KR20010047231A - Hood by train tunnel - Google Patents
Hood by train tunnel Download PDFInfo
- Publication number
- KR20010047231A KR20010047231A KR1019990051348A KR19990051348A KR20010047231A KR 20010047231 A KR20010047231 A KR 20010047231A KR 1019990051348 A KR1019990051348 A KR 1019990051348A KR 19990051348 A KR19990051348 A KR 19990051348A KR 20010047231 A KR20010047231 A KR 20010047231A
- Authority
- KR
- South Korea
- Prior art keywords
- tunnel
- hood
- pressure waves
- micro
- train
- Prior art date
Links
- 230000000694 effects Effects 0.000 abstract description 5
- 230000000452 restraining effect Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 10
- 238000009423 ventilation Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 241001482590 Oreamnos Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F1/00—Ventilation of mines or tunnels; Distribution of ventilating currents
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/14—Layout of tunnels or galleries; Constructional features of tunnels or galleries, not otherwise provided for, e.g. portals, day-light attenuation at tunnel openings
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F7/00—Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
Description
본 발명은 철도터널의 미기압파 저감용 통풍공형 후드에 관한 것으로, 더욱 상세하게는 열차의 터널진입시 발생되는 미기압파의 저감수단으로, 터널의 입구측에 통풍공형 후드를 형성하여 미기압파를 현격히 저감되도록하므로서 터널 내공단면적을 최적으로 수행할 수 있도록 한 철도터널 미기압파 저감용 통풍공형 후드에 관한 것이다.The present invention relates to a ventilated hood for reducing micro-pressure waves in a railway tunnel. More particularly, the ventilated hood for reducing a micro-pressure wave generated when entering a tunnel of a train is provided. The present invention relates to a ventilated hood for reducing a micro-pressure wave in a railway tunnel, so that the tunnel internal area can be optimally reduced.
일반적으로, 철제의 궤도를 부설하고, 그 위에 철도차량을 운전하여 여객 및 화물을 운반하는 철도는 급속한 산업발전에 발맞쳐 점차적으로 고속화되는 추세에 있는바,In general, railways that install railroad tracks and drive railroad cars on them to carry passengers and cargo are gradually increasing in speed with rapid industrial development.
이와같은 고속철도는 프랑스, 독일, 일본 등의 선진국에서 이미 운행되고 있으며, 알려진 바와같이 우리나라또한 경부고속철도가 2004년에 완공될 예정에 있어, 이른바 고속철도시대를 눈앞에 두고 있다.Such high-speed railways are already operating in developed countries such as France, Germany, and Japan. As is known, Korea also plans to complete the Gyeongbu high-speed railway in 2004, so that the so-called high-speed railway is in front of us.
이에, 2004년 완공을 앞두고 건설중인 고속철도는 국토의 70%가 산악지대인 우리나라의 지리적 특성에 기인되어 다수개의 교량구간과 함께 터널구간을 갖는 것인데,Therefore, the high-speed railway under construction ahead of completion in 2004 is due to the geographical characteristics of Korea, where 70% of the country is a mountainous region, and has a tunnel section along with a number of bridge sections.
여기서, 고속철도에 지니가는 터널은 고속으로 진행하는 열차가 터널의 내부로 진입할 때, 즉 터널의 입구 근처의 열차전두부 앞부분에서 압력파가 생성되는바,Here, the tunnel carried by the high-speed railway is a pressure wave generated when the train proceeding at high speed enters the inside of the tunnel, that is, in front of the head of the train near the entrance of the tunnel
이러한, 압력파는 파동의 앞에 정지하고 있는 공기를 압축하고 가속하여 음속으로 터널을 따라 전파되며, 이는 터널의 출구부분에서 팽창파로서 열차를 향하여 뒤로 반사됨과 동시에 펄스형태의 압력파가 출구로부터 주위환경인 밖을 향하여 방사된다.This pressure wave compresses and accelerates the air which is stopped in front of the wave and propagates along the tunnel at the speed of sound, which is reflected back toward the train as an expansion wave at the exit of the tunnel and at the same time the pulsed pressure wave is reflected from the exit environment. It is radiated outward.
위와같은 현상은 도 1에 도시된 바와같이 3단계로 발생되는 것으로,The above phenomenon is generated in three steps, as shown in Figure 1,
1단계에서는 고속의 열차가 터널에 진입함에 따라 압력파가 형성되고, 2단계에서는 압력파가 터널내부로 전파되어 압력파형이 변형되며, 3단계에서는 터널출구로부터 미기압파(micro pressure wave)가 방사되는 것이다.In the first stage, pressure waves are formed as the high-speed train enters the tunnel, and in the second stage, the pressure waves propagate into the tunnel and the pressure waveform is deformed. In the third stage, micro pressure waves are generated from the tunnel exit. It is radiated.
이러한 충격파는 초음속 비행기에 의해서 생성된 소닉붐처럼 강력한 소음을 발생시키게 되는데, 이러한 미기압파에 의한 저주파 진동이 주변 민가의 창문이나 문틀을 심하게 흔들게됨에 따라 이에 대한 대책마련을 요하게 되었다.These shock waves generate powerful noise like the sonic boom generated by the supersonic plane, and the low frequency vibrations caused by the micro-pressure waves vibrate the windows and door frames of the neighboring houses, requiring countermeasures.
여기서, 터널입구에 형성되는 압축파의 파형(ΔP())은 열차의 돌입속도와 선두형상, 단면비 등에 의존되는 것으로 기대되지만, 해석적인 방법으로 올바른 기준값을 얻기는 매우 곤란한 것인데,Here, the waveform of the compressed wave formed at the tunnel inlet (ΔP ( )) Is expected to depend on the inrush speed, head shape, and section ratio of the train, but it is very difficult to obtain the correct reference value analytically.
이러한 이유로 인해 수치계산 및 실험적 연구가 활발하게 진행되고 있으며, 공기음향이론(aeroacoustic theory)에 의하면 터널 출구로부터 나오는 강력한 소음의 크기는 출구에 도착하는 압축파의 압력변화에 대한 최대 시간 변화율, 즉 압축파의 파면 압력구배에 비례한다고 알려져 있어, 본 발명에서는 이에대한 터널미기압파 저감대책으로서 선로구축물쪽의 대책 중하나인 후드(터널내의 공기를 서서히 압축하기 위한 완화구간 시설물)를 터널입구에 설치하는 방법을 강구하게 되었다.For this reason, numerical calculations and experimental studies are actively conducted. According to aeroacoustic theory, the magnitude of the strong noise from the exit of the tunnel is the maximum rate of change in the pressure change of the compression wave arriving at the exit, that is, the compression. It is known that it is proportional to the wavefront pressure gradient of the wave, and in the present invention, as a countermeasure for reducing the pressure of the tunnel microwave, a hood (a relief section for slowly compressing air in the tunnel), which is one of the measures on the track structure side, is installed at the tunnel entrance. I came up with a way.
이러한 터널후드는 우리나라와 지리적 특성이 유사한 일본의 신간선에서 그 전례를 찾아볼 수 있다,Such a tunnel hood can be found in the Shinkansen of Japan, which is similar in geography to Korea.
신간선의 경우, 비교적 긴 터널의 출구에서 공기압음이 발생하여, 출구부근의 가옥이 진동됨은 물론 강한 소음으로 인한 소음공해 문제가 대두되었는데, 이러한 현상들은 슬라브궤도 적용에 의해 터널벽면의 주위 전체가 매끄럽게 구성되어 압력파의 전면이 수직(지면측)으로 형성되는 "파의 비선형 효과"에서 기인되는 것이었다.In the case of Shinkansen, air pressure is generated at the exit of a relatively long tunnel, causing the houses near the exit to vibrate as well as noise pollution due to strong noise. These phenomena smooth the entire circumference of the tunnel wall by applying the slab track. It was composed of the "nonlinear effect of the wave" which is constructed so that the front face of the pressure wave is formed vertically (ground side).
미기압파 저감대책의 원리는 터널출구에 도달한 미기압파 전면의 구배를 작게하는 것으로, 이에는 여러가지 방법이 있는데, 현재 일본의 산양(山陽) 및 동북(東北) 상월(上越)신간선에서는 터널입구에 수십 미터의 길이를 갖는 후드를 설치하는 방법이 적용되고 있다.The principle of countermeasures against air pressure is to reduce the gradient of the entire surface of the air pressure waves reaching the tunnel exit, and there are various methods. There are currently tunnels in the mountain goats and northeastern Sangwol Shinkansen in Japan. The method of installing a hood having a length of several tens of meters at the entrance is applied.
도 2a,b는 최근에 설치된 일본 신간선 터널입구 후드의 개관을 나타내었다. 이에, 도 2a는 강재구조로 설치된 후드이며, 도 2b는 반대편 터널출구로서 이 부근지역에 방사되는 미기압파를 줄이기 위한 것이다.2A and 2B show an overview of a recently installed Japanese Shinkansen tunnel inlet hood. Thus, Figure 2a is a hood installed in a steel structure, Figure 2b is to reduce the micro-pressure waves radiated to the neighboring area as the opposite tunnel exit.
도 3은 일본 산양신간선 동쪽 갱문에 설치되어 있는 49m에 달하는 최장길이의 후드이다.3 is a longest hood of 49m installed in the east gate of the Japanese Shinkansen Line.
하지만, 도 2의 a,b와 도 3에서 나타난 바와같이 본 발명의 선행기술인 일본 신간선은 열차의 진입속도가 160 - 260 km/h영역에 대한 미기압파 저감대책으로서, 터널입구 후드 벽면으로 창문을 뚫는 형태이고, 특히 이와같은 후드형태를 얻기위한 구체적 데이터( 즉, 후드의 길이, 측면개구율, 슬릿가리개의 크기 등)와 그 제원 및 미기압파의 저감효과가 입증되어 있지 않은 것이며,However, as shown in Figs. 2A and 3, and the prior art Japanese Shinkansen of the present invention, as a countermeasure for reducing the air pressure for the area of 160-260 km / h, the entrance speed of the train, the window to the tunnel entrance hood wall In particular, the specific data for obtaining such a hood shape (ie, the length of the hood, the side opening ratio, the size of the slit shield, etc.), and the reduction effect of the specifications and micropressure waves have not been proved.
더우기, 우리나라의 고속철도는 열차속도가 240 - 380 km/h에 달하며, 터널과 열차의 단면적비 및 길이에서 차이점을 갖는 것으로서, 위와같은 구체적 기술과 효과가 입증되어 있지 않은 일본의 선행기술을 적용할 수 없는 것이었다.In addition, the high-speed railway of Korea has a train speed of 240-380 km / h, and there is a difference in the cross sectional area ratio and length of the tunnel and the train. I could not.
따라서, 본 발명은 터널미기압파 저감대책으로서, 우리나라의 고속철도에 적합한 후드개발을 위해 창안된 것으로,Therefore, the present invention as a countermeasure for reducing the tunnel microwave pressure, was created for the development of a hood suitable for high-speed railway of Korea,
본 발명의 목적은 열차의 속도와 터널의 단면적 및 열차 전두부 형상을 고려하여 적합한 형상과 구조를 갖는 통풍공형 후드를 설계하므로서, 터널내로 열차의 고속진입시 발생하는 미기압파를 반감시켜, 미기압파발생에 의한 터널출구측 소음공해와 진동을 현격히 저감할 수 있도록함을 그 목적으로 한다.An object of the present invention is to design a ventilated hood having a suitable shape and structure in consideration of the speed of the train, the cross-sectional area of the tunnel, and the shape of the head of the train, thereby reducing the half-pressure wave generated during high-speed entry of the train into the tunnel. The aim is to significantly reduce noise pollution and vibration caused by the tunnel exit.
상기한 목적을 달성하기 위한 본 발명의 구체적인 수단으로는;As a specific means of the present invention for achieving the above object;
터널내 파면 압력구배의 저감과 미기압파의 대기방출을 유도하기 위해 터널형상으로서 터널의 입구에 연장구성되며 지붕부로는 다수개의 배출공이 일렬구조로서 구성되는 통풍공형 후드를 구비하므로서 달성된다.In order to reduce the wave front pressure gradient in the tunnel and to induce the atmospheric release of micro-pressure waves, it is achieved by providing a ventilated hood having a tunnel shape extending at the entrance of the tunnel and having a plurality of exhaust holes arranged in a row.
도 1은 터널 미기압파 발생과정을 보인 상태도.1 is a state diagram showing a process of generating a microbarium wave.
도 2a,b는 최근에 설치된 일본 신간선 터널입구 통풍공형 후드의 개관2A and 2B are an overview of a recently installed Japanese Shinkansen tunnel inlet ventilated hood.
도 3은 일본 산양신간선 동쪽 갱문에 설치되어 있는 49m에 달하는 최장길이의 통풍공형 후드Fig. 3 shows the longest ventilated hood of 49m installed in the east gate of the Japanese Shinkansen.
도 4는 본 발명에 따른 미기압파 저감용 통풍공형 후드의 구성도4 is a block diagram of a ventilation hood hood for reducing the air pressure wave according to the present invention
도 5는 본 발명에 따른 통풍공형 후드의 또 다른 실시예를 보인 구성도Figure 5 is a block diagram showing another embodiment of the ventilated hood according to the present invention
도 6은 도 4의 통풍공형 후드설치에 따른 미기압파 최대값의 저감분포 그래프6 is a graph showing a reduced distribution of the maximum air pressure wave values according to the ventilated hood installation of FIG. 4.
도 7은 도 5에 도시된 통풍공형 후드의 미기압파 최대산출값을 나타낸 그래프FIG. 7 is a graph showing the maximum atmospheric pressure wave calculated value of the ventilated hood shown in FIG.
도 8은 도 6,7을 통해 산출된 결과를 나타낸 표8 is a table showing the results calculated through FIGS. 6 and 7
도 9는 본 발명에 따른 통풍공형 후드를 시험하기 위한 열차모형 시험장치의 구성도9 is a block diagram of a train model test apparatus for testing a ventilated hood according to the present invention
<도면주요부위에 대한 부호의 설명><Explanation of symbols for major parts of drawing>
1 : 통풍공형 후드 11 : 본체 12 : 지붕부DESCRIPTION OF SYMBOLS 1 Ventilated hood 11 Body 12 Roof part
13 : 통풍관 121 : 배출공13: air vent 121: discharge hole
이하, 본 발명의 바람직한 실시예를 첨부도면에 의거 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 4는 본 발명에 따른 미기압파 저감용 통풍공형 후드의 구성도이고, 도 5는 본 발명에 따른 통풍공형 후드의 또 다른 실시예를 보인 구성도이다.Figure 4 is a configuration of the ventilation hood hood for reducing the air pressure wave according to the present invention, Figure 5 is a configuration diagram showing another embodiment of the ventilation hood hood according to the present invention.
도 4에 도시된 바와같이 본 발명에 따른 통풍공형 후드(1)는 철도터널의 입구측에 터널의 수직단면과 동일한 형상으로서 연장형성되며 지붕부로 다수개의 원형 배출공을 구성되는 본체(11)와, 이러한 본체의 지붕부(12)로 다수개의 원형 배출공(121)을 형성하므로서 구성되는 것이며, 도 5는 상기 도 4에 따른 통풍공형 후드에 있어, 통풍공을 수직으로 돌출구성하여 통풍관(13)을 형성한 것이다.As shown in FIG. 4, the ventilated hood 1 according to the present invention extends in the same shape as the vertical section of the tunnel at the inlet side of the railway tunnel, and has a main body 11 that is configured with a plurality of circular discharge holes as a roof. And, it is configured by forming a plurality of circular discharge holes 121 in the roof portion 12 of the main body, Figure 5 is in the ventilated hood according to Figure 4, the ventilation holes 13 by projecting the vent holes vertically ) Is formed.
여기서, 상기와 같은 본 발명에 따른 통풍공형 후드(1)의 정확한 형상과 크기를 위해 한국철도기술연구원에서 선출원된 열차모형 시험장치(도 9에 도시됨)를 적용하여 통풍공형 후드(1)의 미기압파 저감성능을 파악하였다.Here, for the accurate shape and size of the ventilated hood 1 according to the present invention as described above of the ventilated hood 1 by applying the train model test apparatus (shown in Figure 9) pre- filed from the Korea Railroad Research Institute The performance of reducing air pressure waves was investigated.
이때, 본 발명에 따른 저감 통풍공형 후드(1)는 궁극적으로 열차의 터널진입시 발생하는 압축파 전면의 구배를 초기에 완화시키고자 한 것인데,At this time, the reduced ventilated hood (1) according to the present invention is intended to initially alleviate the gradient of the front of the compression wave ultimately generated when entering the tunnel of the train,
상기한 시험장치로 적용된 차량 대 터널의 단면차단비(block ratio)는 8.88%로서, 0.5km의 길이를 갖는 슬라브궤도 터널(열차모형 시험장치에서는 1/60축척시험이므로 8.34m임.)인데, 이는 경부고속철도에 적용되는 차량과 터널을 기초로 한 것이고,The block ratio of the vehicle-to-tunnel applied to the test apparatus is 8.88%, which is a slab track tunnel having a length of 0.5 km (1/60 scale test in the train model test apparatus, which is 8.34 m). This is based on the vehicles and tunnels applied to Gyeongbu High Speed Rail,
차량의 전후부(nose)는 실제차량보다 완만한 유선형을 갖도록하고, 열차의 속도범위는 220-400 km/h의 범주내에서 수행하였으며, 열차와 터널의 단면적비, 터널의 길이와 열차의 길이 등이 일정한 상태에서 터널입구 통풍공형 후드(1)의 배출공(121) 직경과 길이를 변화시키면서 터널내의 압력변동과 터널출구에서 방사되는 미기압파를 측정하였다.The front and rear parts of the vehicle have a smoother streamline shape than the actual vehicle, and the speed range of the train is performed within the range of 220-400 km / h. The pressure fluctuations in the tunnel and the micro-pressure waves radiated from the tunnel exit were measured while changing the diameter and length of the discharge hole 121 of the tunnel inlet hood 1 in a constant state.
한편, 본 발명에서는 통풍공형 후드의 미기압파 저감성능을 산출하기 위해 아래와 같은 경험식을 만들었으며, 이는 터널과 차량의 단면비에 상관없이 적용할 수 있는 것이다.On the other hand, in the present invention, the following empirical formula was made to calculate the micro-pressure wave reduction performance of the ventilated hood, which can be applied regardless of the cross-sectional ratio of the tunnel and the vehicle.
Pmax=ㆍU3/106 P max = And U 3/10 6
여기서, Pmax는 미기압파의 최대값이고,는 미기압파의 저감계수이며, U3는 열차의 터널진입시의 속도[KM/H]이다.Where P max is the maximum value of the barometric waves, Is the reduction coefficient of the micro pressure wave, and U 3 is the speed [KM / H] when entering the tunnel of the train.
도 6은 도 4의 통풍공형 후드설치에 따른 미기압파 최대값의 저감분포 그래프로서, 이는 아무런 대책도 마련되지 않은 기존 터널의 입구측에 관통공으로서의 다수개 통풍공을 갖는 통풍공형 후드를 설치하여 터널의 출구에서 발생되는 미기압파의 측정치를 나타낸 것이고, 도 7은 도 5에 도시된 통풍공형 후드, 즉 통풍관을 돌출형성한 통풍공형 후드의 시험결과 미기압파의 최대산출값을 나타낸 그래프인데, x 축과 y축은 각,각 열차의 터널진입속도와 터널출구에서의 미기압파 최대값을 나타낸 것이다.FIG. 6 is a graph of a reduced distribution of the maximum microwave pressure values according to the installation of the ventilated hood of FIG. 4, which is provided with a ventilated hood having a plurality of vented holes as through holes at the entrance side of an existing tunnel in which no countermeasure is provided. The measurement results of the micro-pressure waves generated at the exit of the tunnel, Figure 7 is a graph showing the maximum output value of the micro-pressure waves of the ventilated hood shown in Figure 5, that is, the ventilation hood hood protruding the vent pipe The x- and y-axes represent the tunnel entry speeds of each train and the maximum value of the micropressure waves at the tunnel exit.
여기서, 도 6의 통풍공형 후드는 자체 최적길이를 실척환산값인 30m로 할 경우, 배출공(121)의 직경을 3.9m, 1.8m, 0.9m로 변화시킨 시험에 있어, 최적의 저감효율을 보인 3.9m의 직경을 갖는 배출공(121)이 지붕부(12) 길이방향에 4개로서 설치하였을때, 열차의 입구속도에 따른 미기압파의 최대값분포도을 나타낸 것이고,Here, the ventilated hood of FIG. 6 has an optimum reduction efficiency in a test in which the diameter of the discharge hole 121 is changed to 3.9 m, 1.8 m, and 0.9 m when the optimum length of the ventilated hood of FIG. 6 is 30 m. When the discharge holes 121 having a diameter of 3.9m are installed as four in the longitudinal direction of the roof part 12, the maximum value distribution of the micro-pressure waves according to the inlet speed of the train is shown.
도 7은 상기한 도 6과 같이 배출공(121)의 직경이 3.9m일 경우 통풍관(13)의 길이를 0m, 1.8m, 3.6m로 변화시킨 시험에 있어, 3.6m 일 때, 미기압파의 최대값분포를 나타내고 있다.FIG. 7 is a test for changing the length of the vent pipe 13 to 0m, 1.8m, and 3.6m when the diameter of the discharge hole 121 is 3.9m as shown in FIG. 6, when the pressure is 3.6m. The maximum value distribution of the wave is shown.
이에, 도 8은 도 6,7을 통해 산출된 결과를 나타낸 것으로, 이를 통해 확인할 수 있는 바와같이 도 6의 통풍공형 후드는 기존의 터널에 비해 25.4%의 미기압파 저감성능을 갖는 것으로 나타났고, 도 7의 통풍공형 후드는 14.6%의 저감성능으로서 상대적으로 낮은 저감성능을 갖는 것으로 나타났다.Thus, FIG. 8 shows the results calculated through FIGS. 6 and 7. As can be seen from this, the ventilated hood of FIG. 6 has a performance of reducing air pressure waves of 25.4% compared to the existing tunnel. 7, the ventilated hood of Figure 7 was shown to have a relatively low reduction performance as a reduction performance of 14.6%.
따라서, 본 발명에 따른 통풍공형 후드의 시험결과, 배출공(121)의 직경은 클수록 미기압파 저감성능이 우수하고, 통풍관(13)은 길이가 짧을수록 상대적으로 미기압파 저감성능이 향상됨을 알 수 있는 바, 이는 배출공(121)의 직경이 3.9m이고, 통풍관(13)의 길이가 0m일 경우 미기압파 저감계수가 최저값인 0.97이므로, 이러한 저감계수와 반비례하는 미기압파의 최대값이 최저치로서 나타나는 것이다.Therefore, the test results of the hood hood according to the present invention, the larger the diameter of the discharge hole 121 is excellent in the micro-pressure wave reduction performance, the shorter the length of the ventilation pipe 13 is improved the micro-pressure wave reduction performance relatively. It can be seen that, because the diameter of the discharge hole 121 is 3.9m, and the length of the ventilation pipe 13 is 0m, the micro-pressure wave reduction coefficient is 0.97, which is the lowest value, so that the micro-pressure wave is inversely proportional to this reduction coefficient. The maximum value of is shown as the lowest value.
이와같은 시험데이터에 의해 입구 통풍공형 후드(1)는 미기압파의 저감(터널내부로 전파되는 압력구배의 저감)역할을 하는 것을 알 수 있으므로 주변 민가에 미기압파의 영향을 최소화할 수 있는 것이다.It can be seen from the test data that the inlet ventilating hood 1 plays a role of reducing the micro-pressure waves (reducing the pressure gradient propagating into the tunnel), thereby minimizing the influence of the micro-pressure waves on the surrounding private houses. will be.
이상과 같이, 본 발명에 따른 철도터널의 미기압파 저감용 통풍공형 후드는 열차의 속도와 터널의 단면적 및 열차 전두부 형상을 고려하여 적합한 형상과 구조를 갖는 통풍공형 후드를 설계, 실제 고속철도의 터널에 적용할 수 있는 것이며, 특히 통풍공을 갖는 통풍공형 후드는 터널내로 열차의 고속진입시 발생하는 미기압파를 반감하는 효과를 갖는 것으로서, 미기압파발생에 의한 터널출구측 소음공해와 진동을 현격히 저감할 수 있는 것으로, 괄목할 만한 기대효과를 제공할 수 있는 것이다.As described above, the ventilated hood for reducing the micro-pressure wave of the railway tunnel according to the present invention is designed a ventilated hood having a suitable shape and structure in consideration of the speed of the train, the cross-sectional area of the tunnel and the shape of the front of the train, the tunnel of the actual high-speed railway In particular, the ventilated hood having the ventilation hole has the effect of halving the micro-pressure waves generated at the high-speed entry of the train into the tunnel. It is possible to provide remarkable expected effects.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990051348A KR100331955B1 (en) | 1999-11-18 | 1999-11-18 | Hood by train tunnel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990051348A KR100331955B1 (en) | 1999-11-18 | 1999-11-18 | Hood by train tunnel |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010047231A true KR20010047231A (en) | 2001-06-15 |
KR100331955B1 KR100331955B1 (en) | 2002-04-09 |
Family
ID=19620708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990051348A KR100331955B1 (en) | 1999-11-18 | 1999-11-18 | Hood by train tunnel |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100331955B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101480437B1 (en) * | 2013-04-16 | 2015-01-13 | 한국철도기술연구원 | Air shaft combination type hood structure |
US9291055B2 (en) * | 2013-10-21 | 2016-03-22 | Korea Railroad Research Institute | Structure for reducing tunnel micro pressure wave including air pipe |
CN111305893A (en) * | 2020-03-30 | 2020-06-19 | 中国十九冶集团有限公司 | System and method for discharging gas in horizontal guide pipe |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100449514B1 (en) * | 2002-03-02 | 2004-09-22 | 주식회사 대우엔지니어링 | Duct tunnel system |
KR100449512B1 (en) * | 2002-03-02 | 2004-09-22 | 주식회사 대우엔지니어링 | Duct tunnel system |
KR100449509B1 (en) * | 2002-03-02 | 2004-09-22 | 주식회사 대우엔지니어링 | Draft hole type train tunnel |
KR100449511B1 (en) * | 2002-03-02 | 2004-09-22 | 주식회사 대우엔지니어링 | Draft hole type train tunnel |
KR100449510B1 (en) * | 2002-03-02 | 2004-09-22 | 주식회사 대우엔지니어링 | Draft hole type train tunnel |
KR100449513B1 (en) * | 2002-03-02 | 2004-09-22 | 주식회사 대우엔지니어링 | Duct tunnel system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08135381A (en) * | 1994-11-15 | 1996-05-28 | Okada Toshio | Impact relaxation device of tunnel entrance |
-
1999
- 1999-11-18 KR KR1019990051348A patent/KR100331955B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101480437B1 (en) * | 2013-04-16 | 2015-01-13 | 한국철도기술연구원 | Air shaft combination type hood structure |
US9291055B2 (en) * | 2013-10-21 | 2016-03-22 | Korea Railroad Research Institute | Structure for reducing tunnel micro pressure wave including air pipe |
CN111305893A (en) * | 2020-03-30 | 2020-06-19 | 中国十九冶集团有限公司 | System and method for discharging gas in horizontal guide pipe |
Also Published As
Publication number | Publication date |
---|---|
KR100331955B1 (en) | 2002-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009057852A1 (en) | High-speed railway tunnel hood for reducing micro-pressure waves | |
KR100331955B1 (en) | Hood by train tunnel | |
JP3739642B2 (en) | Model experiment method of tunnel pressure wave | |
KR100449509B1 (en) | Draft hole type train tunnel | |
KR100449510B1 (en) | Draft hole type train tunnel | |
KR100422202B1 (en) | Hood by train tunnel | |
KR100449511B1 (en) | Draft hole type train tunnel | |
KR100365955B1 (en) | Hood by train tunnel | |
KR100331954B1 (en) | Hood by train tunnel | |
Schulte-Werning | Research of European railway operators to reduce the environmental impact of high-speed trains | |
KR100377553B1 (en) | Hood by train tunnel | |
KR100389164B1 (en) | model train test equipment | |
KR101284021B1 (en) | A pressure wave of tunnel inside and micro pressure wave reductions device of tunnel exit | |
KR100387520B1 (en) | Hood by train tunnel | |
KR100449512B1 (en) | Duct tunnel system | |
Saito et al. | Countermeasure for reducing micro-pressure wave emitted from railway tunnel by installing hood at the exit of tunnel | |
KR100422201B1 (en) | H00d by train tunnel | |
WO2003080997A1 (en) | Buffer plate | |
KR20020033385A (en) | Hood by train tunnel | |
KR100446644B1 (en) | Slit cover shelter by train tunnel | |
Mathew et al. | Characterization of an anechoic wind tunnel facility | |
KR100449514B1 (en) | Duct tunnel system | |
KR100449513B1 (en) | Duct tunnel system | |
KR20020033472A (en) | Hood by train tunnel | |
KR20130081891A (en) | Periodic silencing structure in the tunnel wall to reduce the micro-pressure wave in the high-speed railway tunnel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130215 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20140305 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20150306 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20160303 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20170307 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20180302 Year of fee payment: 17 |
|
FPAY | Annual fee payment |
Payment date: 20181211 Year of fee payment: 18 |