KR20010020387A - Expression of Fungicide-Binding Polypeptides in Plants for Producing Fungicide Tolerance - Google Patents

Expression of Fungicide-Binding Polypeptides in Plants for Producing Fungicide Tolerance Download PDF

Info

Publication number
KR20010020387A
KR20010020387A KR1019997010009A KR19997010009A KR20010020387A KR 20010020387 A KR20010020387 A KR 20010020387A KR 1019997010009 A KR1019997010009 A KR 1019997010009A KR 19997010009 A KR19997010009 A KR 19997010009A KR 20010020387 A KR20010020387 A KR 20010020387A
Authority
KR
South Korea
Prior art keywords
plant
fungicide
gene
polypeptide
plants
Prior art date
Application number
KR1019997010009A
Other languages
Korean (ko)
Inventor
에버하르트 암머만
어얼 버터필드
엔스 레르힐
기젤라 로렌츠
아힘 묄러
우도 라베
랄프-미하엘 슈미트
우도 콘라트
Original Assignee
스타르크, 카르크
바스프 악티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스타르크, 카르크, 바스프 악티엔게젤샤프트 filed Critical 스타르크, 카르크
Publication of KR20010020387A publication Critical patent/KR20010020387A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • C12N15/8258Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon for the production of oral vaccines (antigens) or immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 살진균제 결합 항체를 발현시킴으로써 살진균제 내성 식물을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing fungicide resistant plants by expressing fungicide binding antibodies.

Description

식물에서 살진균제 내성을 일으키기 위한 살진균제 결합 폴리펩티드의 발현{Expression of Fungicide-Binding Polypeptides in Plants for Producing Fungicide Tolerance}Expression of Fungicide-Binding Polypeptides in Plants for Producing Fungicide Tolerance}

본 발명은 식물 또는 식물 기관에서의 외생 살진균제 결합 폴리펩티드의 발현에 의한 살진균제 내성 식물의 제조 방법에 관한 것이다. 본 발명은 또한 유전자 도입 식물에서의 살진균제 결합 특성을 갖는 폴리펩티드, 항체 또는 항체의 일부를 코딩하는 해당 핵산의 용도 및 형질전환된 식물 자체에 관한 것이다.The present invention relates to a method for producing fungicide resistant plants by expression of exogenous fungicide binding polypeptides in plants or plant organs. The invention also relates to the use of the corresponding nucleic acid encoding a polypeptide, antibody or part of an antibody having fungicidal binding properties in a transgenic plant and the transformed plant itself.

유전 공학 방법은 이종 유전자의 식물의 게놈으로의 특이적 전이를 가능하게 하는 것으로 알려져 있다. 이 방법은 형질전환으로 불리우며, 그 결과 얻은 식물은 유전자 도입 식물이라 한다. 유전자 도입 식물은 현재 다양한 분야의 생물공학에 이용되고 있다. 그의 예로는 해충 저항성 식물[Vaek et al. Plant Cell 5 (1987) 159-169], 바이러스 저항성 식물[Powell et al. Science 232 (1986) 738-743] 및 오존 저항성 식물[Van Camp et al. BioTech. 12 (1994) 165-168]이 있다. 유전 공학에 의해 개선되는 품질 특성의 예로는 과실의 개선된 저장 수명[Oeller et al. Science 254 (1991) 437-439], 감자 괴경에서의 증가된 전분 생성[Stark et al. Science 242 (1992) 419], 전분 조성의 변화[Visser et al. Mol. Gen. Genet. 225 (1991) 289-296] 및 지질 조성의 변화[Voelker et al. Science 257 (1992) 72-74] 및 외부 중합체의 생성[Poirer et al. Science 256 (1992) 520-523]이 있다.Genetic engineering methods are known to enable specific transfer of heterologous genes into plants' genomes. This method is called transformation, and the resulting plant is called a transgenic plant. Transgenic plants are currently being used for biotechnology in various fields. Examples include pest resistant plants [Vaek et al. Plant Cell 5 (1987) 159-169, virus resistant plants [Powell et al. Science 232 (1986) 738-743 and ozone resistant plants [Van Camp et al. BioTech. 12 (1994) 165-168. Examples of quality characteristics improved by genetic engineering include improved shelf life of fruits [Oeller et al. Science 254 (1991) 437-439], and increased starch production in potato tubers [Stark et al. Science 242 (1992) 419], changes in starch composition [Visser et al. Mol. Gen. Genet. 225 (1991) 289-296] and changes in lipid composition [Voelker et al. Science 257 (1992) 72-74 and the production of foreign polymers [Poirer et al. Science 256 (1992) 520-523.

식물 분자 유전학 분야에서 수행되는 중요한 연구 목표는 살진균제에 대한 내성을 갖는 것을 만드는 것이다. 살진균제 내성은 시용되는 살진균제의 식물 또는 식물 기관에 대한 (유형 및 농도면에서) 개선된 적합성에 의해 특징지워진다. 이것은 여러 방법으로 수행될 수 있다. 공지된 방법은 글루포시네이트 내성(국제 공개 제8705629호)과 관련이 있는 대사 유전자, 예를 들어 패트 유전자, 또는 글리포세이트에 저항성인 에놀피루빌 쉬키메이트-3-포스페이트 신타아제의 경우(국제 공개 제9204449호)에서와 같은, 살진균제에 저항성이 있는 표적 효소를 이용하고, 또한 아세틸-CoA-카르복실라아제 억제제의 경우(미국 특허 제5162602호, 동 제5290696호)에 기재된 바와 같은, 내성 식물 세포 및 그 결과 얻은 저항성 식물의 선택을 위해 세포 및 조직 배양물에서 살진균제를 사용하는 것이다.An important research goal in the field of plant molecular genetics is to make them resistant to fungicides. Fungicide resistance is characterized by improved suitability (in terms of type and concentration) of the fungicides applied to the plants or plant organs. This can be done in several ways. Known methods are for metabolism genes associated with glufosinate resistance (International Publication No. 8705629), for example pat genes, or for enolpyruville shchimate-3-phosphate synthase resistant to glyphosate (international Using a target enzyme that is resistant to fungicides, such as in Publication No. 9204449, and also in the case of acetyl-CoA-carboxylase inhibitors (US Pat. No. 5,060,602, 5290696). The use of fungicides in cell and tissue cultures for the selection of resistant plant cells and the resulting resistant plants.

항체는 면역계의 성분으로서 단백질이다. 모든 항체의 공통 특징은 그의 공간적인, 작은 공 모양의 구조, 경쇄 및 중쇄의 구축 및 높은 특이성을 갖는 분자 및 분자 구조의 일부를 결합시키는 기본적인 능력이다(Alberts et al., in: Molekularbiologie der Zelle [Molecular Biology of the Cell], 2nd Edition 1990, VCH Verlag, ISBN 3-527-27983-0, 1198-1237). 이들 특성을 기초로 하여, 항체는 많은 작업에 이용되어 왔다. 그러한 이용은 항체가 형성되는 동물 및 인간 유기체 내에서의 항체의 이용, 즉 소위 동일 장소내 이용, 및 동일 장소외 이용, 즉 항체가 생성 세포 또는 유기체로부터 단리된 후의 그 항체의 이용으로 구분될 수 있다[Whitelam und Cockburn, TIPS Vol. 1, 8 (1996) 268-272].Antibodies are proteins as components of the immune system. A common feature of all antibodies is their basic ability to bind their spatial, small, spherical structures, the construction of light and heavy chains, and the parts of molecules and molecular structures with high specificity (Alberts et al., In: Molekularbiologie der Zelle [ Molecular Biology of the Cell, 2nd Edition 1990, VCH Verlag, ISBN 3-527-27983-0, 1198-1237. Based on these properties, antibodies have been used for many tasks. Such use may be divided into the use of the antibody in the animal and human organisms in which the antibody is formed, ie the so-called in situ use, and the out-of-situ use, ie the use of the antibody after the antibody is isolated from the producing cell or organism. Whitelam und Cockburn, TIPS Vol. 1, 8 (1996) 268-272.

매우 특이적인 항원에 대한 항체의 공급원으로서의 체세포 하이브리드 세포주(하이브리도마)의 사용은 쾰러 및 밀스타인(Kohler and Milstein)에 의해 수행된 연구에 기초한 것이다[Nature 256 (1975) 495-497]. 이 방법은 균일 구조를 가지며 세포 융합에 의해 생성되는 소위 모노클로날 항체가 형성되도록 한다. 면역화된 생쥐의 비장 세포는 생쥐 골수종 세포와 융합된다. 이것은 무한히 증식하는 하이브리도마 세포를 제공한다. 동시에, 그 세포는 생쥐를 면역화시켰던 항원에 대한 특이적 항체를 분비한다. 비장 세포는 항체 생성의 가능성을 제공하는 반면, 골수종 세포는 항체의 비제한적인 성장 및 연속적인 분비 능력에 기여한다. 클론인 각각의 하이브리도마 세포가 단일 B 세포로부터 유래되기 때문에, 생성된 모든 항체 분자는 항원 결합 부위를 비롯한 동일한 구조를 갖는다. 이 방법은 항체의 사용을 크게 촉진시켰는데, 그 이유는 단일의 공지된 특이성 및 균일 구조를 갖는 항체가 현재 비제한적인 양으로 이용될 수 있기 때문이다. 모노클로날 항체는 면역반응 진단에서 또한 치료법으로서 널리 사용된다.The use of somatic hybrid cell lines (hybridomas) as a source of antibodies to highly specific antigens is based on studies performed by Kohler and Milstein (Nature 256 (1975) 495-497). This method allows for the formation of so-called monoclonal antibodies having a homogeneous structure and produced by cell fusion. Splenocytes of immunized mice are fused with mouse myeloma cells. This gives hybridoma cells that proliferate indefinitely. At the same time, the cells secrete specific antibodies to the antigens that have immunized mice. Splenocytes offer the possibility of antibody production, while myeloma cells contribute to the non-limiting growth and continuous secretion ability of the antibody. Since each hybridoma cell that is a clone is derived from a single B cell, all the antibody molecules produced have the same structure, including the antigen binding site. This method greatly facilitated the use of antibodies because antibodies with a single known specificity and homogeneous structure are currently available in non-limiting amounts. Monoclonal antibodies are widely used in the diagnosis of immune responses and also as therapeutics.

최근에, 소위 파아지 디스플레이 방법이 항체의 생성에 이용가능하게 되었고, 여기서 동물에서의 면역계 및 여러 면역화는 회피된다. 항체의 친화력 및 특이성은 시험관내에서 측정되었다[Winter et al., Ann. Rev. Immunol. 12 (1994) 433-455; Hoogenboom TIBTech Vol 15 (1997) 62-70]. 항체의 가변 영역, 즉 항원 결합 부위를 코딩하는 서열을 함유하는 유전자 세그먼트는 박테리오파지의 외피 단백질에 대한 유전자와 융합된다. 그후에, 세균은 그러한 융합 유전자를 함유하는 파아지에 의해 감염된다. 이 결과 얻은 파아지 입자는 항체 유사 융합 단백질을 함유하는 외피를 가지며, 항체 결합 도메인은 외측을 향한다. 그러한 파아지 디스플레이 라이브러리는 목적하는 항체 단편을 함유하며 임의의 항원에 특이적으로 결합하는 파아지를 단리하는데 사용될 수 있다. 이러한 방법으로 단리된 각각의 파아지는 모노클로날 항체에 상응하는 모노클로날 항원 결합 폴리펩티드를 생성시킨다. 각각의 파아지에 대해 독특한, 항원 결합 부위에 대한 유전자는 파아지 DNA로부터 단리되고 완전한 항체 유전자를 구축하는데 사용될 수 있다.Recently, so-called phage display methods have become available for the production of antibodies, where the immune system and various immunizations in animals are avoided. The affinity and specificity of the antibodies were measured in vitro [Winter et al., Ann. Rev. Immunol. 12 (1994) 433-455; Hoogenboom TIBTech Vol 15 (1997) 62-70]. The gene segment containing the variable region of the antibody, ie the sequence encoding the antigen binding site, is fused with the gene for the envelope protein of the bacteriophage. Thereafter, the bacteria are infected by phages containing such fusion genes. The resulting phage particles have an outer shell containing the antibody-like fusion protein, with the antibody binding domain facing outward. Such phage display libraries can be used to isolate phages containing the antibody fragment of interest and specifically binding to any antigen. Each phage isolated in this manner produces a monoclonal antigen binding polypeptide corresponding to a monoclonal antibody. Genes for the antigen binding site, unique for each phage, can be isolated from phage DNA and used to construct complete antibody genes.

작물 보호 분야에서, 항체는 특히 항원의 정성적 및 정량적 검출을 위한 동일 장소외 분석 도구로서 이용되었다. 이것은 음용수[Sharp et al. (1991) ACS Symp Ser., 446 (Pestic. Residues Food Saf.) 87-95], 토양 샘플(국제 공개 제9423018호) 또는 식물 또는 식물 기관에서의 식물 구성 성분, 살진균제 또는 살진균제의 검출, 및 결합 분자의 정제를 위한 보조제로서의 항체의 이용을 포함한다.In the field of crop protection, antibodies have been used, in particular, as in situ analytical tools for qualitative and quantitative detection of antigens. This is because drinking water [Sharp et al. (1991) ACS Symp Ser., 446 (Pestic. Residues Food Saf.) 87-95], detection of plant components, fungicides or fungicides in soil samples (International Publication No. 9423018) or plants or plant organs, And the use of antibodies as adjuvants for the purification of binding molecules.

식물에서의 면역글로블린의 생성은 문헌[Hiatt et al., Nature, 342 (1989) 76-78]에 처음으로 기재되었다. 그 범위는 단일쇄 항체에서 다중 결합 분비 항체까지 포함한다[J. Ma and Mich Hein, 1996, Annuals New York Academy of Sciences, 72-81].The production of immunoglobulins in plants was first described in Hiatt et al., Nature, 342 (1989) 76-78. The range includes single chain antibodies to multiple binding secretory antibodies [J. Ma and Mich Hein, 1996, Annuals New York Academy of Sciences, 72-81.

더욱 최근의 시도는 바이러스 외피 단백질에 대한 특이적 항체 또는 그의 일부를 식물 세포에서 발현시킴으로써 병원균, 특히 바이러스 질병에 대해 식물을 방어하기 위한 동일 장소내 항체를 이용한다[Tavladoraki et al., Nature 366 (1993), 469-472; Voss et al., Mol. Breeding 1 (1995) 39-50].More recent attempts use in situ antibodies to defend plants against pathogens, particularly viral diseases, by expressing in a plant cell specific antibodies against viral envelope proteins [Tavladoraki et al., Nature 366 (1993). ), 469-472; Voss et al., Mol. Breeding 1 (1995) 39-50].

유사한 방법이 또한 선충류에 의한 감염에 대해 식물을 방어하는데 이용되었다[Rosso et al., Biochem Biophys Res Com. 220 (1996) 255-263]. 식물에서의 항체의 동일 장소내 발현이 경구 면역화에 이용되는 약리학에서 이용예를 찾아볼 수 있다[Ma et al., Science 268 (1995) 716-719; Mason and Arntzen, Tibtech Vol 13 (1996) 388-392]. 식물에 의해 형성되고 입, 인후 또는 소화기 경로를 통해 섭취하기에 적합한 식물 또는 식물 기관으로부터 생긴 항체가 몸에 제공되며, 그 항체는 효율적인 면역보호를 일으킨다. 또한, 저분자량 식물 호르몬 압시스산에 대한 단일쇄 항체는 이미 식물에서 발현되었으며, 식물에서의 압시스산의 결합으로 인해 식물 호르몬의 감소된 이용가능성이 관찰되었다[Artsaenko et al., The Plant Journal (1995) 8(5) 754-750].Similar methods have also been used to defend plants against infection by nematodes [Rosso et al., Biochem Biophys Res Com. 220 (1996) 255-263. Examples of use can be found in pharmacology where in situ expression of antibodies in plants is used for oral immunization [Ma et al., Science 268 (1995) 716-719; Mason and Arntzen, Tibtech Vol 13 (1996) 388-392. Antibodies from the plant or plant organs formed by the plant and suitable for ingestion through the mouth, throat or digestive system are provided to the body, and the antibodies produce efficient immunoprotection. In addition, single-chain antibodies to low molecular weight plant hormone abstic acid have already been expressed in plants, and reduced availability of plant hormones has been observed due to the binding of absic acid in plants [Artsaenko et al., The Plant Journal (1995). 8 (5) 754-750].

농업 경영상 중요한 작물에서의 잡초의 화학적 방제는 식물에 유해한 영향을 주지 않으면서 선택성이 높은 살진균제의 사용을 필요로 한다. 살진균제의 식물에 대한 유해한 영향은 예를 들어, 식물 성장의 억제, 광합성의 감소와 그에 따른 수확률의 감소에 토대를 둘 수 있다. 그러나, 일부 경우에, 임의의 작물에서 식물의 중요한 모든 대규모 수확시에 사용될 수 있고, 수익을 제공하는 식물을 손상시키지 않는 충분히 선택적인 살진균제를 개발하기가 어렵다. 살진균제 저항성 또는 내성 작물의 도입은 이 문제를 해결하는데 기여할 수 있고, 현재까지 처리가 가능하거나 가능하지 않을뿐 아니라 수확률의 감소가 허용될 수 있는 작물에 대한 신규 살진균제의 사용을 시작할 수 있게 되었다.Chemical control of weeds in crops important for agricultural operations requires the use of highly selective fungicides without adversely affecting the plants. The deleterious effects of fungicides on plants can be based, for example, on the inhibition of plant growth, on photosynthesis and thus on the yield. In some cases, however, it is difficult to develop sufficiently selective fungicides that can be used in any significant large-scale harvest of the plant in any crop and do not damage the profitable plant. The introduction of fungicide-resistant or resistant crops can contribute to solving this problem, and it is possible to begin the use of new fungicides on crops that are not treatable or possible to date and allow for reduced yields. It became.

조직 배양 또는 종자 돌연변이유발 및 자연 선택에 의한 살진균제 저항성 작물의 개발은 제한된다. 식물에 대한 유해한 영향은 사전에 조직 배양 수준에서 검출됐어야 하는 반면, 이 식물만이, 세포 배양물로부터 전체 식물을 성공적으로 재생시킬 수 있는 조직 배양 기술을 통해 조작될 수 있다. 또한, 돌연변이유발 및 선택에 이어서, 작물은 일부 경우에 반복된 역교배에 의해 다시 배제되어야 하는 바람직하지 않은 특성을 나타낼 수 있다. 또한, 교배를 수행하는 것에 의한 저항성의 도입은 동일한 종의 식물에 제한될 것이다.The development of fungicide resistant crops by tissue culture or seed mutagenesis and natural selection is limited. While deleterious effects on plants must have been detected at the tissue culture level in advance, only these plants can be manipulated through tissue culture techniques capable of successfully regenerating the entire plant from cell culture. In addition, following mutagenesis and selection, crops may exhibit undesirable properties that in some cases should be re-excluded by repeated backcrossing. In addition, the introduction of resistance by performing crosses will be limited to plants of the same species.

상기 이유로 인하여 목표 방법으로 저항성 코딩 유전자를 단리하고 그것을 작물에 전이시키는 유전 공학적 방법은 전통적인 식물 품종 개량 방법 보다 우수하다.For this reason, genetic engineering methods of isolating resistance coding genes as target methods and transferring them to crops are superior to traditional plant variety improvement methods.

지금까지, 분자 생물학 방법에 의한 제초제 내성 또는 제초제 저항성 작물의 개발은 식물에서의 제초제의 작용 메카니즘의 지식과, 제초제에 대한 내성을 부여하는 유전자를 발견할 수 있는 것을 필요로 한다. 현재 상업적으로 이용되는 많은 수의 제초제는 필수 아미노산, 지질 또는 안료 생합성 단계의 효소를 차단함으로써 작용한다. 제초제 내성은 이 효소의 유전자를 제초제가 더 이상 결합될 수 없도록 변형시키고 변형된 유전자를 작물에 도입함으로써 형성될 수 있다. 또다른 예는 자연에서, 예를 들어 제초제에 자연 저항성을 나타내는 미생물에서 유사한 효소를 발견하는 것이다. 이 저항성 부여 유전자는 그러한 미생물로부터 단리되고, 적합한 벡터로 재클로닝되고 이어서 성공적인 형질전환 후에 제초제 감수성 작물에서 발현된다(국제 공개 제96/38567호).To date, the development of herbicide-tolerant or herbicide-tolerant crops by molecular biology methods requires knowledge of the mechanism of action of herbicides in plants and the discovery of genes that confer resistance to herbicides. A large number of currently used herbicides work by blocking enzymes of essential amino acid, lipid or pigment biosynthesis steps. Herbicide resistance can be formed by modifying the gene of this enzyme so that the herbicide can no longer be bound and introducing the modified gene into the crop. Another example is to find similar enzymes in nature, for example in microorganisms that exhibit natural resistance to herbicides. This resistance conferring gene is isolated from such microorganisms, recloned into a suitable vector and then expressed in herbicide sensitive crops after successful transformation (International Publication No. 96/38567).

본 발명의 목적은 살진균제 내성 유전자 도입 식물의 새로운, 일반적으로 이용가능한 유전 공학적 제조 방법을 개발하는 것이다.It is an object of the present invention to develop a new, generally available genetically engineered method for producing fungicide resistant transgenic plants.

본 발명자는 놀랍게도 살진균제 결합 특성을 갖는 외생 폴리펩티드, 항체 또는 항체의 일부를 식물에서 발현시키는 방법에 의해 상기 목적이 이루어짐을 발견하였다.The inventors have surprisingly found that this object is achieved by a method of expressing in a plant an exogenous polypeptide, antibody or portion of an antibody having fungicidal binding properties.

본 발명은 첫째로 살진균제 결합 항체의 제조 및 관련 유전자 또는 유전자 단편의 클로닝에 관한 것이다.The present invention first relates to the preparation of fungicide binding antibodies and cloning of related genes or gene fragments.

제1 단계는 살진균제에 결합하는 적당한 항체를 생산하는 것이다. 이것은 특히 척추동물, 대개는 생쥐, 쥐, 개, 말, 당나귀 또는 염소를 항원으로 면역화시킴으로써 수행될 수 있다. 이 경우의 항원은 관능기를 통해 소 혈청 알부민(BSA), 닭 오발부민, 키홀 림펫 헤모시아닌(KLH) 또는 다른 담체와 같은 고분자량 담체에 결합되거나 또는 커플링되는 살진균적 활성 화합물이다. 항원이 반복적으로 가해진 후에, 면역 반응이 통상의 방법으로 모니터되고, 따라서 적당한 항혈청이 단리된다. 이 방법은 초기에 다른 특이성을 갖는 항체를 함유하는 폴리클로날 혈청을 생산한다. 목표한 동일 장소내 사용을 위하여, 단일의, 특이적인 모노클로날 항체를 코딩하는 유전자 서열을 단리할 필요가 있다. 이 목적에 여러 방법이 이용될 수 있다. 첫번째 방법은 항체 생성 세포 및 암 세포의 융합을 이용하여 항체를 연속적으로 생성하고 마지막으로 얻어진 클론을 단일화함으로써 특정 모노클로날 항체를 생성하는 동종 세포주를 유도하는 하이브리도마 세포 배양물을 제공하는 것이다.The first step is to produce a suitable antibody that binds to the fungicide. This can be done in particular by immunizing vertebrates, usually mice, rats, dogs, horses, donkeys or goats with antigens. The antigen in this case is a fungicidally active compound which is bound or coupled via a functional group to a high molecular weight carrier such as bovine serum albumin (BSA), chicken ovalbumin, keyhole limpet hemocyanin (KLH) or other carrier. After the antigen is repeatedly applied, the immune response is monitored in a conventional manner, and the appropriate antiserum is thus isolated. This method initially produces polyclonal serum containing antibodies with different specificities. For targeted in situ use, it is necessary to isolate the gene sequence encoding a single, specific monoclonal antibody. Several methods can be used for this purpose. The first method is to provide hybridoma cell cultures that induce homologous cell lines that produce specific monoclonal antibodies by continuously generating antibodies and unicating the resulting clones using fusion of antibody producing cells and cancer cells. .

항체, 또는 항체의 일부에 대한 cDNA, 즉 소위 단일쇄 항체(scFv)는 그러한 모노클로날 세포주로부터 단리된다. 그후에, 이들 cDNA 서열은 발현 카세트로 클로닝되고 원핵 생물 및 식물을 비롯한 진핵 생물에서의 기능적인 발현을 위해 사용된다.The cDNA, or so-called single chain antibody (scFv), for an antibody, or portion of an antibody, is isolated from such monoclonal cell lines. These cDNA sequences are then cloned into expression cassettes and used for functional expression in eukaryotes, including prokaryotes and plants.

또한, 파아지 디스플레이 라이브러리를 통해 항체를 선택하는 것이 가능하며, 이들 항체는 살진균제 분자와 결합하여 그것을 살진균적 특성을 갖는 생성물로 촉매접촉 전환시킨다. 촉매 항체를 형성하는 방법은 문헌[Janda et al., Science 275 (1997) 945-948, Chemical selection for catalysis in combinatorial Antibody libraries; Catalytic Antibodies, 1991, Ciba Foundation Symposium 159, Wiley-Interscience Publication]에 기재되어 있다. 이 촉매 항체의 유전자를 클로닝시키고 그것을 식물에서 발현시키는 것은 원리적으로 살진균제 저항성 식물의 제조를 유도한다.It is also possible to select antibodies through phage display libraries, which bind catalytically and convert catalytically into products with fungicidal properties. Methods of forming catalytic antibodies are described in Janda et al., Science 275 (1997) 945-948, Chemical selection for catalysis in combinatorial Antibody libraries; Catalytic Antibodies, 1991, Ciba Foundation Symposium 159, Wiley-Interscience Publication. Cloning the gene of this catalytic antibody and expressing it in plants in principle leads to the production of fungicide resistant plants.

본 발명은 특히 그의 코딩 서열이 살진균제 결합 폴리펩티드 또는 그의 기능적 등가물을 코딩하는 발현 카세트, 및 살진균제 내성 식물의 제조를 위한 이들 발현 카세트의 용도에 관한 것이다. 핵산 서열은 예를 들어 DNA 서열 또는 cDNA 서열일 수 있다. 본 발명에 따른 발현 카세트로의 삽입에 적당한 코딩 서열은 예를 들어 살진균제 결합 특성을 갖는 폴리펩티드를 코딩하고 따라서 숙주에게 식물 효소 억제제에 대한 내성을 부여하는 하이브리도마 세포로부터의 DNA 서열을 함유하는 것이다.The invention particularly relates to expression cassettes whose coding sequences encode fungicide binding polypeptides or functional equivalents thereof, and the use of these expression cassettes for the production of fungicide resistant plants. The nucleic acid sequence can be, for example, a DNA sequence or a cDNA sequence. Suitable coding sequences for insertion into expression cassettes according to the invention contain DNA sequences from hybridoma cells, for example, encoding polypeptides having fungicidal binding properties and thus conferring resistance to plant enzyme inhibitors to the host. will be.

또한, 본 발명에 따른 발현 카세트는 숙주 세포에서 코딩 서열의 발현을 조절하는 조절 핵산 서열을 함유한다. 바람직한 실시양태에서, 본 발명에 따른 발현 카세트는 코딩 서열의 상향, 즉 5' 말단 상의 것, 프로모터 및 하향, 즉 3'-말단 상의 것, 폴리아데닐화 시그널 및 적절하다면 다른 조절 서열이, 그 사이에 위치하는 살진균제 결합 특성을 갖는 폴리펩티드 및(또는) 일시 펩티드의 코딩 서열과 작동가능하게 연결되어 이루어진다. 작동가능한 연결은 프로모터, 코딩 서열, 터미네이터 및 적절하다면 코딩 서열이 발현될 때 각각이 의도한 바대로 기능할 수 있는 다른 조절 요소가 순차적으로 배열됨을 의미하는 것으로 이해되어야 한다. 작동가능한 연결에 바람직한 서열로는, 제한되는 것은 아니지만, 아포플라스트, 원형질막, 액포, 색소체, 미토콘드리아, 소포체(ER), 핵, 리포좀 또는 다른 격막에서의 하위세포적 국소화를 보장하는 표적화 서열 및 번역 인핸서(enhancer), 예를 들어 담배 모자이크 바이러스로부터의 5'-리더 서열이 있다[Gallie et al., Nucl. Acids Res. 15 (1987) 8693-8711].In addition, the expression cassette according to the present invention contains regulatory nucleic acid sequences that regulate the expression of the coding sequence in the host cell. In a preferred embodiment, the expression cassette according to the present invention comprises an upstream, ie on the 5 'end, a promoter and a down, ie on the 3'-end, a polyadenylation signal and, if appropriate, other regulatory sequences of the coding sequence, between And operably linked with a coding sequence of a polypeptide having a fungicide binding property and / or a transient peptide located at. Operable linkage should be understood to mean that the promoter, coding sequence, terminator and, where appropriate, other regulatory elements that each function as intended when the coding sequence is expressed are arranged sequentially. Preferred sequences for operative linkage include, but are not limited to, targeting sequences and translations that ensure subcellular localization in apoplasts, plasma membranes, vacuoles, pigments, mitochondria, vesicles (ER), nuclei, liposomes, or other septa. Enhancers such as the 5'-leader sequence from tobacco mosaic virus [Gallie et al., Nucl. Acids Res. 15 (1987) 8693-8711.

본 발명에 따른 발현 카세트의 적당한 프로모터는 원칙적으로 이종 유전자의 발현을 조절할 수 있는 임의의 프로모터이다. 바람직하게 사용되는 프로모터는 특히 식물 유래된 프로모터 또는 식물 바이러스로부터 비롯된 프로모터이다. 특히 바람직한 것은 꽃양배추 모자이크 바이러스로부터의 CaMV 35S 프로모터이다(Franck et al., Cell 21(1980) 285-294). 이 프로모터는 전체적으로 도입된 유전자의 영구적 및 구성적(constitutive) 발현을 유도하는 전사 이펙터 (effector)에 대한 여러 인식 서열을 함유한다[Benfey et al., EMBO J. 8 (1989) 2195-2202].Suitable promoters of the expression cassettes according to the invention are in principle any promoter capable of controlling the expression of heterologous genes. Promoters used preferably are especially plant-derived promoters or promoters derived from plant viruses. Especially preferred is the CaMV 35S promoter from Cauliflower mosaic virus (Franck et al., Cell 21 (1980) 285-294). This promoter contains several recognition sequences for transcriptional effectors that induce permanent and constitutive expression of the introduced gene as a whole (Benfey et al., EMBO J. 8 (1989) 2195-2202).

본 발명에 따른 발현 카세트는 또한 식물에서의 외생 폴리펩티드의 발현이 특별한 시점에서 조절될 수 있도록 하는 화학적 유도 프로모터를 포함할 수도 있다. 그러한 프로모터, 예를 들어 PRP1 프로모터[Ward et al., Plant. Mol. Biol. 22(1993) 361-366], 살리실산에 의해 유도될 수 있는 프로모터(국제 공개 제95/1919443호), 벤젠술폰아미드에 의해 유도될 수 있는 프로모터(유럽 특허 제388186호), 압시스산에 의해 유도될 수 있는 프로모터(유럽 특허 제335528호) 또는 에탄올 또는 시클로헥사논에 의해 유도될 수 있는 프로모터(국제 공개 제9321334호)는 문헌에 기재되어 있으며 많은 가운데서 바람직하게 사용될 수 있다.Expression cassettes according to the invention may also comprise chemically induced promoters which allow the expression of exogenous polypeptides in plants to be regulated at particular times. Such promoters, for example the PRP1 promoter [Ward et al., Plant. Mol. Biol. 22 (1993) 361-366], promoters which can be induced by salicylic acid (International Publication No. 95/1919443), promoters which can be induced by benzenesulfonamide (European Patent No. 388186), induced by absic acid Promoter (European Patent No. 335528) or promoter which can be induced by ethanol or cyclohexanone (International Publication No. 9321334) is described in the literature and can be preferably used among many.

특히 바람직한 다른 프로모터는 식물에 유해한 살진균적 활성이 발휘되는 조직 또는 식물 기관에서의 발현을 확실하게 하는 것이다. 잎 특이적 발현을 보장하는 프로모터가 특히 주목할 만하다. 감자 사이토졸 FBP아제 프로모터 또는 감자 ST-LSI 프로모터에 대해서도 언급되어 있다[Stockhaus et al., EMBO J. 8 (1989) 2445-245].Another particularly preferred promoter is to ensure expression in tissues or plant organs that exhibit fungicidal activity that is harmful to plants. Of particular note are promoters that ensure leaf specific expression. Potato cytosol FBPase promoters or potato ST-LSI promoters are also mentioned (Stockhaus et al., EMBO J. 8 (1989) 2445-245).

유전자 도입 담배 식물의 종자에서 총 가용성 종자 단백질의 0.67% 이하인 단일쇄 항체의 안정한 발현은 종 특이적 프로모터에 의해 가능하게 되었다[Fiedler and Conrad, Bio/Technology 10(1995) 1090-1094]. 발현은 파종 또는 발아 과정 중에 있는 종자에서 가능할 수도 있고 본 발명의 목적에 필요할 수 있기 때문에, 그러한 발아 및 종 특이적 프로모터는 또한 본 발명에 따라 바람직한 조절 요소이다. 따라서, 본 발명에 따른 발현 카세트는 예를 들어 종 특이적 프로모터(바람직하게는 USP 또는 LEB4 프로모터), LEB4 시그널 펩티드, 발현될 유전자 및 ER 보유 시그널을 함유할 수 있다. 카세트의 구조는 단일쇄 항체(scFv 유전자)를 참고로 한 도 1의 도표 형태로 예시된다.Stable expression of single chain antibodies of up to 0.67% of the total soluble seed protein in the seed of transgenic tobacco plants was made possible by species specific promoters (Fiedler and Conrad, Bio / Technology 10 (1995) 1090-1094). Since expression may be possible in seeds that are in the process of sowing or germination and may be necessary for the purposes of the present invention, such germination and species specific promoters are also preferred regulatory elements in accordance with the present invention. Thus, expression cassettes according to the invention may contain, for example, species specific promoters (preferably USP or LEB4 promoters), LEB4 signal peptides, genes to be expressed and ER bearing signals. The structure of the cassette is illustrated in the diagrammatic form of FIG. 1 with reference to single chain antibodies (scFv gene).

본 발명에 따른 발현 카세트는 예를 들어 문헌[T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989), 및 또한 T.J. Silhavy, M.L. Berman and L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987)]에 기재된 바와 같이 통상의 재조합 및 클로닝 기술을 이용하여 적당한 프로모터를 적당한 폴리펩티드 DNA, 및 바람직하게는 엽록체 특이적 일시 펩티드를 코딩하고 프로모터와 폴리펩티드 DNA 사이에 삽입되는 DNA, 및 폴리아데닐화 시그널과 융합시킴으로써 생성된다.Expression cassettes according to the invention are described, for example, in T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989), and also T.J. Silhavy, M.L. Berman and L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987), using conventional recombination and cloning techniques, a suitable promoter can be used to encode a suitable polypeptide DNA, and preferably a chloroplast specific transient peptide and be inserted between the promoter and the polypeptide DNA, And by fusion with a polyadenylation signal.

특히 바람직한 것은 아포플라스트, 색소체, 액포, 원형질막, 미토콘드리아, 소포체(ER)로, 또는 적당한 작동 서열의 부재에 의해 형성 격막내에 존재하는 것, 즉 사이토졸로의 표적화를 가능하게 하는 서열이다[Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423]. ER 및 세포벽 내의 집적은 유전자 도입 식물에서의 정량적 단백질 축적에 특히 유리한 것으로 증명되었다[Schouten et al., Plant Mol. Biol. 30 (1996) 781-792; Artsaenko et al., Plant J. 8 (1995) 745-750].Especially preferred are those present in the forming diaphragm with apoplasts, pigments, vacuoles, plasma membranes, mitochondria, endoplasmic reticulum (ER), or by the absence of suitable operating sequences, ie, targeting to cytosol [Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423. ER and accumulation in cell walls have proved particularly advantageous for quantitative protein accumulation in transgenic plants [Schouten et al., Plant Mol. Biol. 30 (1996) 781-792; Artsaenko et al., Plant J. 8 (1995) 745-750].

본 발명은 또한 그의 코딩 서열이 폴리펩티드의 전좌를 조절하는, 일시 펩티드인 살진균제 결합 융합 단백질, 융합 단백질의 일부를 코딩하는 발현 카세트에 관한 것이다. 특히 바람직한 것은 살진균제 결합 폴리펩티드가 식물의 엽록체로 전좌된 후에 살진균제 결합 폴리펩티드 잔기로부터 효소적으로 분해되는 엽록체 특이적 일시 펩티드이다. 특히 바람직한 것은 색소체 트랜스케톨라제(TK)로부터 유래된 일시 펩티드 또는 이 일시 펩디드의 기능적 등가물(예를 들어, 루비스코(Rubisco) 또는 페레독신 NADP 산화 환원 효소의 작은 소단위의 일시 펩티드)이다.The invention also relates to an expression cassette encoding a portion of the fungicide binding fusion protein, a fusion protein, which is a transient peptide whose coding sequence regulates the translocation of the polypeptide. Particularly preferred are chloroplast specific transient peptides which are enzymatically degraded from fungicide binding polypeptide residues after the fungicide binding polypeptide is transferred to the chloroplasts of the plant. Particularly preferred are the temporal peptides derived from the pigmentary transketolase (TK) or functional equivalents of these temporal peptides (e.g., temporal peptides of small subunits of Rubisco or peredoxin NADP redox enzymes).

본 발명에 따른 발현 카세트의 생성에 필요한 폴리펩티드 DNA 또는 폴리펩티드 cDNA는 바람직하게는 폴리머라제 연쇄 반응(PCR)에 의해 증폭된다. PCR을 이용하는 DNA 증폭 방법은 예를 들어 문헌[Innis et al., PCR Protocols, A Guide to Methods and Applications, Academic Press (1990)]에 공지되어 있다. PCR 생성된 DNA 단편은 편의상 서열 분석에 의해 체크되어 발현될 구축물에서의 폴리머라제 오차를 피할 수 있다.The polypeptide DNA or polypeptide cDNA required for the production of the expression cassette according to the invention is preferably amplified by polymerase chain reaction (PCR). DNA amplification methods using PCR are known, for example, from Innis et al., PCR Protocols, A Guide to Methods and Applications, Academic Press (1990). PCR generated DNA fragments can be conveniently checked by sequencing to avoid polymerase errors in the construct to be expressed.

살진균제 결합 폴리펩티드를 코딩하는, 삽입된 뉴클레오티드 서열은 합성으로 생성될 수 있거나 또는 자연적으로 얻어질 수 있거나, 또는 합성 및 천연 DNA 성분의 혼합물을 포함할 수 있다. 일반적으로, 식물에 있어서의 바람직한 코돈을 갖는 합성 뉴클레오티드 서열이 만들어진다. 식물에 있어서 바람직한 이 코돈은 그의 단백질에서 가장 흔하고 당해 식물 종의 대부분에서 발현되는 코돈으로부터 결정될 수 있다. 발현 카세트를 제조할 때, 여러 DNA 단편은 편의상 정확한 센스로 판독되고 정확한 판독 프레임을 갖춘 뉴클레오티드 서열을 얻도록 조작될 수 있다. DNA 단편을 서로 연결하기 위하여, 어댑터 또는 링커가 단편에 첨가될 수 있다.An inserted nucleotide sequence, which encodes a fungicide binding polypeptide, may be produced synthetically or obtained naturally, or may comprise a mixture of synthetic and natural DNA components. In general, synthetic nucleotide sequences are made with the desired codons in plants. Preferred codons for plants are the most common in their protein and can be determined from codons expressed in most of the plant species. When preparing an expression cassette, several DNA fragments can be manipulated to obtain nucleotide sequences that are read with the correct sense for convenience and with the correct reading frame. To connect the DNA fragments to each other, an adapter or linker may be added to the fragments.

본 발명에 따른 프로모터 및 터미네이터 영역은 전사의 센스내에 이 서열의 삽입을 위한 하나 이상의 제한 부위를 포함하는 링커 또는 폴리링커가 갖추어져야 한다. 일반적으로, 링커는 제한 부위가 1 내지 10개, 일반적으로 1 내지 8개, 바람직하게는 2 내지 6개이다. 조절 영역내에, 링커는 일반적으로 그 크기가 100 bp 미만, 때때로, 60 bp 미만 5 bp 이상이다. 본 발명에 따른 프로모터는 천연 또는 상동성이거나, 또는 숙주 식물에 대해 이질이거나 또는 이종일 수 있다. 본 발명에 따른 발현 카세트는 전사의 5'-3'-센스내에 본 발명에 따른 프로모터, 전사 종결을 위한 소정의 서열 및 영역을 포함한다. 여러 종결 영역은 원하는 대로 상호 교환가능하다.The promoter and terminator regions according to the invention should be equipped with a linker or polylinker comprising one or more restriction sites for insertion of this sequence in the sense of transcription. In general, the linker has 1 to 10 restriction sites, generally 1 to 8, preferably 2 to 6 sites. Within the regulatory region, linkers are generally less than 100 bp in size, sometimes less than 60 bp and more than 5 bp. Promoters according to the invention may be natural or homologous or heterologous to the host plant or heterologous. The expression cassette according to the invention comprises within the 5'-3'-sense of transcription the promoter according to the invention, certain sequences and regions for transcription termination. The various terminating areas are interchangeable as desired.

또한, 적당한 제한 부위를 제공하거나, 또는 과도한 DNA 또는 제한 부위를 제거하는 조작이 이용될 수 있다. 시험관내 돌연변이에서, 삽입, 삭제 또는 치환, 예를 들어 전이 및 전환이 가능한 경우, "프라이머 수복", 제한 또는 라이게이션이 이용될 수 있다. "블런트 말단"을 위한 제한 효소에 의한 절단, "츄잉-백 (chewing-back)" 또는 필링-업 (filling-up)과 같은 적당한 조작의 경우, 단편의 상보성 말단이 라이게이션 목적으로 제공될 수 있다.In addition, manipulations to provide suitable restriction sites or to remove excess DNA or restriction sites can be used. In in vitro mutations, “primer repair”, restriction or ligation may be employed where insertion, deletion or substitution, eg metastasis and conversion, is possible. In the case of suitable manipulations such as cleavage by restriction enzymes for the "blunt ends", "chewing-back" or filling-up, the complementary ends of the fragments may be provided for ligation purposes. have.

본 발명의 목적을 이루는데 특히 중요한 것은 평균 발현 수준이 3배 내지 4배가 되게 하는 특이적 ER 보유 시그널 SEKDEL의 부착이다[Schuoten, A. et al. Plant Mol. Biol. 30 (1996) 781-792]. ER에 위치한 식물 및 동물 단백질에서 자연 발생되는 다른 보유 시그널이 카세트를 구축하는데 이용될 수도 있다.Of particular importance in achieving the object of the present invention is the attachment of the specific ER retention signal SEKDEL, which results in a three to four fold average expression level [Schuoten, A. et al. Plant Mol. Biol. 30 (1996) 781-792. Other retention signals naturally occurring in plant and animal proteins located in the ER can also be used to construct cassettes.

바람직한 폴리아데닐화 시그널은 식물 폴리아데닐화 시그널, 바람직하게는 아그로박테륨 투메파시엔스로부터의 T-DNA 폴리아데닐화 시그널에 본질적으로 대응하는 것, 특히 Ti 플라스미드 pTiACH5의 T-DNA의 유전자 3(옥토핀 신타아제)[Gielen et al., EMBO J. 3(1984) 835 이하 참조] 또는 그의 기능적 등가물이다.Preferred polyadenylation signals correspond essentially to plant polyadenylation signals, preferably T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular gene 3 (Octo) of T-DNA of Ti plasmid pTiACH5. Pin synthase) (see Gilen et al., EMBO J. 3 (1984) 835 hereinafter) or a functional equivalent thereof.

본 발명에 따른 발현 카세트는 예를 들어 구성적 프로모터(바람직하게는 CaMV 35S 프로모터), LeB4 시그널 펩티드, 발현될 유전자 및 ER 보유 시그널을 포함할 수 있다. 카세트의 구축물은 단일쇄 항체(scFv 유전자)에 관한 도 2의 도표에 나타나 있다. 아미노산 서열 KDEL(리신, 아스파르트산, 글루탐산, 류신)이 ER 보유 시그널로서 바람직하게 사용된다.Expression cassettes according to the invention may comprise, for example, a constitutive promoter (preferably a CaMV 35S promoter), a LeB4 signal peptide, a gene to be expressed and an ER bearing signal. The construct of the cassette is shown in the diagram of FIG. 2 for the single chain antibody (scFv gene). The amino acid sequence KDEL (lysine, aspartic acid, glutamic acid, leucine) is preferably used as the ER retention signal.

살진균제 결합 특성을 갖는 폴리펩티드를 코딩하는 융합된 발현 카세트는 바람직하게는 아그로박테륨 투메파시엔스를 형질전환시키는데 적합한 벡터, 예를 들어 pBin19에 클로닝된다. 그러한 벡터로 형질전환된 아그로박테리아는 식물, 특히 작물, 예를 들어 담배 식물을 형질전환시키기 위한 공지된 방법으로, 예를 들어 아그로박테리아 용액내에 상처난 잎 또는 잎 단편을 담그고 이어서 그것을 적당한 배지에서 증식시킴으로써 이용될 수 있다. 아그로박테리아에 의한 식물의 형질전환은 문헌[F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, edited by S.D. Kung and R. Wu, Academic Press, 1993, pp. 15-38, 및 S.B. Gelvin, Molecular Genetics of T-DNA Transfer from Agrobacterium to Plants, 또한 in Transgenic Plants, pp. 49-78]에 공지되어 있다. 유전자 도입 식물은 공지된 방법으로 상처난 잎 또는 잎 단편의 형질전환된 세포로부터 재생될 수 있으며, 이들 유전자 도입 식물은 본 발명에 따른 발현 카세트에 통합된, 살진균제 결합 특성을 갖는 폴리펩티드의 발현을 위한 유전자를 함유한다.The fused expression cassette encoding the polypeptide having fungicidal binding properties is preferably cloned into a vector suitable for transforming Agrobacterium tumefaciens, for example pBin19. Agrobacteria transformed with such vectors are known methods for transforming plants, in particular crops, for example tobacco plants, for example soaking a wounded leaf or leaf fragment in an Agrobacteria solution and then propagating it in a suitable medium. Can be used. Transformation of plants by Agrobacteria is described in F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, edited by S.D. Kung and R. Wu, Academic Press, 1993, pp. 15-38, and S.B. Gelvin, Molecular Genetics of T-DNA Transfer from Agrobacterium to Plants, also in Transgenic Plants, pp. 49-78. Transgenic plants can be regenerated from transformed cells of wound leaves or leaf fragments by known methods, and these transgenic plants are capable of expressing the polypeptide having fungicidal binding properties, integrated in the expression cassette according to the invention. Contains the gene for

살진균제 결합 폴리펩티드를 코딩하는 DNA에 의해 숙주 식물을 형질전환시키기 위하여, 본 발명에 따른 발현 카세트는 그의 벡터 DNA가 추가의 기능적 조절 시그널, 예를 들어 복제 또는 통합을 위한 서열을 함유하는 재조합 벡터에 삽입체로서 혼입된다. 적당한 벡터는 문헌["Methods in Plant Molecular Biology and Biotechnology" (CRC Press), (1993) chapter 6/7, pp 71-119]에 기재되어 있다.In order to transform a host plant with DNA encoding a fungicide binding polypeptide, the expression cassette according to the invention can be applied to a recombinant vector whose vector DNA contains further functional regulatory signals, eg sequences for replication or integration. It is incorporated as an insert. Suitable vectors are described in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), (1993) chapter 6/7, pp 71-119.

상기 인용한 재조합 및 클로닝 기술을 이용하여, 본 발명에 따른 발현 카세트는 예를 들어 이. 콜리내에서 그것을 증식시키는 적당한 벡터에 클로닝될 수 있다. 적당한 클로닝 벡터는 특히 pBR332, pUC계, M13mp계 및 pACYC184이다. 특히 적합한 것은 이. 콜리 및 아그로박테리아, 예를 들어 pBin19 둘다에서 복제할 수 있는 이원 벡터이다[Bevan et al. (1980) Nucl. Acids Res. 12, 8711].Using the recombination and cloning techniques cited above, the expression cassettes according to the invention are for example E. coli. It can be cloned into a suitable vector to propagate it in Collie. Suitable cloning vectors are in particular pBR332, pUC series, M13mp series and pACYC184. Especially suitable is this. Binary vectors capable of replicating both coli and Agrobacteria, for example pBin19. [Bevan et al. (1980) Nucl. Acids Res. 12, 8711].

본 발명은 또한 식물, 식물 세포, 식물 조직 또는 식물 기관을 형질전환시키기 위해 본 발명에 따른 발현 카세트를 사용하는 것에 관한 것이다. 사용시의 바람직한 목표는 식물에 유해한 활성을 갖는 살진균제에 대한 저항성을 매개하는 것이다.The invention also relates to the use of the expression cassette according to the invention for transforming a plant, plant cell, plant tissue or plant organ. A preferred goal in use is to mediate resistance to fungicides with harmful activity to plants.

프로모터의 선택에 따라서, 발현은 잎에서, 종자에서 또는 다른 식물 기관에서 특이적으로 일어날 수 있다. 그러한 유전자 도입 식물, 그의 증식 재료 및 그의 식물 세포, 식물 조직 또는 식물 기관은 본 발명의 또다른 주제이다.Depending on the choice of promoter, expression can occur specifically in leaves, in seeds or in other plant organs. Such transgenic plants, their proliferating materials and their plant cells, plant tissues or plant organs are another subject of the invention.

식물의 게놈에 대한 이종 유전자의 전이는 형질전환으로 불리운다. 이 과정에서, 식물 조직 또는 식물 세포로부터 식물을 형질전환시키고 재생시키는 상기 방법은 일시적인 또는 안정한 형질전환에 이용된다. 적합한 방법은 폴리에틸렌 글리콜 유도된 DNA 흡수에 의한 원형질체 형질전환, 유전자 총을 사용한 적외선 방산법, 전기천공법, DNA 함유 용액에서의 건조 배(胚)의 인큐베이션법, 미세주입법 및 아그로박테륨 매개 유전자 전이법이다. 상기한 이 방법들은 예를 들어 문헌[B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, editors: S.D. Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991) 205-225]에 기재되어 있다. 발현될 구축물은 바람직하게는 아그로박테륨 투메파시엔스, 예를 들어 pBin19의 형질전환에 적합한 벡터에 클로닝된다[Bevan et al., Nucl. Acids Res. 12 (1984) 8711].The transfer of heterologous genes to the genome of a plant is called transformation. In this process, the method of transforming and regenerating a plant from plant tissue or plant cells is used for transient or stable transformation. Suitable methods include protoplast transformation by polyethylene glycol induced DNA uptake, infrared radiation using gene guns, electroporation, incubation of dry embryos in DNA-containing solutions, microinjection and Agrobacterium mediated gene transfer It is a law. These methods described above are described, for example, in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, editors: S.D. Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991) 205-225. The construct to be expressed is preferably cloned into a vector suitable for the transformation of Agrobacterium tumefaciens, eg pBin19 [Bevan et al., Nucl. Acids Res. 12 (1984) 8711].

본 발명에 따른 발현 카세트로 형질전환된 아그로박테리아는 식물, 특히 작물, 예를 들어 곡류, 옥수수, 콩, 쌀, 목화, 사탕무, 캐놀라, 해바라기, 아마, 감자, 담배, 토마토, 지방종자 평지, 자주개자리, 상추 및 여러 관목, 수목, 견과 및 비티스종, 예를 들어, 커피, 사과, 서양배 또는 버찌 등의 과실수, 호도 또는 피칸 등의 견과류 수목, 더욱 중요한 것으로는 포도나무를 형질전환시키기 위한 공지된 방법으로, 예를 들어 아그로박테리아 용액내에 상처난 잎 또는 잎 단편을 담그고 이어서 그것을 적당한 배지에서 증식시킴으로써 이용될 수 있다.Agrobacteria transformed with the expression cassettes according to the invention are plants, in particular crops, for example cereals, corn, soybeans, rice, cotton, sugar beets, canola, sunflower, flax, potatoes, tobacco, tomatoes, oilseed rape, often Canis, lettuce and various shrubs, trees, nuts and Vitis species, for example fruit trees such as coffee, apples, pears or cherries, nut trees such as hodo or pecans, and more importantly, to transform vines In a known manner, it can be used, for example, by soaking a wounded leaf or leaf fragment in an Agrobacteria solution and then propagating it in a suitable medium.

본 발명에 따라서 살진균제 결합 폴리펩티드를 코딩하는 기능적 동등한 서열은 다른 뉴클레오티드 서열에도 불구하고 여전히 원하는 기능을 갖는 서열이다. 따라서, 기능적 등가물은 본 명세서에 기재된 서열의 자연 발생 변형체, 및 또한 인공 뉴클레오티드 서열, 예를 들어 화학적 합성에 의해 얻어지고 식물의 코돈 사용에 적합한 인공 뉴클레오티드 서열을 포함한다.Functionally equivalent sequences encoding fungicide binding polypeptides according to the present invention are sequences that still have the desired function despite other nucleotide sequences. Thus, functional equivalents include naturally occurring variants of the sequences described herein, and also artificial nucleotide sequences, such as artificial nucleotide sequences obtained by chemical synthesis and suitable for plant codon use.

특히, 기능적 등가물은 원하는 기능을 계속하여 나타내는, 살진균제 결합 폴리펩티드를 코딩하는 최초 단리된 서열의 자연 또는 인공 돌연변이로서 이해되어야 한다. 돌연변이는 하나 이상의 뉴클레오티드 잔기의 치환, 추가, 삭제, 교환 또는 삽입을 포함한다. 따라서, 본 발명은 또한 이 뉴클레오티드 서열을 변형시킴으로써 얻어진 뉴클레오티드 서열을 포함한다. 그러한 변형의 목적은 예를 들어 그안에 함유된 코딩 서열의 추가의 제한, 또는 예를 들어 제한 효소를 위한 더 많은 분해 부위의 삽입일 수 있다.In particular, functional equivalents should be understood as natural or artificial mutations of the original isolated sequence encoding the fungicide binding polypeptide, which continues to exhibit the desired function. Mutations include substitution, addition, deletion, exchange or insertion of one or more nucleotide residues. Thus, the present invention also encompasses nucleotide sequences obtained by modifying this nucleotide sequence. The purpose of such modifications can be, for example, further restriction of the coding sequence contained therein, or the insertion of more cleavage sites, for example for restriction enzymes.

다른 기능적 등가물은 그의 기능이 출발 유전자 또는 유전자 단편에 비해 덜 또는 더 뚜렷한 변형체이다.Another functional equivalent is a variant whose function is less or more pronounced than the starting gene or gene fragment.

또한, 인공 DNA 서열은 상기한 바와 같이 살진균제에 대한 원하는 내성을 유도하기만 하면 적당한 것이다. 그러한 인공 DNA 서열은 예를 들어 살진균제 결합 활성을 가지며 분자 모델링에 의해 또는 시험관내 선택에 의해 구축된 단백질을 역번역시킴으로써 확인될 수 있다. 특히 적합한 것은 숙주 식물에 대해 특이적인 코돈 이용에 따라서 폴리펩티드 서열을 역번역시킴으로써 얻어진 코딩 DNA 서열이다. 특이적인 코돈 이용은 형질전환될 식물의 다른 공지된 유전자의 컴퓨터 지원 평가에 의해 식물 유전학의 방법의 숙련인에 의해 쉽게 결정될 수 있다.In addition, artificial DNA sequences are suitable as long as they induce the desired resistance to fungicides as described above. Such artificial DNA sequences can be identified, for example, by reverse translation of proteins having fungicidal binding activity and constructed by molecular modeling or by in vitro selection. Particularly suitable are coding DNA sequences obtained by reverse translation of polypeptide sequences in accordance with codon usage specific to the host plant. Specific codon usage can be readily determined by one skilled in the method of plant genetics by computer-assisted assessment of other known genes of the plant to be transformed.

언급되어야 하는 본 발명에 따른 또다른 적합한 동등한 핵산 서열은 일부가 비식물 유래된 살진균제 결합 폴리펩티드 또는 그의 기능적으로 등가 부분인 융합 단백질을 코딩하는 서열이다. 예를 들어, 융합 단백질의 제2 부분은 효소 활성을 갖는 또다른 폴리펩티드, 또는 scFvs 발현의 검출을 가능하게 하는 항원 폴리펩티드 서열일 수 있다(예를 들어, myc-tag 또는 his-tag). 그러나, 그것은 바람직하게는 살진균제 결합 특성을 갖는 폴리펩티드를 원하는 작용 부위로 향하게 하는 조절 단백질 서열, 예를 들어 시그널 또는 일시 펩티드이다.Another suitable equivalent nucleic acid sequence according to the invention which should be mentioned is a sequence encoding a fusion protein, some of which are non-plant derived fungicide binding polypeptides or functionally equivalent parts thereof. For example, the second portion of the fusion protein may be another polypeptide having enzymatic activity, or an antigen polypeptide sequence that allows detection of scFvs expression (eg myc-tag or his-tag). However, it is preferably a regulatory protein sequence, such as a signal or a transient peptide, that directs a polypeptide having fungicidal binding properties to the desired site of action.

그러나, 본 발명은 또한 본 발명에 따라서 생성된 발현 생성물 및 일시 펩티드 및 살진균제 결합 특성을 갖는 폴리펩티드의 융합 단백질에 관한 것이다.However, the present invention also relates to fusion proteins of expression products produced according to the invention and polypeptides having transient peptide and fungicide binding properties.

본 발명의 목적을 위한 저항성/내성은 식물 효소 억제제의 작용을 견디기 위한 식물의 인공적으로 획득된 능력을 의미한다. 그것은 하나 이상의 식물 제조 기간 동안 이들 억제제에 대한 부분적인 및 특히 완전한 비감수성을 포함한다.Resistance / resistant for the purposes of the present invention means the artificially obtained ability of plants to withstand the action of plant enzyme inhibitors. It includes partial and especially complete insensitivity to these inhibitors for one or more periods of plant manufacture.

살진균제 작용의 일차적인 부위는 일반적으로 잎 조직이므로, 외생 살진균제 결합 폴리펩티드의 잎 특이적 발현이 충분한 보호를 제공할 수 있게 된다. 그러나, 당업자는 살진균제의 작용이 잎 조직에 제한되지 않고, 조직 특이적 방법으로 식물의 모든 나머지 기관에서 발휘될 수도 있음을 쉽게 이해할 것이다.Since the primary site of fungicide action is generally leaf tissue, leaf specific expression of exogenous fungicide binding polypeptides may provide sufficient protection. However, those skilled in the art will readily understand that the action of fungicides is not limited to leaf tissue and may be exerted in all remaining organs of the plant in a tissue specific manner.

또한, 외생 살진균제 결합 폴리펩티드의 구성적 발현이 유리하다. 한편, 유도 발현이 바람직할 수도 있다.In addition, constitutive expression of exogenous fungicide binding polypeptides is advantageous. On the other hand, induced expression may be preferred.

살진균제 결합 특성을 갖는 유전자 도입으로 발현되는 폴리펩티드의 효능은 예를 들어 다른 농도를 갖는 일련의 살진균제 함유 배지 상에서의 새싹 분열조직 증식에 의해, 또는 종자 발아 시험을 통해 시험관내에서 확인될 수 있다. 시험 식물의 유형 및 농도에 따라 변화되었던, 시험 식물의 살진균제 내성은 온실 실험에서 시험될 수 있다.The efficacy of polypeptides expressed by transduction with fungicidal binding properties can be confirmed in vitro, for example, by sprouting meristem growth on a series of fungicide containing media with different concentrations, or via seed germination tests. . Fungicide resistance of test plants, which varied with the type and concentration of test plants, can be tested in greenhouse experiments.

본 발명은 또한 본 발명에 따른 발현 카세트에 의해 형질전환된 유전자 도입 식물, 및 그러한 식물의 유전자 도입 세포, 조직, 기관 및 증식 재료에 관한 것이다. 특히 바람직한 것은 유전자 도입 작물, 예를 들어 곡류, 옥수수, 콩, 쌀, 목화, 사탕무, 캐놀라, 해바라기, 아마, 감자, 담배, 토마토, 지방종자 평지, 자주개자리, 상추 및 여러 관목, 수목, 견과 및 비티스종, 예를 들어, 커피, 사과, 서양배 또는 버찌 등의 과실수, 호도 또는 피칸 등의 견과류 수목, 더욱 중요한 것으로는 포도나무이다.The invention also relates to transgenic plants transformed with the expression cassettes according to the invention and transgenic cells, tissues, organs and proliferating materials of such plants. Particularly preferred are transgenic crops such as cereals, corn, soybeans, rice, cotton, sugar beets, canola, sunflower, flax, potatoes, tobacco, tomatoes, oilseed rape, alfalfa, lettuce and various shrubs, trees, nuts and Vitis species, for example, fruit trees such as coffee, apples, pears or cherries, nut trees such as hodo or pecans, and more importantly vines.

유전자 도입 식물, 식물 세포, 식물 조직 또는 식물 기관은 식물 효소를 억제하는 유해 활성을 지닌 살진균제로 처리될 수 있고, 그럼으로써 성공적으로 형질전환되지 않았던 식물, 식물 세포, 식물 조직 또는 식물 기관은 죽거나 손상을 입는다. 적당한 활성 성분의 예로는 특히 메틸 메톡시이미노-α-(o-톨릴옥시)-o-톨릴아세테이트(BAS 490F) 및 이들 화합물의 대사산물 및 기능적 유도체가 있다. 살진균제 결합 특성을 갖는 폴리펩티드를 코딩하며 본 발명에 따른 발현 카세트로 삽입된 DNA는 선택 마커로서 사용될 수도 있다.Transgenic plants, plant cells, plant tissues or plant organs can be treated with fungicides with harmful activity that inhibits plant enzymes, thereby killing plants, plant cells, plant tissues or plant organs that have not been successfully transformed or Damage. Examples of suitable active ingredients are especially methyl methoxyimino-α- (o-tolyloxy) -o-tolylacetate (BAS 490F) and metabolites and functional derivatives of these compounds. DNA encoding a polypeptide having fungicidal binding properties and inserted into an expression cassette according to the invention may also be used as a selection marker.

본 발명은 특히 작물의 경우에 식물에 유해 활성을 지닌 살진균제에 대한 작물의 선택된 내성이 유도되기만 하면, 그러한 억제제는 높은 시용률일지라도 식물에 해를 입히지 않으면서 유해한 진균류를 억제하기 위해 사용될 수 있다는 잇점을 갖는다. 하기 군으로부터의 살진균제 화합물은 그러한 억제제의 예로서 언급될 수 있지만, 이에 제한되는 것은 아니다:The present invention provides that such inhibitors can be used to inhibit harmful fungi without harming the plant even at high application rates, as long as the selected resistance of the crop to fungicides with harmful activity to the plant is induced, especially in the case of crops. Has an advantage. Fungicide compounds from the following groups may be mentioned as examples of such inhibitors, but are not limited to:

· 황, 디티오카르바메이트 및 그의 유도체, 예를 들어 디메틸디티오카르밤산 철(Ⅲ), 디메틸디티오카르밤산 아연, 에틸렌비스디티오카르밤산 아연, 에틸렌비스디티오카르밤산 망간, 에틸렌디아민비스디티오카르밤산 망간 아연, 테트라메틸티우람 디술피드, (N,N-에틸렌비스디티오카르밤산)아연의 암모니아 착물, (N,N'-프로필렌비스디티오카르밤산)아연의 암모니아 착물, (N,N'-프로필렌비스디티오카르밤산)아연, N,N'-폴리프로필렌비스(티오카르바모일)디술피드;Sulfur, dithiocarbamates and derivatives thereof such as dimethyldithiocarbamate iron (III), dimethyldithiocarbamate zinc, ethylenebisdithiocarbamate zinc, ethylenebisdithiocarbamate manganese, ethylenediamine Manganese zinc bisdithiocarbamate, tetramethylthiuram disulfide, ammonia complex of (N, N-ethylenebisdithiocarbamic acid) zinc, ammonia complex of (N, N'-propylenebisdithiocarbamic acid) zinc, (N, N'-propylenebisdithiocarbamic acid) zinc, N, N'-polypropylenebis (thiocarbamoyl) disulfide;

· 니트로 유도체, 예를 들어, 디니트로(1-메틸헵틸)페닐 크로토네이트, 2-sec-부틸-4,6-디니트로페닐-3,3-디메틸아크릴레이트, 2-sec-부틸-4,6-디니트로페닐 이소프로필 카르보네이트, 디이소프로필 5-니트로이소프탈레이트;Nitro derivatives such as dinitro (1-methylheptyl) phenyl crotonate, 2-sec-butyl-4,6-dinitrophenyl-3,3-dimethylacrylate, 2-sec-butyl-4 , 6-dinitrophenyl isopropyl carbonate, diisopropyl 5-nitroisophthalate;

· 헤테로시클릭 물질, 예를 들어 2-헵타데실-2-이미다졸린 아세테이트, 2,4-디클로로-6-(o-클로로아닐린)-s-트리아진, O,O-디에틸 프탈이미도포스포노티오에이트, 5-아미노-1-[비스(디메틸아미노)포스포닐]-3-페닐-1,2,4-트리아졸, 2,3-디시아노-1,4,-디티오안트라퀴논, 2-티오-1,3-디티올로[4,5-b]퀴녹살린, 메틸-1-(부틸카르바모일)-2-벤즈이미다졸카르바메이트, 2-메톡시카르보닐아미노벤즈이미다졸, 2-(2-푸릴)벤즈이미다졸, 2-(4-트리아졸릴)벤즈이미다졸, N-(1,1,2,2-테트라클로로에틸티오)테트라히드로프탈이미드, N-트리클로로메틸티오테트라히드로프탈이미드, N-트리클로로메틸티로프탈이미드,Heterocyclic materials such as 2-heptadecyl-2-imidazoline acetate, 2,4-dichloro-6- (o-chloroaniline) -s-triazine, O, O-diethyl phthalimidofos Phonothioate, 5-amino-1- [bis (dimethylamino) phosphonyl] -3-phenyl-1,2,4-triazole, 2,3-dicyano-1,4, -dithioanthraquinone, 2-thio-1,3-dithiolo [4,5-b] quinoxaline, methyl-1- (butylcarbamoyl) -2-benzimidazolecarbamate, 2-methoxycarbonylaminobenzimi Dazole, 2- (2-furyl) benzimidazole, 2- (4-triazolyl) benzimidazole, N- (1,1,2,2-tetrachloroethylthio) tetrahydrophthalimide, N-trichloro Romethylthiotetrahydrophthalimide, N-trichloromethyltyrophthalimide,

· N-디클로로플루오로메틸티오-N',N'-디메틸-N-페닐술포디아미드, 5-에톡시-3-트리클로로메틸-1,2,3-티아디아졸, 2-티오시아네이토메틸티오벤조티아졸, 1,4-디클로로-2,5-디메톡시벤젠, 4-(2-클로로페닐히드라조노)-3-메틸-5-이속사졸론, 피리딘-2-티오-1-옥시드, 8-히드록시퀴놀린 또는 그의 구리염, 2,3-디히드로-5-카르복스아닐리도-6-메틸-1,4-옥사티인, 2,3-디히드로-5-카르복스아닐리도-6-메틸-1,4-옥사티인, 4,4-디옥시드, 2-메틸-5,6-디히드로-4H-피란-3-카르복스아닐리드, 2-메틸푸란-3-카르복스아닐리드, 2,5-디메틸푸란-3-카르복스아닐리드, 2,4,5-트리메틸푸란-3-카르복스아닐리드, N-시클로헥실-2,5-디메틸푸란-3-카르복스아미드, N-시클로헥실-N-메톡시-2,5-디메틸푸란-3-카르복스아미드, 2-메틸벤즈아닐리드, 2-요오도벤즈아닐리드, N-포르밀-N-모르폴린-2,2,2-트리클로로에틸 아세탈, 피페라진-1,4-디일비스-1-(2,2,2-트리클로로에틸)포름아미드, 1-(3,4-디클로로아닐리노)-1-포르밀아미노-2,2,2-트리클로로에탄;N-dichlorofluoromethylthio-N ', N'-dimethyl-N-phenylsulfodiamide, 5-ethoxy-3-trichloromethyl-1,2,3-thiadiazole, 2-thiocyane Itomethylthiobenzothiazole, 1,4-dichloro-2,5-dimethoxybenzene, 4- (2-chlorophenylhydrazono) -3-methyl-5-isoxazolone, pyridine-2-thio-1- Oxide, 8-hydroxyquinoline or a copper salt thereof, 2,3-dihydro-5-carboxanilideo-6-methyl-1,4-oxathiin, 2,3-dihydro-5-carbox Anilido-6-methyl-1,4-oxatiin, 4,4-dioxide, 2-methyl-5,6-dihydro-4H-pyran-3-carboxanilide, 2-methylfuran-3- Carboxanilide, 2,5-dimethylfuran-3-carboxanilide, 2,4,5-trimethylfuran-3-carboxanilide, N-cyclohexyl-2,5-dimethylfuran-3-carboxamide, N-cyclohexyl-N-methoxy-2,5-dimethylfuran-3-carboxamide, 2-methylbenzanilide, 2-iodobenzanilide, N-formyl-N-morpholine-2,2, 2-trichloro Tyl Acetal, Piperazine-1,4-diylbis-1- (2,2,2-trichloroethyl) formamide, 1- (3,4-dichloroanilino) -1-formylamino-2,2 , 2-trichloroethane;

· 아민, 예를 들어, 2,6-디메틸-N-트리데실모르폴린 또는 그의 염, 2,6-디메틸-N-시클로도데실모르폴린 또는 그의 염, N-[3-(p-t-부틸페닐)-2-메틸프로필]-시스-2,6-디메틸모르폴린, N-[3-(p-t-부틸페닐)-2-메틸프로필]피페리딘, (8-(1,1-디메틸에틸)-N-에틸-N-프로필-1,4-디옥사스피로[4.5]데센-2-메탄아민,Amines such as 2,6-dimethyl-N-tridecylmorpholine or salts thereof, 2,6-dimethyl-N-cyclododecylmorpholine or salts thereof, N- [3- (pt-butylphenyl ) -2-methylpropyl] -cis-2,6-dimethylmorpholine, N- [3- (pt-butylphenyl) -2-methylpropyl] piperidine, (8- (1,1-dimethylethyl) -N-ethyl-N-propyl-1,4-dioxaspiro [4.5] decene-2-methanamine,

· 아졸, 예를 들어, 1-[2-(2,4-디클로로페닐)-4-에틸-1,3-디옥솔란-2-일에틸]-1H-1,2,4-트리아졸, 1-[2-(2,4-디클로로페닐)-4-n-프로필-1,3-디옥솔란-2-일에틸]-1H-1,2,4-트리아졸, N-(n-프로필)-N-(2,4,6-트리클로로페녹시에틸)-N'-이미다졸릴우레아, 1-(4-클로로페녹시)-3,3-디메틸-1-(1H-1,2,4-트리아졸-1-일)-2-부탄온, 1-(4-클로로페녹시)-3,3-디메틸-1-(1H-1,2,4-트리아졸-1-일)-2-부탄올, (2RS,3RS)-1-[3-(2-클로로페닐)-2-(4-플루오로페닐)-옥시란-2-일메틸]-1H-1,2,4-트리아졸, 1-[2-(2,4-디클로로페닐)-펜틸]-1H-1,2,4-트리아졸, 2,4'-디플루오로-α-(1H-1,2,4-트리아졸릴-1-메틸)벤즈히드릴 알콜, 1-((비스(4-플루오로페닐)메틸실릴)메틸)-1H-1,2,4-트리아졸, 1-[2RS,4RS;2RS,4SR)-4-브로모-2-(2,4-디클로로페닐)테트라히드로푸릴]-1H-1,2,4-트리아졸, 2-(4-클로로페닐)-3-시클로로프로필-1-(1H-1,2,4-트리아졸-1-일)-부탄-2-올, (+)-4-클로로-4-[4-메틸-2-(1H-1,2,4-트리아졸-1-일메틸)-1,3-디옥솔란-2-일]페닐 4-클로로페닐 에테르, (E)-(R,S)-1-(2,4-디클로로페닐)-4,4-디메틸-2-(1H-1,2,4-트리아졸-1-일)-1-펜텐-3-올, 4-(4-클로로페닐)-2-페닐-2-(1H-1,2,4-트리아졸릴메틸)부티로니트릴, 3-(2,4-디클로로페닐)-6-플루오로-2-(1H-1,2,4-트리아졸-1-일)퀴나졸린-4(3H)-온, (R,S)-2-(2,4-디클로로페닐)-1H-1,2,4-트리아졸-1-일)헥산-2-올, (1RS,5RS;1RS,5SR)-5-(4-클로로벤질)-2,2-디메틸-1-(1H-1,2,4-트리아졸-1-일메틸)시클로펜탄올), (R,S)-1-(4-클로로페닐)-4,4-디메틸-3-(1H-1,2,4-트리아졸-1-일메틸)펜탄-3-올, (+)-2-(2,4-디클로로페닐)-3-(1H-1,2,4-트리아졸릴)프로필-1,1,2,2-테트라플루오로에틸 에테르, (E)-1-[1-[4-클로로-2-트리플루오로메틸)페닐]이미노)-2-프로폭시에틸]-1H-이미다졸, 2-(4-클로로페닐)-2-(1H-1,2,4-트리아졸-1-일메틸)헥사노니트릴, α-(2-클로로페닐)-α-(4-클로로페닐)-5-피리미딘메탄올, 5-부틸-2-디메틸아미노-4-히드록시-6-메틸피리미딘, 비스(p-클로로페닐)-3-피리미딘메탄올, 1,2-비스(3-에톡시카르보닐-2-티오우레이도)벤젠, 1,2-비스(3-메톡시카르보닐-2-티오우레이도)벤젠,Azoles, for example 1- [2- (2,4-dichlorophenyl) -4-ethyl-1,3-dioxolan-2-ylethyl] -1H-1,2,4-triazole, 1 -[2- (2,4-Dichlorophenyl) -4-n-propyl-1,3-dioxolan-2-ylethyl] -1H-1,2,4-triazole, N- (n-propyl) -N- (2,4,6-trichlorophenoxyethyl) -N'-imidazolylurea, 1- (4-chlorophenoxy) -3,3-dimethyl-1- (1H-1,2, 4-triazol-1-yl) -2-butanone, 1- (4-chlorophenoxy) -3,3-dimethyl-1- (1H-1,2,4-triazol-1-yl)- 2-butanol, (2RS, 3RS) -1- [3- (2-chlorophenyl) -2- (4-fluorophenyl) -oxiran-2-ylmethyl] -1 H-1,2,4-tria Sol, 1- [2- (2,4-dichlorophenyl) -pentyl] -1 H-1,2,4-triazole, 2,4'-difluoro-α- (1H-1,2,4- Triazolyl-1-methyl) benzhydryl alcohol, 1-((bis (4-fluorophenyl) methylsilyl) methyl) -1H-1,2,4-triazole, 1- [2RS, 4RS; 2RS, 4SR) -4-bromo-2- (2,4-dichlorophenyl) tetrahydrofuryl] -1H-1,2,4-triazole, 2- (4-chlorophenyl) -3-cyclopropyl-1 -(1H-1,2,4-triazol-1-yl) -butan-2-ol, (+)-4- Chloro-4- [4-methyl-2- (1H-1,2,4-triazol-1-ylmethyl) -1,3-dioxolan-2-yl] phenyl 4-chlorophenyl ether, (E) -(R, S) -1- (2,4-dichlorophenyl) -4,4-dimethyl-2- (1H-1,2,4-triazol-1-yl) -1-penten-3-ol , 4- (4-chlorophenyl) -2-phenyl-2- (1H-1,2,4-triazolylmethyl) butyronitrile, 3- (2,4-dichlorophenyl) -6-fluoro-2 -(1H-1,2,4-triazol-1-yl) quinazolin-4 (3H) -one, (R, S) -2- (2,4-dichlorophenyl) -1H-1,2, 4-triazol-1-yl) hexan-2-ol, (1RS, 5RS; 1RS, 5SR) -5- (4-chlorobenzyl) -2,2-dimethyl-1- (1H-1,2,4 -Triazol-1-ylmethyl) cyclopentanol), (R, S) -1- (4-chlorophenyl) -4,4-dimethyl-3- (1H-1,2,4-triazole-1 -Ylmethyl) pentan-3-ol, (+)-2- (2,4-dichlorophenyl) -3- (1H-1,2,4-triazolyl) propyl-1,1,2,2-tetra Fluoroethyl ether, (E) -1- [1- [4-chloro-2-trifluoromethyl) phenyl] imino) -2-propoxyethyl] -1H-imidazole, 2- (4-chloro Phenyl) -2- (1H-1,2,4-triazol-1-ylmethyl) hexanonitrile, α- (2-chlorofe ) -α- (4-chlorophenyl) -5-pyrimidinmethanol, 5-butyl-2-dimethylamino-4-hydroxy-6-methylpyrimidine, bis (p-chlorophenyl) -3-pyrimidinemethanol , 1,2-bis (3-ethoxycarbonyl-2-thioureido) benzene, 1,2-bis (3-methoxycarbonyl-2-thioureido) benzene,

· 스트로빌유린, 예를 들어, 메틸 E-메톡시이미노-[α-(o-톨릴옥시)-o-톨릴]아세테이트, 메틸 E-2-{2-[6-(2-시아노페녹시)피리미딘-4-일옥시]페닐}-3-메톡시아크릴레이트, 메틸 E-메톡시이미노-[α-(2-페녹시페닐)]아세트아미드, 메틸 E-메톡시이미노-[α-(2,5-디메틸페녹시)-o-톨릴]아세트아미드,Strobilurines, for example methyl E-methoxyimino- [α- (o-tolyloxy) -o-tolyl] acetate, methyl E-2- {2- [6- (2-cyanophenoxy ) Pyrimidin-4-yloxy] phenyl} -3-methoxyacrylate, methyl E-methoxyimino- [α- (2-phenoxyphenyl)] acetamide, methyl E-methoxyimino- [α- (2,5-dimethylphenoxy) -o-tolyl] acetamide,

· 아닐리노피리미딘, 예를 들어, N-(4,6-디틸피리미딘-2-일)아닐린, N-[4-메틸-6-(1-프로피닐)피리미딘-2-일]아닐린, N-[4-메틸-6-시클로프로필피리미딘-2-일]아닐린,Anilinopyrimidines, for example N- (4,6-ditylpyrimidin-2-yl) aniline, N- [4-methyl-6- (1-propynyl) pyrimidin-2-yl] aniline , N- [4-methyl-6-cyclopropylpyrimidin-2-yl] aniline,

· 페닐피롤, 예를 들어, 4-(2,2-디플루오로-1,3-벤조디옥솔-4-일)피롤-3-카르보니트릴,Phenylpyrrole, for example 4- (2,2-difluoro-1,3-benzodioxol-4-yl) pyrrole-3-carbonitrile,

· 신남아미드, 예를 들어, 3-(4-클로로페닐)-3-(3,4-디메톡시페닐)아크릴로일모르폴린, 및Cinnamic amides such as 3- (4-chlorophenyl) -3- (3,4-dimethoxyphenyl) acryloyl morpholine, and

· 여러 살진균제, 예를 들어, 도데실구아니딘 아세테이트, 3-[3-(3,5-디메틸-2-옥시시클로헥실)-2-히드록시에틸]글루타르이미드, N-메틸-, N-에틸-(4-트리플루오로메틸-2-[3',4'-디메톡시페닐]벤즈아미드, 헥사클로로벤젠, 메틸 N-(2,6-디메틸페닐)-N-(2-푸로일)-DL-알라니네이트, DL-N-(2,6-디메틸페닐)-N-(2'-메톡시아세틸)알라닌 메틸 에스테르, N-(2,6-디메틸페닐)-N-클로로아세틸-D,L-2-아미노부티로락톤, DL-N-(2,6-디메틸페닐)-N-(페닐아세틸)알라닌 메틸 에스테르, N-(2,6-디메틸페닐)-N-클로로아세틸-D,L-2-아미노부티로락톤, DL-N-(2,6-디메틸페닐)-N-(페닐아세틸)알라닌 메틸 에스테르, 5-메틸-5-비닐-3-(3,5-디클로로페닐)-2,4-디옥소-1,3-옥사졸리딘, 3-[3,5-디클로로페닐(5-메틸-5-메톡시메틸]-1,3-옥사졸리딘-2,4-디온, 3-(3,5-디클로로페닐)-1-이소프로필카르바모일히단토인, N-(3,5-디클로로페닐)-1,2-디메틸시클로프로판-1,2-디카르복시이미드, 2-시아노-[N-(에틸아미노카르보닐)-2-메톡시이미노]아세트아미드, N-(3-클로로-2,6-디니트로-4-트리플루오로메틸페닐)-5-트리플루오로메틸-3-클로로-2-아미노피리딘.Various fungicides, for example dodecylguanidine acetate, 3- [3- (3,5-dimethyl-2-oxycyclohexyl) -2-hydroxyethyl] glutarimidide, N-methyl-, N- Ethyl- (4-trifluoromethyl-2- [3 ', 4'-dimethoxyphenyl] benzamide, hexachlorobenzene, methyl N- (2,6-dimethylphenyl) -N- (2-furoyl) -DL-alanine, DL-N- (2,6-dimethylphenyl) -N- (2'-methoxyacetyl) alanine methyl ester, N- (2,6-dimethylphenyl) -N-chloroacetyl- D, L-2-aminobutyrolactone, DL-N- (2,6-dimethylphenyl) -N- (phenylacetyl) alanine methyl ester, N- (2,6-dimethylphenyl) -N-chloroacetyl- D, L-2-aminobutyrolactone, DL-N- (2,6-dimethylphenyl) -N- (phenylacetyl) alanine methyl ester, 5-methyl-5-vinyl-3- (3,5-dichloro Phenyl) -2,4-dioxo-1,3-oxazolidine, 3- [3,5-dichlorophenyl (5-methyl-5-methoxymethyl] -1,3-oxazolidine-2,4 -Dione, 3- (3,5-dichlorophenyl) -1-isopropylcarbamoylhydantoin, N- (3,5-dichloro Phenyl) -1,2-dimethylcyclopropane-1,2-dicarboxyimide, 2-cyano- [N- (ethylaminocarbonyl) -2-methoxyimino] acetamide, N- (3-chloro- 2,6-dinitro-4-trifluoromethylphenyl) -5-trifluoromethyl-3-chloro-2-aminopyridine.

살진균제의 기능적으로 유사한 유도체의 작용 범위는 본질적으로는 명명된 물질의 작용 범위와 유사한 반면, 식물에 대한 유해 활성은 더 낮거나, 동일하거나 또는 더 높다.The range of action of functionally similar derivatives of fungicides is essentially similar to that of named substances, while the detrimental activity on plants is lower, the same or higher.

본 발명은 이제 다음 실시예에 의해 예시되지만, 이에 제한되는 것은 아니다.The invention is now illustrated by, but not limited to, the following examples.

<일반적인 클로닝 방법><General Cloning Method>

본 발명의 범위내에서 수행된 클로닝 단계, 예를 들어 제한효소에 의한 절단, 아가로스 겔 전기영동, DNA 단편의 정제, 핵산의 니트로셀룰로스 및 나일론막으로의 전달, DNA 단편의 연결, 이. 콜리 세포의 형질전환, 세균의 배양, 파아지의 증식 및 재조합 DNA의 서열 분석을 문헌[Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6]에 기재된 바와 같이 수행하였다.Cloning steps performed within the scope of the present invention, eg, cleavage by restriction enzymes, agarose gel electrophoresis, purification of DNA fragments, delivery of nucleic acids to nitrocellulose and nylon membranes, ligation of DNA fragments, e. Transformation of coli cells, bacterial cultures, phage proliferation and sequencing of recombinant DNA are described in Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6.

이하에 사용된 세균주(이. 콜리, XL-I 블루)는 스트라타진(Stratagene)으로부터 얻었다. 식물의 형질전환을 위해 사용되는 아그로박테리아 균주(아그로박테륨 투메파시엔스, 플라스미드 pGV2260 또는 pGV3850kan을 갖는 C58C1)는 문헌[Deblaere et al. (Nucl. Acids Res. 13 (1985) 4777)에 기재되어 있다. 또한, 아그로박테리아 균주 LBA4404(클론테크) 또는 다른 적합한 균주가 사용될 수도 있다. 벡터 pUC19(Yanish-Perron, Gene 33(1985), 103-119), pBluescript SK-(Stratagene), pGEM-T(Promega), pZerO(Invitrogen), pBin19(Bevan et al., Nucl. Acids Res. 12(1984) 8711-8720) 및 pBinAR(Hofgen and Willmitzer, Plant Science 66(1990) 221-230)을 클로닝 목적에 이용하였다.The bacterial strain (E. coli, XL-I blue) used below was obtained from Stratagene. Agrobacterial strains (C58C1 with Agrobacterium tumefaciens, plasmid pGV2260 or pGV3850kan) used for plant transformation are described in Deblaere et al. (Nucl. Acids Res. 13 (1985) 4777). In addition, Agrobacteria strain LBA4404 (Clontech) or other suitable strain may be used. Vectors pUC19 (Yanish-Perron, Gene 33 (1985), 103-119), pBluescript SK- (Stratagene), pGEM-T (Promega), pZerO (Invitrogen), pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711-8720) and pBinAR (Hofgen and Willmitzer, Plant Science 66 (1990) 221-230) were used for cloning purposes.

<재조합 DNA의 서열 분석>Sequence Analysis of Recombinant DNA

재조합 DNA 분자를 생어(Sanger)의 방법을 이용하여 파마시아(Pharmacia)의 레이저 형광 DNA 서열화 장치를 이용하여 서열분석을 하였다[Sanger et al., Proc. Natl. Acad. Sci. USA 74(1977) 5463-5467].Recombinant DNA molecules were sequenced using Pharmacia's laser fluorescence DNA sequencing device using Sanger's method [Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977) 5463-5467.

<식물 발현 카세트의 형성><Formation of Plant Expression Cassette>

35S CaMV 프로모터를 EcoRI-KpnI 단편(꽃양배추 모자이크 바이러스의 뉴클레오티드 6909-7437에 상응함[Franck et al. Cell 21 (1980) 285)] 형태의 플라스미드 pBin19[Bevan et al., Nucl. Acids Res. 12, 8711 (1984)]에 삽입하였다. Ti 플라스미드 pTiACH5의 T-DNA의 유전자 3의 폴리아데닐화 시그널[Gielen et al., EMBO J. 3 (1984) 835], 뉴클레오티드 11749-11939를 PvuII-HindIII 단편 형태로 단리하고, SphI 링커를 가한 후에 벡터의 SphI-HindIII 절단 부위 사이의 PvuII 절단 부위로 클로닝시켰다. 이로인해 플라스미드 pBinAR가 제공되었다[Hofgen and Willmitzer, Plant Science 66 (1990) 221-230].The 35S CaMV promoter was plasmid pBin19 in the form of EcoRI-KpnI fragment (corresponding to nucleotides 6909-7437 of Cauliflower mosaic virus [Franck et al. Cell 21 (1980) 285)] [Bevan et al., Nucl. Acids Res. 12, 8711 (1984). Polyadenylation signal of gene 3 of T-DNA of Ti plasmid pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835), nucleotides 11749-11939 in the form of PvuII-HindIII fragments and after addition of SphI linker It was cloned into the PvuII cleavage site between the SphI-HindIII cleavage sites of the vector. This gave plasmid pBinAR (Hofgen and Willmitzer, Plant Science 66 (1990) 221-230).

<사용예><Use example>

<실시예 1><Example 1>

살진균제가 면역원성이 아니기 때문에, 그것은 담체 물질, 예를 들어 KLH에 커플링되어야 한다. 분자가 반응성기를 함유하는 경우, 커플링은 직접 실시될 수 있으며, 그렇지 않으면 이 분자를 간단한 반응 단계에서 담체 분자에 커플링시키기 위하여 살진균제가 합성되거나 또는 합성 중에 반응성 전구체가 선택될 때 관능기가 도입된다. 커플링 반응의 예는 문헌[Miroslavic Ferencik in "Handbook of Immunochemistry", 1993, Chapman & Hall, in the chapter Antigens, pages 20-49]에서 찾아볼 수 있다.Because fungicides are not immunogenic, they must be coupled to a carrier material, for example KLH. If the molecule contains a reactive group, the coupling can be carried out directly, otherwise the functional group is introduced when a fungicide is synthesized or a reactive precursor is selected during synthesis to couple the molecule to the carrier molecule in a simple reaction step. do. Examples of coupling reactions can be found in Miroslavic Ferencik in "Handbook of Immunochemistry", 1993, Chapman & Hall, in the chapter Antigens, pages 20-49.

이 변형된 담체 분자(항원)의 반복된 주입은 예를 들어 Balb/c 생쥐를 면역화시키는데 사용된다. 항원에 결합하고 있는 충분한 수의 항체가 ELISA(효소 표식 면역정량법)에서 검출 가능하기만 하면, 하이브리드를 배양하기 위하여 동물의 비장 세포를 제거하고 골수종 세포와 융합시킨다. "살진균제 변형된 BSA"는 또한 합텐에 대한 면역 반응을 KLH 반응과 구별하기 위하여 ELISA에서 항원으로서 사용된다.Repeated infusion of this modified carrier molecule (antigen) is used to immunize Balb / c mice, for example. As long as a sufficient number of antibodies bound to the antigen can be detected by ELISA (enzyme labeled immunoassay), spleen cells of the animal are removed and fused with myeloma cells for culturing the hybrid. "Fungicide modified BSA" is also used as an antigen in ELISA to distinguish the immune response against hapten from the KLH response.

모노클로날 항체는 예를 들어 문헌["Practical Immunology", Leslie Hudson and Frank Hay, Blackwell Scientific Publications, 1989 or in "Monoclonal Antibodies: Principles and Practice", James Goding, 1983, Academic Press, Inc., or in "A practical guide to monoclonal antibodies", J. Liddell and A. Cryer, 1991, John Wiley & Sons; 또는 Achim Moller and Franz Emling "Monoklonale Antikorper gegen TNF und deren Verwendung" [Monoclonal antibodies against TNF, and their use]]에 기재된 바와 같은 공지된 방법과 유사한 방법으로 제조된다. 유럽 특허 공개 제260610호에 기재되어 있다.Monoclonal antibodies are described, for example, in "Practical Immunology", Leslie Hudson and Frank Hay, Blackwell Scientific Publications, 1989 or in "Monoclonal Antibodies: Principles and Practice", James Goding, 1983, Academic Press, Inc., or in "A practical guide to monoclonal antibodies", J. Liddell and A. Cryer, 1991, John Wiley &Sons; Or Achim Moller and Franz Emling "Monoklonale Antikorper gegen TNF und deren Verwendung" [Monoclonal antibodies against TNF, and their use]. European Patent Publication No. 260610.

<실시예 2><Example 2>

이 연구의 출발점은 살진균제 BAS 490F를 특이적으로 인지하고 또한 높은 결합 친화력을 갖는 모노클로날 항체였다. 선택된 하이브리도마 세포주는 살진균제 항원 BAS 490F에 대한 분비된 모노클로날 항체가 높은 친화력을 가지며 면역글로블린의 특정 서열이 이용가능하다는 특징을 갖는다[Berek, C. et al., Nature 316, (1985) 412-418]. BAS 490F에 대한 이 모노클로날 항체는 단일쇄 항체 단편(scFv-안티BAS 490F)의 구축을 위한 출발점이었다.The starting point for this study was a monoclonal antibody that specifically recognized the fungicide BAS 490F and also had a high binding affinity. Selected hybridoma cell lines are characterized by the high affinity of the secreted monoclonal antibodies against the fungicide antigen BAS 490F and the availability of specific sequences of immunoglobulins [Berek, C. et al., Nature 316, (1985). 412-418]. This monoclonal antibody against BAS 490F was the starting point for the construction of single chain antibody fragments (scFv-antiBAS 490F).

먼저, mRNA를 하이브리도마 세포로부터 분리하고 cDNA로 전사시켰다. 이 cDNA는 중쇄에 대해서는 특이적 프라이머 VH1 BACK 및 VH FOR-2 및 경쇄에 대해서는 VK2 BACK 및 MJK5 FON X에 의한 가변 면역글로블린 유전자 VH 및 VK의 증폭을 위한 주형으로서 작용하였다[Clackson et al., Nature 352 (1991) 624-628]. 단리된 가변 면역글로블린은 단일쇄 항체 단편(scFv-안티BAS 490F)의 구축을 위한 출발점이었다. 다음의 융합 PCR에서, 세가지 성분 VH, VK 및 링커 단편을 PCR 반응에서 결합시키고 scFv-안티BAS 490F를 증폭시켰다(도 3).First, mRNA was isolated from hybridoma cells and transcribed into cDNA. This cDNA served as a template for the amplification of the variable immunoglobulin genes VH and VK by specific primers VH1 BACK and VH FOR-2 for the heavy chain and VK2 BACK and MJK5 FON X for the light chain [Clackson et al., Nature 352 (1991) 624-628. Isolated variable immunoglobulin was the starting point for the construction of single chain antibody fragments (scFv-antiBAS 490F). In the following fusion PCR, three component VH, VK and linker fragments were combined in a PCR reaction and amplified scFv-antiBAS 490F (FIG. 3).

구축된 scFv-안티BAS 490F 유전자의 기능적 특징화(항원 결합 활성)는 세균계에서의 발현 후에 수행되었다. 이를 위하여, scFv-안티BAS 490F을 문헌[Hoogenboom, H.R. et al., Nucleic Acids Research, 19 (1991) 4133-4137]에 기재된 방법을 이용하여 가용성 항체 단편으로서 이. 콜리에서 합성하였다. 구축된항체 단편의 활성 및 특이성은 ELISA 분석으로 체크하였다(도 4).Functional characterization (antigen binding activity) of the constructed scFv-antiBAS 490F gene was performed after expression in the bacterial system. For this purpose, scFv-antiBAS 490F is described by Hoogenboom, H.R. et al., Nucleic Acids Research, 19 (1991) 4133-4137 using E. coli as a soluble antibody fragment. Synthesized in Collie. The activity and specificity of the constructed antibody fragments were checked by ELISA assay (FIG. 4).

담배에서의 항체 단편의 종자 특이적 발현을 가능하게 하기 위하여, scFv-안티BAS 490F 유전자를 LeB4 프로모터의 하향에 클로닝시켰다. 비시아 파바(Vicia faba)로부터 단리되었던 LeB4 프로모터는 담배에서의 여러 이종 유전자의 종자 특이적 발현을 정확하게 나타낸다[Baumlein, H. et al., Mol. Gen. Genet. 225 (1991) 121-128]. scFv-안티BAS 490F 폴리펩티드의 소포체로의 이송 결과 다량의 항체 단편의 안정한 축적이 일어났다. 이를 위하여, scFv-안티BAS 490F 유전자를, 소포체로의 유입을 확실하게 하는 시그널 펩티드 서열과 또한 폴리펩티드가 ER에 남아있도록 하는 ER 보유 시그널 SEKDEL과 융합시켰다[Wandelt et al., 1992](도 5).To enable seed specific expression of antibody fragments in tobacco, the scFv-antiBAS 490F gene was cloned down the LeB4 promoter. The LeB4 promoter, isolated from Vicia faba, accurately shows seed specific expression of several heterologous genes in tobacco [Baumlein, H. et al., Mol. Gen. Genet. 225 (1991) 121-128]. Transfer of the scFv-antiBAS 490F polypeptide to the endoplasmic reticulum resulted in stable accumulation of large amounts of antibody fragments. To this end, the scFv-antiBAS 490F gene was fused with a signal peptide sequence to ensure influx into the endoplasmic reticulum and also with the ER bearing signal SEKDEL allowing the polypeptide to remain in the ER [Wandelt et al., 1992] (FIG. 5). .

구축된 발현 카세트를 이원 벡터 pGSGLUC 1에 클로닝시키고(Saito et al., 1990), 전기천공에 의해 아그로박테륨 균주 EHA 101로 전이시켰다. 재조합 아그로박테리아 클론을 니코티아나 타바쿰(Nicotiana tabacum)의 다음의 형질전환을 위해 사용하였다. 70-140 담배 식물은 구축 마다 재생되었다. 다른 발육 단계의 종자를 자기 수분작용에 이어서 재생된 유전자 도입 담배 식물로부터 수확하였다. 추출 후에, 수성 완충액 시스템에서 이들 종자로부터 가용성 단백질을 얻었다. 유전자 도입 식물의 분석은 ER 보유 시그널 SEKDEL의 DNA 서열에 대한 scFv-안티BAS 490F 유전자의 융합이 성숙 종자에서 얻어질 1.9% scFv-안티BAS 490F 단백질의 최대 축적이 일어날 수 있도록 함을 입증한다.The constructed expression cassette was cloned into binary vector pGSGLUC 1 (Saito et al., 1990) and transferred to Agrobacterium strain EHA 101 by electroporation. Recombinant Agrobacterium clones were used for the following transformation of Nicotiana tabacum. 70-140 tobacco plants were regenerated per building. Seeds of different developmental stages were harvested from transgenic tobacco plants that were regenerated and then regenerated. After extraction, soluble proteins were obtained from these seeds in an aqueous buffer system. Analysis of transgenic plants demonstrates that fusion of the scFv-antiBAS 490F gene to the DNA sequence of the ER bearing signal SEKDEL allows for the maximum accumulation of 1.9% scFv-antiBAS 490F protein to be obtained in mature seeds.

구축된 scFv-안티BAS 490F 유전자는 그 크기가 약 735 bp이었다. 가변 도메인은 서열 VH-L-VL에서 서로에게 융합되었다.The constructed scFv-antiBAS 490F gene was about 735 bp in size. The variable domains were fused to each other in the sequences VH-L-VL.

직접 ELISA를 이용하여 성숙 담배 종자의 추출물에서 특이적 선택성을 확인하였다. 얻어진 값은 단백질 추출물이 기능적으로 활성인 항체 단편을 함유함을 분명하게 입증한다.Direct ELISA was used to confirm specific selectivity in extracts of mature tobacco seeds. The values obtained clearly demonstrate that the protein extract contains functionally active antibody fragments.

<실시예 3><Example 3>

USP 프로모터의 제어하의 유전자 도입 담배 종자 세포의 소포체에서의 단일쇄 항체 단편의 종자 특이적 발현 및 농도Seed specific expression and concentration of single chain antibody fragments in the endoplasmic reticulum of transgenic tobacco seed cells under the control of the USP promoter

이 연구의 출발점은 살진균제 BAS 490F에 대한 단일쇄 항체 단편(scFv-안티BAS 490F)이었다. 이 scFv-안티BAS 490F 유전자의 기능적 특징화(항원 결합 활성)는 세균계에서의 발현에 이어서 또한 담배 잎에서의 발현에 이어서 수행하였다. 구축된 항체 단편의 활성 및 특이성은 ELISA 분석으로 체크하였다.The starting point for this study was the single chain antibody fragment (scFv-antiBAS 490F) against the fungicide BAS 490F. Functional characterization (antigen binding activity) of this scFv-antiBAS 490F gene was performed following expression in the bacterial system and also in tobacco leaves. The activity and specificity of the constructed antibody fragments were checked by ELISA assay.

담배에서의 항체 단편의 종자 특이적 발현을 가능하게 하기 위하여, scFv-안티BAS 490F 유전자를 USP 프로모터의 하향에 클로닝시켰다. 비시아 파바(Vicia faba)로부터 단리되었던 USP 프로모터는 담배에서의 여러 이종 유전자의 종자 특이적 발현을 정확하게 나타낸다[Fiedler, U. et al., Plant Mol. Biol. 22 (1993) 669-679]. scFv-안티BAS 490F 폴리펩티드의 소포체로의 이송 결과 다량의 항체 단편의 안정한 축적이 일어났다. 이를 위하여, scFv-안티BAS 490F 유전자를, 소포체로의 유입을 확실하게 하는 시그널 펩티드 서열과 또한 폴리펩티드가 ER에 남아있도록 하는 ER 보유 시그널 SEKDE과에 융합시킨다[Wandelt et al., 1992](도 1).To enable seed specific expression of antibody fragments in tobacco, the scFv-antiBAS 490F gene was cloned down the USP promoter. The USP promoter, isolated from Vicia faba, accurately represents seed specific expression of several heterologous genes in tobacco [Fiedler, U. et al., Plant Mol. Biol. 22 (1993) 669-679. Transfer of the scFv-antiBAS 490F polypeptide to the endoplasmic reticulum resulted in stable accumulation of large amounts of antibody fragments. To this end, the scFv-antiBAS 490F gene is fused with a signal peptide sequence that ensures entry into the endoplasmic reticulum and also with the ER bearing signal SEKDE, which allows the polypeptide to remain in the ER [Wandelt et al., 1992] (FIG. 1). ).

구축된 발현 카세트를 이원 벡터 pGSGLUC 1[Saito et al., 1990]에 클로닝시키고 전기천공에 의해 아그로박테륨 균주 EHA 101로 전이시켰다. 재조합 아그로박테리아 클론을 니코티아나 타바쿰(Nicotiana tabacum)의 이후의 형질전환을 위해 사용하였다. 다른 성장 단계에서의 종자를 자기 수분작용에 이어서 재생된 유전자 도입 담배 식물로부터 수거하였다. 추출 후에, 수성 버퍼계에서 이들 종자로부터 가용성 단백질을 얻었다. 유전자 도입 식물의 분석 결과 USP 프로모터의 제어하의 ER 보유 시그널 SEKDEL의 DNA 서열에 대한 scFv-안티BAS 490F 유전자의 융합이 BAS 490F에 대한 결합 친화력을 갖는 단일쇄 항체 단편이 종자 발육 10일째에 이미 합성되도록 한다는 것을 입증한다.The constructed expression cassette was cloned into binary vector pGSGLUC 1 [Saito et al., 1990] and transferred to Agrobacterium strain EHA 101 by electroporation. Recombinant Agrobacterium clones were used for subsequent transformation of Nicotiana tabacum. Seeds at different stages of growth were harvested from transgenic tobacco plants following self-pollination. After extraction, soluble proteins were obtained from these seeds in an aqueous buffer system. Analysis of the transgenic plants revealed that the fusion of the scFv-antiBAS 490F gene to the DNA sequence of the ER-bearing signal SEKDEL under the control of the USP promoter ensured that the single-chain antibody fragment with binding affinity for BAS 490F was already synthesized on day 10 of seed development. Prove it.

<실시예 4><Example 4>

식물내의, 특히 잎내의 항체 단편의 편재하는 발현을 이루기 위해, scFv-안티BAS 490F 유전자를 CaMV 35S 프로모터의 하향에 클로닝시켰다. 이 강한 구성적 프로모터는 실제적으로 모든 식물 조직에서 이종 유전자의 발현을 매개한다[Benfey and Chua, Science 250 (1990) 956-966]. scFv-안티BAS 490F 단백질의 소포체로의 이송은 다량의 항체 단편의 안정한 축적이 잎 재료에서 얻어지도록 한다. 먼저, scFv-안티BAS 490F 유전자를, 소포체로의 유입을 확실하게 하는 시그널 펩티드 서열에 또한 생성물이 ER에 남아있도록 하는 ER 보유 시그널 KDEL에 융합시킨다[Wandelt et al., Plant J. 2(1992) 181-192]. 구축된 발현 카세트를 이원 벡터 pGSGLUC 1에 클로닝시키고[Saito et al., Plant Cell Rep. 8(1990) 718-721], 전기천공에 의해 아그로박테륨 균주 EHA 101로 전이시켰다. 재조합 아그로박테리아 클론을 니코티아나 타바쿰의 이후의 형질전환을 위해 사용하였다. 약 100그루의 담배 식물이 재생되었다. 여러 발육 단계의 잎 재료를 재생된 유전자 도입 담배 식물로부터 제거하였다. 추출 후에, 수성 버퍼계에서 잎 재료로부터 가용성 단백질을 얻었다. 이후의 분석(웨스턴 블롯 분석 및 ELISA 분석)은 생물학적 활성인 항원 결합 scFv-안티BAS 490F 폴리펩티드의 2%를 초과하는 최대 축적이 잎에서 얻어졌음을 입증하였다. 높은 발현가가 완전히 성장된 녹색 잎에서 확인되었지만, 항체 단편은 노후 잎 재료에서도 검출되었다.To achieve ubiquitous expression of antibody fragments in plants, especially in leaves, the scFv-antiBAS 490F gene was cloned down the CaMV 35S promoter. This strong constitutive promoter mediates the expression of heterologous genes in practically all plant tissues (Benfey and Chua, Science 250 (1990) 956-966). Transfer of the scFv-antiBAS 490F protein to the endoplasmic reticulum ensures that stable accumulation of large amounts of antibody fragments is obtained from the leaf material. First, the scFv-antiBAS 490F gene is fused to a signal peptide sequence that ensures influx into the endoplasmic reticulum, and to an ER-bearing signal KDEL that allows the product to remain in the ER [Wandelt et al., Plant J. 2 (1992). 181-192]. The constructed expression cassette was cloned into binary vector pGSGLUC 1 [Saito et al., Plant Cell Rep. 8 (1990) 718-721], and transferred to Agrobacterium strain EHA 101 by electroporation. Recombinant Agrobacteria clones were used for subsequent transformation of Nicotiana tabacum. About 100 tobacco plants were regenerated. Leaf material at various stages of development was removed from the regenerated transgenic tobacco plants. After extraction, soluble protein was obtained from the leaf material in an aqueous buffer system. Subsequent analysis (Western blot analysis and ELISA analysis) demonstrated that a maximum accumulation of more than 2% of the biologically active antigen binding scFv-antiBAS 490F polypeptide was obtained in the leaves. Although high expression values were identified in fully grown green leaves, antibody fragments were also detected in aging leaf material.

<실시예 5><Example 5>

합성 올리고뉴클레오티드에 의한 BAS 490F에 대한 단일쇄 항체를 코딩하는 cDNA의 단편의 PCR 증폭PCR amplification of fragments of cDNA encoding single chain antibodies against BAS 490F by synthetic oligonucleotides

단일쇄 항체 cDNA의 PCR 증폭을 퍼킨 엘머(Perkin Elmer)로부터의 DNA 열 사이클러에서 수행하였다. 반응 혼합물은 8 ng/㎕ 단일 가닥 주형 cDNA, 0.5 μM의 관련 올리고뉴클레오티드, 200 μM 뉴클레오티드(Pharmacia), 50 mM KCl, 10 mM 트리스-HCl(25 ℃에서 pH 8.3, 1.5 mM MgCl2) 및 0.02 U/㎕ Taq 폴리머라제(Perkin Elmer)를 함유하였다. 증폭 조건은 다음과 같이 설정되었다:PCR amplification of the single chain antibody cDNA was performed in a DNA heat cycler from Perkin Elmer. The reaction mixture consists of 8 ng / μl single strand template cDNA, 0.5 μM of related oligonucleotide, 200 μM nucleotide (Pharmacia), 50 mM KCl, 10 mM Tris-HCl (pH 8.3 at 25 ° C., 1.5 mM MgCl 2 ) and 0.02 U / Μl Taq polymerase (Perkin Elmer). The amplification conditions were set as follows:

어닐링 온도: 45 ℃Annealing Temperature: 45 ℃

변성 온도: 94 ℃Denaturation temperature: 94 ℃

신장 온도: 72 ℃Elongation Temperature: 72 ℃

주기의 수: 40Number of cycles: 40

결과로 형성된 것은 약 735 염기쌍의 단편이고, 그것은 벡터 pBluescript로 라이게이션되었다. 라이게이션 혼합물을 이. 콜리 XL-I 블루를 형질전환시키는데 사용하였으며, 플라스미드를 증폭시켰다. 폴리머라제 연쇄 반응의 이용 및 최적화에 관해서는 문헌[Innis et al., 1990, PCR Protocols, A Guide to Methods and Applications, Academic Press]을 참고하면 된다.The resultant is a fragment of about 735 base pairs, which was ligated into the vector pBluescript. Ligation mixture. Coli XL-I Blue was used to transform and plasmids were amplified. See Innis et al., 1990, PCR Protocols, A Guide to Methods and Applications, Academic Press, for the use and optimization of polymerase chain reactions.

<실시예 6><Example 6>

살진균제 결합 특성을 갖는 단일쇄 항체를 코딩하는 cDNA를 발현하는 유전자 도입 담배 식물의 제조Preparation of Transgenic Tobacco Plants Expressing cDNA Encoding Single Chain Antibodies Having Fungicide Binding Properties

플라스미드 pGSGLUC 1을 아그로박테륨 투메파시엔스 C58C1:pGV2260으로 형질전환시켰다. 담배 식물(니코티아나 타바쿰 cv. Samsun NN)을 형질전환시키기 위하여, 수크로스 2%를 함유하는 무라쉬지-스쿠그(Murashige-Skoog) 배지(2MS 배지) 중의 양으로 형질전환된 아그로박테리아 콜로니의 철야 배양물의 1:50 희석액을 사용하였다. 페트리 디쉬에서, 멸균 식물의 원반상 잎(각각 약 1 ㎠)을 1:50 아그로박테리아 희석액에서 5 내지 10분 동안 인큐베이션시켰다. 이후에, 0.8% 박토-아가를 함유하는 2MS 배지 상에서 25 ℃의 어두운 곳에서 2일 동안 인큐베이션시켰다. 16시간 빛/8시간 어둠속에서 2일 후에 배양을 계속하고 500 ㎎/ℓ 클라포란(세포탁심-소듐), 50 ㎎/ℓ 카나마이신, 1 ㎎/ℓ 벤질아미노퓨린(BAP), 0.2 ㎎/ℓ 나프틸아세트산 및 1.6 g/ℓ 글루코스를 함유하는 MS 배지 상에서 매주 주기적으로 반복하며 계속하였다. 성장하는 새싹을 2% 수크로스, 250 ㎎/ℓ 클라포란 및 0.8% 박토-아가를 함유하는 MS 배지로 옮겼다.Plasmid pGSGLUC 1 was transformed with Agrobacterium tumefaciens C58C1: pGV2260. To transform tobacco plants (Nicotiana tabacum cv.Samsun NN), the Agrobacterium colonies transformed with the amount in Murashige-Skoog medium (2MS medium) containing 2% sucrose. A 1:50 dilution of overnight culture was used. In Petri dishes, discoidal leaves of sterile plants (about 1 cm 2 each) were incubated for 5-10 minutes in a 1:50 Agrobacterial dilution. Thereafter, the cells were incubated for 2 days in a dark place at 25 ° C. on 2MS medium containing 0.8% bacto-agar. Incubation was continued after 2 days in 16 h light / 8 h dark and 500 mg / l claporan (Chemtaxam-sodium), 50 mg / l kanamycin, 1 mg / l benzylaminopurine (BAP), 0.2 mg / l The cycle was repeated periodically weekly on MS medium containing naphthylacetic acid and 1.6 g / L glucose. Growing shoots were transferred to MS medium containing 2% sucrose, 250 mg / L claphoran and 0.8% bacto-agar.

<실시예 7><Example 7>

소포체에서의 살진균제 BAS 490F에 대한 단일쇄 항체 단편의 안정한 축적Stable accumulation of single-chain antibody fragments against the fungicide BAS 490F in endoplasmic reticulum

이 연구의 출발점은 담배 식물에서 발현되는 살진균제 BAS 490F에 대한 단일쇄 항체 단편(scFv-안티BAS 490F)이었다. 합성된 scFv-안티BAS 490F 폴리펩티드의 양 및 활성을 웨스턴 블롯 분석 및 ELISA 분석으로 확인하였다.The starting point for this study was a single chain antibody fragment (scFv-antiBAS 490F) against the fungicide BAS 490F expressed in tobacco plants. The amount and activity of the synthesized scFv-antiBAS 490F polypeptide was confirmed by Western blot analysis and ELISA analysis.

소포체에서의 scFv-안티BAS 490F 유전자의 발현을 가능하게 하기 위해, 이종 유전자를 LeB4 시그널 펩티드(N-말단) 및 ER 보유 시그널 KDEL(C-말단)과의 번역 융합물로서 CaMV 53S 프로모터의 제어하에 발현시켰다. 소포체로의 scFv-안티BAS 490F 폴리펩티드의 이송은 다량의 활성 항체 단편의 안정한 축적을 가능하게 하였다. 잎 재료를 수확한 후에, 절편을 -20 ℃에서 동결시키거나(1), 동결 건조시키거나(2) 또는 실온에서 건조시켰다(3). 수성 완충제에서의 추출에 의해 문제가 되고 있는 잎 재료로부터 가용성 단백질을 얻고, 친화성 크로마토그래피로 scFv-안티BAS 490F 폴리펩티드를 정제하였다. 동량의 정제된 scFv-안티BAS 490F 폴리펩티드(동결, 동결 건조 및 건조됨)를 이용하여 항체 단편의 활성을 측정하였다(도 6). 도 6A는 신선한(1), 동결 건조된(2) 및 건조된(3) 잎으로부터 얻은 scFv-안티BAS 490F 폴리펩티드의 항원 결합 활성을 나타낸다. 도 6B는 ELISA 분석 사용되고 웨스턴 블롯 분석에 의해 확인된, scFv-안티BAS 490F 단백질의 각각의 양(약 100 ng)을 나타낸다. 단백질 분자량 기준의 크기는 왼편에 나타내었다. 항원 결합 활성이 거의 동일한 것으로 밝혀졌다.To enable the expression of the scFv-antiBAS 490F gene in the endoplasmic reticulum, the heterologous gene is controlled under the control of the CaMV 53S promoter as a translational fusion with the LeB4 signal peptide (N-terminus) and the ER bearing signal KDEL (C-terminus). Expression. Transfer of the scFv-antiBAS 490F polypeptide to the endoplasmic reticulum allowed stable accumulation of large amounts of active antibody fragments. After harvesting the leaf material, the sections were frozen (1), lyophilized (2) or dried at room temperature (3). Soluble protein was obtained from the leaf material in question by extraction in aqueous buffer and the scFv-antiBAS 490F polypeptide was purified by affinity chromatography. The same amount of purified scFv-antiBAS 490F polypeptide (freeze, lyophilized and dried) was used to measure the activity of antibody fragments (FIG. 6). 6A shows the antigen binding activity of scFv-antiBAS 490F polypeptides obtained from fresh (1), lyophilized (2) and dried (3) leaves. FIG. 6B shows each amount (about 100 ng) of scFv-antiBAS 490F protein, used in ELISA assay and confirmed by Western blot analysis. The size of the protein molecular weight reference is shown on the left. The antigen binding activity was found to be nearly identical.

<실시예 8><Example 8>

살진균제 결합 특성을 갖는 폴리펩티드를 제조하는 유전자 도입 담배 식물의 살진균제 내성을 입증하기 위하여, 이 담배 식물을 다양한 양의 BAS 490F로 처리하였다. 모든 경우에, 온실에서 scFv-안티BAS 490F를 발현하는 식물이 각각 대조군과 비교될 만한 본 발명에 따른 살진균제에 대한 내성을 나타내었음을 입증할 수 있었다.To demonstrate the fungicide resistance of transgenic tobacco plants that produce polypeptides with fungicide binding properties, the tobacco plants were treated with varying amounts of BAS 490F. In all cases, it could be demonstrated that plants expressing scFv-antiBAS 490F in greenhouses each exhibited resistance to the fungicides according to the invention comparable to controls.

Claims (28)

식물에서의 외생 살진균제 결합 폴리펩티드의 발현에 의한 살진균제 내성 식물의 제조 방법.A method for producing fungicide resistant plants by expression of exogenous fungicide binding polypeptides in plants. 제1항에 있어서, 외생 살진균제 결합 폴리펩티드가 단일쇄 항체 단편인 방법.The method of claim 1, wherein the exogenous fungicide binding polypeptide is a single chain antibody fragment. 제1항에 있어서, 외생 살진균제 결합 폴리펩티드가 완전 항체 또는 그로부터 유래된 단편인 방법.The method of claim 1, wherein the exogenous fungicide binding polypeptide is a complete antibody or fragment derived therefrom. 제1항에 있어서, 살진균제가 메틸 메톡시이미노-α-(o-톨릴옥시)-o-톨릴아세테이트(BAS 490F)인 방법.The method of claim 1 wherein the fungicide is methyl methoxyimino-α- (o-tolyloxy) -o-tolylacetate (BAS 490F). 제1항 내지 3항 중 어느 한 항에 있어서, 식물이 외떡잎 또는 쌍떡잎 식물인 방법.The method according to any one of claims 1 to 3, wherein the plant is a monocotyledonous or dicotyledonous plant. 제5항에 있어서, 식물이 담배인 방법.The method of claim 5 wherein the plant is tobacco. 제1항 내지 6항 중 어느 한 항에 있어서, 외생 폴리펩티드가 식물에서 구성적으로 (constitutively) 발현되는 방법.7. The method of claim 1, wherein the exogenous polypeptide is constitutively expressed in a plant. 제1항 내지 6항 중 어느 한 항에 있어서, 식물에서의 외생 폴리펩티드의 발현이 유도되는 것인 방법.The method of claim 1, wherein the expression of exogenous polypeptides in a plant is induced. 제1항 내지 6항 중 어느 한 항에 있어서, 외생 폴리펩티드가 식물의 잎에서 발현되는 방법.The method according to any one of claims 1 to 6, wherein the exogenous polypeptide is expressed in the leaves of the plant. 제1항 내지 6항 중 어느 한 항에 있어서, 외생 폴리펩티드가 식물의 종자에서 발현되는 방법.The method according to any one of claims 1 to 6, wherein the exogenous polypeptide is expressed in seeds of the plant. 프로모터, 시그널 펩티드, 외생 살진균제 결합 폴리펩티드의 발현을 코딩하는 유전자, ER 보유 시그널 및 터미네이터를 포함하는, 식물에 사용하기 위한 발현 카세트.An expression cassette for use in a plant, comprising a promoter, a signal peptide, a gene encoding the expression of an exogenous fungicide binding polypeptide, an ER retention signal and a terminator. 제11항에 있어서, 사용된 구성적 프로모터가 CaMV 35S 프로모터인 발현 카세트.The expression cassette of claim 11, wherein the constitutive promoter used is a CaMV 35S promoter. 제11항에 있어서, 발현될 유전자가 단일쇄 항체 단편의 유전자인 발현 카세트.The expression cassette of claim 11, wherein the gene to be expressed is a gene of a single chain antibody fragment. 제11항에 있어서, 발현될 유전자로서 다른 기능성 단백질, 예를 들어 효소, 독소, 발색단 및 결합 단백질과의 번역 융합물의 형태인 살진균제 결합 폴리펩티드의 유전자 또는 유전자 단편이 이용되는 발현 카세트.The expression cassette of claim 11, wherein a gene or gene fragment of a fungicide binding polypeptide in the form of a translational fusion with other functional proteins, such as enzymes, toxins, chromophores and binding proteins, is used as the gene to be expressed. 제11항에 있어서, 발현될 폴리펩티드 유전자가 하이브리도마 세포로부터 얻어지거나 또는 다른 재조합 방법, 예를 들어 항체 파아지 디스플레이 방법으로 얻어지는 발현 카세트.The expression cassette of claim 11, wherein the polypeptide gene to be expressed is obtained from a hybridoma cell or by other recombinant methods, such as antibody phage display methods. 외생 살진균제 결합 폴리펩티드를 종자 또는 잎에 특이적으로 구성적 발현을 하는 쌍떡잎 또는 외떡잎 식물의 형질전환을 위한 제11항에 따른 발현 카세트의 용도.Use of an expression cassette according to claim 11 for the transformation of a dicotyledonous or monocotyledonous plant which specifically expresses an exogenous fungicide binding polypeptide in a seed or leaf. 제16항에 있어서, 발현 카세트가 세균주로 전이되고, 형성된 재조합 클론이 외생 살진균제 결합 폴리펩티드를 종자 또는 잎에 특이적으로 구성적 발현을 하는 쌍떡잎 또는 외떡잎 식물의 형질전환을 위해 사용되는 것인 용도.17. The use according to claim 16, wherein the expression cassette is transferred to a bacterial strain and the recombinant clones formed are used for transformation of a dicotyledonous or monocotyledonous plant that specifically expresses an exogenous fungicide binding polypeptide to the seed or leaf. . 선별 마커로서의 제11항에 따른 발현 카세트의 용도.Use of the expression cassette according to claim 11 as a selection marker. 살진균제 결합 폴리펩티드의 제조를 위한 제17항 또는 18항에 따라 얻어진 형질전환된 식물의 용도.Use of the transformed plant obtained according to claim 17 or 18 for the preparation of fungicide binding polypeptides. 살진균제 결합 폴리펩티드를 코딩하는 유전자 서열을 식물 세포, 유합 조직, 온전한 식물 및 식물 세포의 원형질체에 도입하는 것을 특징으로 하는 식물의 형질전환 방법.A method of transforming a plant, characterized by introducing a gene sequence encoding a fungicide binding polypeptide into plant cells, callus tissue, intact plants and protoplasts of the plant cells. 제20항에 있어서, 형질전환이 아그로박테륨속, 특히 아그로박테륨 투메파시엔스 (Agrobacterium tumefaciens) 종에 의해 수행되는 방법.The method of claim 20, wherein the transformation is carried out by the genus Agrobacterium, in particular Agrobacterium tumefaciens. 제20항에 있어서, 형질전환이 전기천공법에 의해 수행되는 방법.The method of claim 20, wherein the transformation is performed by electroporation. 제20항에 있어서, 형질전환이 입자 충격법에 의해 수행되는 방법.The method of claim 20, wherein the transformation is performed by particle bombardment. 식물 또는 식물의 세포에서 살진균제 결합 폴리펩티드를 코딩하는 유전자를 발현시킨 후, 그 폴리펩티드를 단리하는 것을 특징으로 하는 살진균제 결합 폴리펩티드의 제조 방법.A method for producing a fungicide-binding polypeptide, comprising expressing a gene encoding a fungicide-binding polypeptide in a plant or plant cell, and then isolating the polypeptide. 살진균제에 대한 내성을 부여하는 제11항에 따른 발현 카세트를 포함하는 식물.A plant comprising the expression cassette according to claim 11 conferring resistance to fungicides. 제25항에 있어서, 메틸 메톡시이미노-α-(o-톨릴옥시)-o-톨릴아세테이트(BAS 490F)에 대해 내성인 식물.The plant of claim 25, which is resistant to methyl methoxyimino-α- (o-tolyloxy) -o-tolylacetate (BAS 490F). 살진균제 결합 폴리펩티드 또는 항체를 형성하는 유전자 도입 살진균제 내성 작물에 대해 살진균제를 사용하는 것을 포함하는, 유전자 도입 살진균제 내성 작물에서의 식물병원체 진균류를 억제하는 방법.A method of inhibiting phytopathogenic fungi in a transgenic fungicide resistant crop comprising using a fungicide against a transgenic fungicide resistant crop that forms a fungicide binding polypeptide or an antibody. 제24항에 기재된 바와 같이 제조된, 메틸 메톡시이미노-α-(o-톨릴옥시)-o-톨릴아세테이트(BAS 490F)에 대해 결합 친화력이 큰 살진균제 결합 폴리펩티드 또는 항체.A fungicide binding polypeptide or antibody having a high binding affinity for methyl methoxyimino-α- (o-tolyloxy) -o-tolylacetate (BAS 490F), prepared as described in claim 24.
KR1019997010009A 1997-04-30 1998-04-16 Expression of Fungicide-Binding Polypeptides in Plants for Producing Fungicide Tolerance KR20010020387A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19718251A DE19718251A1 (en) 1997-04-30 1997-04-30 Expression of fungicide-binding polypeptides in plants to produce fungicide tolerance
DE19718251.8 1997-04-30

Publications (1)

Publication Number Publication Date
KR20010020387A true KR20010020387A (en) 2001-03-15

Family

ID=7828212

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019997010009A KR20010020387A (en) 1997-04-30 1998-04-16 Expression of Fungicide-Binding Polypeptides in Plants for Producing Fungicide Tolerance

Country Status (22)

Country Link
EP (1) EP0979295A1 (en)
JP (1) JP2001523101A (en)
KR (1) KR20010020387A (en)
CN (1) CN1254381A (en)
AR (1) AR015626A1 (en)
AU (1) AU737242B2 (en)
BG (1) BG103840A (en)
BR (1) BR9808698A (en)
CA (1) CA2288432A1 (en)
DE (1) DE19718251A1 (en)
EA (1) EA199900889A1 (en)
GE (1) GEP20032959B (en)
HU (1) HUP0003594A3 (en)
ID (1) ID22915A (en)
IL (1) IL132252A0 (en)
NO (1) NO995291L (en)
NZ (1) NZ500181A (en)
PL (1) PL336661A1 (en)
SK (1) SK137299A3 (en)
TR (1) TR199902681T2 (en)
WO (1) WO1998049329A1 (en)
ZA (1) ZA983594B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10033750A1 (en) * 2000-07-12 2002-01-31 Mpb Cologne Gmbh Molecular Pla Pathogen resistance in organisms

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1248361B (en) * 1991-06-28 1995-01-05 Enea PLASMIDIC VECTORS FOR THE EXPRESSION OF GENES IN PLANTS
IL109159A (en) * 1993-03-29 2003-11-23 Isk Biotech Corp Immunoassays for tetrachloroiso-phthalonitrile and its metabolites and antibodies for use therein

Also Published As

Publication number Publication date
TR199902681T2 (en) 2000-07-21
NO995291L (en) 1999-12-20
ID22915A (en) 1999-12-16
JP2001523101A (en) 2001-11-20
EP0979295A1 (en) 2000-02-16
IL132252A0 (en) 2001-03-19
BG103840A (en) 2000-07-31
PL336661A1 (en) 2000-07-03
DE19718251A1 (en) 1998-11-05
CA2288432A1 (en) 1998-11-05
HUP0003594A2 (en) 2001-02-28
AU7335698A (en) 1998-11-24
BR9808698A (en) 2000-07-11
HUP0003594A3 (en) 2002-10-28
AU737242B2 (en) 2001-08-16
ZA983594B (en) 1999-10-29
GEP20032959B (en) 2003-04-25
WO1998049329A1 (en) 1998-11-05
NZ500181A (en) 2001-02-23
AR015626A1 (en) 2001-05-16
SK137299A3 (en) 2000-05-16
CN1254381A (en) 2000-05-24
NO995291D0 (en) 1999-10-29
EA199900889A1 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
JPH11510694A (en) DNA construct
WO2017161921A1 (en) Herbicide tolerant protein, encoding gene and use thereof
FR2706909A1 (en)
JP2003523173A (en) Herbicide-tolerant plants
JP2000503541A (en) Anthranilate synthase gene and uses thereof
WO2019153952A1 (en) Herbicide tolerance protein, encoding gene thereof and use thereof
US5990385A (en) Protein production in transgenic alfalfa plants
CN1331747A (en) Transgenic plants comprising counditionally lethal gene and its prodn. method
US7951992B2 (en) Metal resistant plants, and methods of manufacture thereof
KR20010020387A (en) Expression of Fungicide-Binding Polypeptides in Plants for Producing Fungicide Tolerance
WO2006057306A1 (en) Poaceous plant with enhanced stress tolerance and/or productivity and method of creating the same
KR20010005631A (en) Expression of Herbicide-Binding Polypeptides in Plants to Produce Herbicide Tolerance
CZ382199A3 (en) Production of plants being tolerant to fungicides due to expression of polypeptides binding fungicides in plant
JP2009136289A (en) Protein production in transgenic alfalfa plant
MXPA01009823A (en) Insect viral vectors and uses thereof.
Mavituna Production of recombinant human serum albumin in transgenic plants and plant cells
US20150353951A1 (en) Synthetic glyphosate-resistant gene and use thereof
Junco et al. International application published under the patent cooperation treaty (PCT)
JP2001521756A5 (en)
HEMA-QUEBEC C5-1 from hybridoma C5-1 from alfalfa
CZ339099A3 (en) Expression of polypeptides binding herbicidal agent in plants for creating tolerance to the herbicidal agent
MXPA00004527A (en) Protein production in transgenic alfalfa plants
CZ20012644A3 (en) Method for carrying out controlled post-harvest production of proteins in host organisms
MXPA99008672A (en) Expression of herbicide-binding polypeptides in plants to produce herbicide tolerance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application