve strength by solid solution strengthening. If the amount is less than 5.0% by weight, there is a problem such as a decrease in strength due to the small amount of Zn content and a decrease in heat treatment effect. The problem of weakening of the material may occur.

한편, Ca는 결정립 미세화에 의한 강도 증가 및 가공성 증가 등의 역할을 하는 원소로서, 그 첨가량이 0.1중량% 미만이면 Ca 첨가 효과가 적으므로 조대한 결정립에 의한 강도 저하 및 취약한 문제가 있고, 0.5중량% 초과면 Ca 함유 화합물의 생성에 의해 재료가 적은 충격에도 파괴되는 취약성을 나타내는 문제가 있다.On the other hand, Ca is an element that plays a role of increasing the strength and workability due to the refinement of the grains, and when the addition amount is less than 0.1% by weight, the effect of Ca addition is small, so there is a problem of strength decrease and weakness due to coarse grains, and 0.5 weight If it is more than%, there is a problem that the material exhibits a fragility that is destroyed even with a small impact by the production of Ca-containing compounds.

이와같은 조성의 합금을 제조하는 방법을 상세히 설명하면 다음과 같다.Referring to the method for producing an alloy of such a composition in detail as follows.

합금 제조에는 순 Mg(순도 99.8%)과 Zn(순도 99.9%), 그리고 Mg-15wt%Ca(Ca의 순도는 99.9%) 모합금을 이용하여 제조한다.The alloy is prepared using pure Mg (purity 99.8%), Zn (purity 99.9%), and Mg-15 wt% Ca (purity of Ca 99.9%).

합금 용해는 전기저항로를 이용하여 아르곤 가스 분위기로 행하며, 중력금형주조한다. 이때 Ar 가스는 용해시에는 0.4ℓ/분, 주조시에는 0.8ℓ/분을 흘려 주며, 용해 온도는 740℃로 하고, 720℃에서 1시간 유지한 다음 주조한다.The alloy is melted in an argon gas atmosphere using an electric resistance furnace and cast in a gravity mold. At this time, Ar gas flows 0.4 L / min at the time of melting and 0.8 L / min at the time of casting, and the melting temperature is set at 740 ° C. and maintained at 720 ° C. for 1 hour before casting.

이하, 본 발명을 실시예에 의거하여 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples, but the present invention is not limited by the Examples.

본 실시예에서,In this embodiment,

인장 특성 평가를 위한 인장시험편의 제조는 평행부 길이 15.2mm, 표점거리 12.6mm, 두께 2mm, 평행부 폭이 5mm인 판상형 시험편으로 하였으며, 시험편 표면부의 균일성을 유지하기 위해 표면부를 정밀연마하여 두께오차를 1/100로 하였다.The tensile test piece for the evaluation of tensile properties was made of a plate-shaped test piece having a parallel part length of 15.2 mm, a gage distance of 12.6 mm, a thickness of 2 mm, and a parallel part width of 5 mm. The error was set to 1/100.

실시예 1∼4 및 비교예 1∼4Examples 1-4 and Comparative Examples 1-4

다음 표 1, 2에 나타낸 바와 같은 조성비로 상기와 같은 방법에 따라 합금을 주조하고 주방상태에 있어서 상온에서 기계적 성질을 측정하였으며, 그 결과를 다음 표 1에 나타내었다.Next, the alloys were cast according to the same method as the composition ratio as shown in Tables 1 and 2, and mechanical properties were measured at room temperature in a kitchen state, and the results are shown in Table 1 below.

합금조성Alloy composition 인장강도 (MPa)Tensile Strength (MPa) 항복강도 (MPa)Yield strength (MPa) 파단연신율(%)Elongation at Break (%) 실시예 1Example 1 Mg-6wt%Zn-0.1wt%CaMg-6wt% Zn-0.1wt% Ca 225225 7272 9.39.3 실시예 2Example 2 Mg-6wt%Zn-0.3wt%CaMg-6wt% Zn-0.3wt% Ca 255255 112112 19.819.8 실시예 3Example 3 Mg-6wt%Zn-0.5wt%CaMg-6wt% Zn-0.5wt% Ca 159159 7171 7.67.6 실시예 4Example 4 Mg-6wt%Zn-0.7wt%CaMg-6wt% Zn-0.7wt% Ca 161161 6969 7.57.5 비교예 1Comparative Example 1 Mg-6wt%ZnMg-6wt% Zn 214214 9292 8.98.9

한편, T6열처리한 시험편의 상온 기계적 성질을 측정하여 다음 표 2에 나타내었다.On the other hand, the room temperature mechanical properties of the T6 heat-treated test piece was measured and shown in Table 2 below.

합금조성Alloy composition 인장강도(MPa)Tensile Strength (MPa) 항복강도(MPa)Yield strength (MPa) 파단연신율(%)Elongation at Break (%) 실시예 1Example 1 Mg-6wt%Zn-0.1wt%CaMg-6wt% Zn-0.1wt% Ca 283283 180180 7.57.5 실시예 2Example 2 Mg-6wt%Zn-0.3wt%CaMg-6wt% Zn-0.3wt% Ca 276276 174174 7.27.2 실시예 3Example 3 Mg-6wt%Zn-0.5wt%CaMg-6wt% Zn-0.5wt% Ca 191191 111111 5.15.1 비교예 2Comparative Example 2 Mg-6wt%Zn-0.8wt%ZrMg-6wt% Zn-0.8wt% Zr 270270 180180 55 비교예 3Comparative Example 3 Mg-6wt%Zn-3wt%Cu-0.5wt%MnMg-6wt% Zn-3wt% Cu-0.5wt% Mn 240240 145145 55 비교예 4Comparative Example 4 Mg-6wt%Zn-3wt%RE-0.7wt%ZrMg-6wt% Zn-3wt% RE-0.7wt% Zr 300300 190190 1010

상기 표 1 및 2에 나타낸 바와 같이 Ca량이 증가함에 따라 Ca 첨가에 의한 결정립 미세화 효과에 의해 인장강도 및 연신율은 Mg-6wt.%Zn 2원계 합금에 비해 많이 증가함을 알 수 있다. 그러나, Ca의 량이 0.5wt% 이상이 되면 생성되는 화합물이 취성파괴를 유발하므로 오히려 강도와 연신율은 감소하는 결과를 보였다. 또한, 현재까지 알려진 대표적인 Mg-Zn계 합금인 ZK61(비교예 1) 및 ZC63 합금(비교예 3)과 비슷한 수준이거나 그 이상의 상온 인장특성을 나타냄을 알 수 있다.As shown in Tables 1 and 2, it can be seen that the tensile strength and elongation are much increased compared to Mg-6wt.% Zn binary alloy by the grain refinement effect by Ca addition. However, when the amount of Ca is more than 0.5wt%, the resulting compound causes brittle fracture, so the strength and elongation were decreased. In addition, it can be seen that at room temperature tensile properties similar to or higher than the representative Mg-Zn-based alloys ZK61 (Comparative Example 1) and ZC63 alloy (Comparative Example 3) known to date.

이상에서 상세히 설명한 바와 같이, 본 발명의 Mg-Zn-Ca계 합금은 경량으로서 자동차, 항공기 등의 수송기기의 구조재료로서 적합하며, 현재 알려진 Mg 합금 중 최고강도를 나타내는 Mg-Zn-Zr계 합금과 거의 비슷한 수준이며, 생산비 측면에서 유리하므로 기존 Mg 합금 구조재료의 대체품으로 적용 가능하다.As described in detail above, the Mg-Zn-Ca-based alloy of the present invention is lightweight and suitable as a structural material of transport equipment such as automobiles, aircrafts, etc., Mg-Zn-Zr-based alloys showing the highest strength among the currently known Mg alloys It is almost the same level and advantageous in terms of production cost, so it can be applied as a substitute for the existing Mg alloy structural material.

Claims (1)

Zn 5.0∼6.5중량%, Ca 0.1∼0.5중량% 및 그 나머지 Mg로 이루어진 고강도 Mg-Zn-Ca계 합금.A high-strength Mg-Zn-Ca-based alloy consisting of Zn 5.0 to 6.5 wt%, Ca 0.1 to 0.5 wt%, and the remaining Mg.
KR1019990054499A 1999-12-02 1999-12-02 High Strength Mn-Zn-Ca based alloys KR100343124B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990054499A KR100343124B1 (en) 1999-12-02 1999-12-02 High Strength Mn-Zn-Ca based alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990054499A KR100343124B1 (en) 1999-12-02 1999-12-02 High Strength Mn-Zn-Ca based alloys

Publications (2)

Publication Number Publication Date
KR20010053931A true KR20010053931A (en) 2001-07-02
KR100343124B1 KR100343124B1 (en) 2002-07-05

Family

ID=19623221

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990054499A KR100343124B1 (en) 1999-12-02 1999-12-02 High Strength Mn-Zn-Ca based alloys

Country Status (1)

Country Link
KR (1) KR100343124B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435325B1 (en) * 2001-12-27 2004-06-10 현대자동차주식회사 High Strength and Heat Resistant Mg-Zn Alloy and Its Preparation Method
KR100681409B1 (en) * 2005-01-26 2007-02-09 김영희 A magnesium alloy composition for manufacturing alkaline reducing water, a method for the same and a method for producing alkaline reducing water by using the same
CN100340308C (en) * 2005-12-22 2007-10-03 上海交通大学 Bio-absorbable Mg-Zn-Fe three-elements magnesium alloy material
CN113388792A (en) * 2021-06-29 2021-09-14 江西理工大学 Biomedical amorphous magnesium alloy powder, composite material and preparation process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116546B2 (en) * 1988-09-05 1995-12-13 健 増本 High strength magnesium base alloy
JP3204572B2 (en) * 1993-06-30 2001-09-04 株式会社豊田中央研究所 Heat resistant magnesium alloy
JPH0820835A (en) * 1994-07-08 1996-01-23 Suzuki Motor Corp Mg alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435325B1 (en) * 2001-12-27 2004-06-10 현대자동차주식회사 High Strength and Heat Resistant Mg-Zn Alloy and Its Preparation Method
KR100681409B1 (en) * 2005-01-26 2007-02-09 김영희 A magnesium alloy composition for manufacturing alkaline reducing water, a method for the same and a method for producing alkaline reducing water by using the same
CN100340308C (en) * 2005-12-22 2007-10-03 上海交通大学 Bio-absorbable Mg-Zn-Fe three-elements magnesium alloy material
CN113388792A (en) * 2021-06-29 2021-09-14 江西理工大学 Biomedical amorphous magnesium alloy powder, composite material and preparation process

Also Published As

Publication number Publication date
KR100343124B1 (en) 2002-07-05

Similar Documents

Publication Publication Date Title
US9017604B2 (en) Magnesium alloys containing rare earths
JP2604670B2 (en) High strength magnesium alloy
US8454766B2 (en) Extruded material of a free-cutting aluminum alloy excellent in embrittlement resistance at a high temperature
JPH0625790A (en) High-strength magnesium alloy
CA2423459A1 (en) High strength magnesium alloy and its preparation method
RU2165995C1 (en) Highly string aluminium-based alloy and product made of said alloy
JPH0841576A (en) High strneght magnesium alloy and heat treatment for magnesium alloy casting
CA2366610A1 (en) High strength creep resistant magnesium alloy
KR100343124B1 (en) High Strength Mn-Zn-Ca based alloys
JPH07122115B2 (en) High strength magnesium alloy containing gadolinium and samarium
JPH06279905A (en) Superplastic magnesium alloy
JPH0317890B2 (en)
EP0494900B1 (en) Strontium-magnesium-aluminum master alloy
JP2007327115A (en) High-strength free-cutting aluminum alloy superior in toughness
US3482968A (en) Titanium base alloys of high strength at atmospheric and elevated temperatures
US4194908A (en) Magnesium alloys
JPH07122114B2 (en) High strength magnesium alloy containing gadolinium
JPH09316586A (en) Magnesium alloy with heat resistance and wear resistance
JPS6328840A (en) Aluminum alloy for die casting having high toughness
JPS6024169B2 (en) magnesium alloy
JPH0649572A (en) High strength zinc alloy for die casting and zinc alloy die-cast parts
KR100343123B1 (en) High Strength and High Corrosion Resistance Mg Alloy for casting
JPH0649578A (en) High-strength magnesium alloy
JPH0823057B2 (en) Superplastic magnesium alloy
JPH0823058B2 (en) Superplastic magnesium alloy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110601

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee