WO2006057306A1 - Poaceous plant with enhanced stress tolerance and/or productivity and method of creating the same - Google Patents

Poaceous plant with enhanced stress tolerance and/or productivity and method of creating the same Download PDF

Info

Publication number
WO2006057306A1
WO2006057306A1 PCT/JP2005/021594 JP2005021594W WO2006057306A1 WO 2006057306 A1 WO2006057306 A1 WO 2006057306A1 JP 2005021594 W JP2005021594 W JP 2005021594W WO 2006057306 A1 WO2006057306 A1 WO 2006057306A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
gene
polyamine
nucleic acid
improved
Prior art date
Application number
PCT/JP2005/021594
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihisa Kasukabe
Takashi Akiyama
Atsushi Sogabe
Original Assignee
Toyo Boseki Kabushiki Kaisha
Incorporated Administrative Agency National Agriculture And Bio-Oriented Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha, Incorporated Administrative Agency National Agriculture And Bio-Oriented Research Organization filed Critical Toyo Boseki Kabushiki Kaisha
Priority to JP2006547832A priority Critical patent/JPWO2006057306A1/en
Publication of WO2006057306A1 publication Critical patent/WO2006057306A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to a Gramineae plant having improved stress tolerance, lodging resistance and productivity! / More particularly, improved salt stress tolerance, low temperature stress tolerance, or improved
  • the present invention relates to a gramineous plant having productivity or traits such as ears, pods, seeds, pods, rice, fruits, tillers, and spikelets.
  • the present invention also relates to a method for producing the gramineous plant.
  • the present invention relates to a method for producing a useful substance (eg starch, protein) or a derivative thereof (eg biodegradable plastic).
  • a useful substance eg starch, protein
  • a derivative thereof eg biodegradable plastic
  • rice originating from the tropics can be cultivated in cool areas such as Tohoku and Hokkaido as a result of cultivar improvement since the Meiji era and is now cultivated as a key crop in these areas.
  • cool areas such as Tohoku and Hokkaido
  • crops have been severely damaged by abnormal weather, which is thought to be caused by global warming and the El Nino phenomenon.
  • Drought stress and water stress are important stresses for plants. When temperature is not a limiting factor, it is greatly affected by rainfall and its distribution. In particular, in semi-arid areas, which are the main crop cultivation areas, the growth and yield of crops are significantly affected by drought stress and water stress.
  • genes used to improve low-temperature stress tolerance include fatty acid desaturase genes ( ⁇ -3 desaturase gene, glycerol 3-phosphate acyltransferase gene, stearoyl-ACP desaturase gene).
  • fatty acid desaturase genes ⁇ -3 desaturase gene, glycerol 3-phosphate acyltransferase gene, stearoyl-ACP desaturase gene.
  • pyruvate phosphate dikinase gene involved in photosynthesis genes encoding proteins with cryoprotective activity (COR15, COR85, kinl) have been reported.
  • genes used to improve tolerance to salt stress and drought 'water stress include glycine betaine synthase genes (choline monooxygenase gene, betaine aldehyde dehydrogenase gene), proline synthase Genes (1 pyrroline 5-force rubonic acid synthetase) have been reported.
  • Non-patent Document 1 sucrose phosphate synthase (SPS), a carbohydrate metabolism, is thought to affect not only carbon partitioning but also production capacity, and SPS genes were introduced into tomatoes, potatoes and tobacco. It was confirmed that the introduction of SPS gene in tomato tends to increase the dry matter weight of the above-ground part during vegetative growth (Non-patent Document 1). In potatoes, it was confirmed that the dry matter weight of the above-ground part (leaves and stems) and tubers increased! / Non-patent document (Non-patent document 2; Non-patent document 3). However, many of the plants transformed with these genes have not yet been sufficiently effective to be industrially usable, and are currently being put into practical use. It is.
  • SPS sucrose phosphate synthase
  • Polyamine is a general term for aliphatic hydrocarbons having two or more primary amino groups, and is a natural product that exists universally in the living body. More than 20 types of polyamines have been found. Typical polyamines include putrescine, spermidine and spermine. The main physiological functions of polyamines are as follows: (1) Stabilization and structural changes of nucleic acids by interaction with nucleic acids (2) Promotion of various nucleic acid synthesis systems (3) Activation of protein synthesis systems (4) Cell membranes Stabilization of materials and enhancement of membrane permeability of substances are known. The role of polyamines in plants has been reported to promote nucleic acid and protein biosynthesis and cell protection during cell growth and division, but recently, the relationship between polyamines and environmental stress tolerance has also attracted attention.
  • Patent Document 2 Low temperature stress (Non-patent document 4, Non-patent document 5, Non-patent document 6), salt stress (Non-patent document 7: Plant Physiol, 91, 500-504, 1984), acid stress (non-patent document 8), osmotic stress (Non-patent document 9), pathogen infection stress (Non-patent document 10), herbicide stress (Non-patent document 11), etc. have been reported. This is an estimation of the involvement of polyamines, and the gene-level involvement of polyamine metabolism-related enzyme genes that encode polyamine metabolism-related enzymes and environmental stress tolerance is sufficient. It is obscene to be investigated by.
  • Polyamine metabolism-related enzymes involved in plant polyamine biosynthesis include arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), spermidine Synthase (SPDS), spermine synthase (SPMS) and the like are known. Some of the polyamine metabolism-related genes encoding these polyamine metabolism-related enzymes have already been isolated.
  • ADC gene is Enmbata (Non-patent document 12), Tomato (Non-patent document 13), Arabidopsis (Non-patent document 14), Endu (Non-patent document 15), ODC gene is Datura (Non-patent document 16),
  • SAM DC gene is isolated from potato (Non-patent document 17), spinach (Non-patent document 18), tobacco, and SPDS gene from Arabidopsis (Non-patent document 19).
  • Non-patent Document 20 The gene level of polyamine metabolism-related enzyme genes and productivity has been thoroughly investigated.
  • Patent Document 2 WO02Z23974
  • Non-patent literature l Plant Physiol, 101, 535, 1993, Planta, 196, 327, 1995
  • Non-Patent Document 2 Jpn. J. Crop Sci "65, 102, 1996
  • Non-Patent Document 3 Jpn. J. Crop Sci, 65, 143, 1996
  • Non-Patent Document 4 J. Japan So Hortic. Sci., 68, 780-787, 1999
  • Non-Patent Document 5 J. Japan Soc. Hortic. Sci., 68, 967-973, 1999
  • Non-Patent Document 6 Plant Physiol. 124, 431-439, 2000
  • Non-Patent Document 7 Plant Physiol, 91, 500-504, 1984
  • Non-Patent Document 8 Plant Cell Physiol, 38 (10), 156-1166, 1997
  • Non-Patent Document 9 Plant Physiol. 75, 102-109, 1984
  • Non-Patent Document 10 New PhytoL, 135, 467-473, 1997
  • Non-Patent Document ll Plant Cell Physiol, 39 (9), 987-992, 1998
  • Non-Patent Document 12 Mol. Gen. Genet., 224, 431-436, 1990
  • Non-Patent Document 13 Plant Physiol, 103, 829-834, 1993
  • Non-Patent Document 14 Plant Physiol., Ill, 1077-1083, 1996
  • Non-Patent Document 15 Plant Mol. Biol, 28, 997-1009, 1995
  • Non-Patent Document 16 Biocem. J., 314, 241-248, 1996
  • Non-Patent Document 17 Plant Mol. Biol, 26, 327-338, 1994
  • Non-Patent Document 18 Plant Physiol., 107, 1461-1462, 1995
  • Non-Patent Document 19 Plant Cell Physiol, 39 (1), 73-79, 1998
  • Non-Patent Document 20 The Plant Journal, 13 (2), 231-239, 1998
  • Non-Patent Document 21 The Plant Journal, 9 (2), 147-158, 1996
  • Non-Patent Document 22 The Plant Journal, 11 (3), 465-473, 1997
  • An object of the present invention is to produce a grass plant with improved productivity by artificially controlling the expression of genes related to polyamine metabolism and changing polyamine levels.
  • Another object of the present invention is to improve the yield and productivity of gramineous plants and to produce more useful substances.
  • an object of the present invention is to provide a technique for enhancing practical plant productivity or traits.
  • Gramineae plants including rice, corn, wheat, rye, barley, embata, shiba
  • rice is a tropical plant, so it is susceptible to low-temperature stress damage (cold damage) and is extremely resistant to low-temperature stress. It is an important issue. If the resistance to low temperature stress of grasses can be increased, it will be a problem especially in cold regions (for example, Hokkaido and Tohoku regions). The decline in the yield of cereals (rice, wheat, barley, corn, etc.) due to cold damage can be reduced, and a stable supply of cereals becomes possible. Furthermore, if the tolerance to salt stress can be increased, grasses can be cultivated even in areas where cultivation is difficult due to high salt damage.
  • An object of the present invention is to artificially control the expression of genes related to polyamine metabolism and to change the polyamine level to produce a variety of gramineous plants with improved stress tolerance. To do.
  • Another object of the present invention is to improve the yield and productivity of gramineous plants and to produce more useful substances.
  • the present inventors have isolated a polyamine metabolism-related enzyme gene involved in polyamine biosynthesis and introduced the gene into a grass family plant to overexpress it.
  • productivity or trait parameters were improved regardless of the cultivation environment, in other words, with or without environmental stress.
  • plants with improved various stress tolerance parameters can be obtained by changing the polyamine concentration.
  • the present invention provides the following inventions.
  • nucleic acid sequence that regulates the amount of polyamines under the control of a promoter that can function in plants; stably maintains a nucleic acid sequence, and is less productive than a control plant that does not have the nucleic acid sequence, regardless of the cultivation environment.
  • Useful substances obtained from the grasses and their descendants according to Item 1. 18.
  • An expression vector comprising a nucleic acid sequence that regulates the amount of polyamine under the control of a promoter capable of functioning in a plant, comprising the step of transforming cells of the ⁇ plant that has the nucleic acid sequence!
  • An expression vector comprising a nucleic acid sequence that regulates the amount of polyamine under the control of a promoter capable of functioning in a plant, transforming a cell of a culm plant having the nucleic acid sequence,
  • productivity of gramineous plants can be improved, and improvement in quality, value, productivity, yield, etc. of plant organs and tissues can be expected.
  • organs and tissues can be produced as an agricultural crop by increasing the number and size of spikelets, pods, tillers, seeds, pods, rice, berries, and spikelets.
  • An increase in yield is expected.
  • polyamines act during the tilling and booting periods, and the yield of grasses (especially rice) increases as the number of spikes, pods, and seeds per pod increases. I can expect that.
  • the gramineous plant with improved stress tolerance according to the present invention is used not only in an area subjected to environmental stress, but also used (growth) to cope with environmental stress that is not subject to environmental stress and cannot be predicted even in the area. ) Power that can be used It may be used exclusively in areas subject to environmental stress.
  • the increased amount of polyamines acts on the ears, pods and tillers during the tillering period, so that the number of spikes and pods increases and the yield is increased. , Low lodging resistance and improved yield loss due to hurricanes.
  • FIG. 1 is a diagram showing the structure of an expression construct containing a polyamine metabolism-related enzyme gene.
  • FIG. 2 is a diagram showing the results of Western blotting of rice introduced with a polyamine metabolism-related enzyme gene.
  • FIG. 3 is a diagram showing a comparison of salt stress tolerance (growth) between rice and a wild strain into which a polyamine metabolism-related enzyme gene has been introduced.
  • FIG. 4 is a diagram showing a comparison of salt stress tolerance (grass form) between rice and a wild strain introduced with a polyamine metabolism-related enzyme gene.
  • FIG. 5 is a diagram showing a comparison of low temperature stress tolerance (growth) between rice and a wild strain introduced with a polyamine metabolism-related enzyme gene.
  • FIG. 6 is a photograph showing a comparison of low temperature stress tolerance (grass form) between rice and a wild strain introduced with a polyamine metabolism-related enzyme gene.
  • Polyamine is a basic substance that contains a large amount of amine in the molecule.
  • putrescine containing two molecules of amine
  • spermidine containing three molecules of amine
  • spermine containing four molecules of amine
  • ADC, ODC, SAMDC, SPDS, and SAMDC, SPMS, etc. for putrescine and SAMDC have been found as enzymes related to polyamine metabolism involved in polyamine biosynthesis.
  • Polyamine metabolism-related enzyme genes encoding these polyamine metabolism-related enzymes have already been isolated in several plants.
  • polyamine metabolism-related enzymes involved in plant polyamine biosynthesis include arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and spermidine synthesis.
  • ADC arginine decarboxylase
  • ODC ornithine decarboxylase
  • SAMDC S-adenosylmethionine decarboxylase
  • SPDS spermine synthase
  • SPMS spermine synthase
  • Gramineae plants are composed of a tissue called panicles and pods that grows their root strength, and when subjected to the action of an increased amount of polyamines during the formation of these spikes or pods (split period).
  • the present inventors have found that the number of spikes Z is increased, resulting in an improvement in lodging resistance due to an increase in yield or a decrease in plant height (height).
  • the amount of polyamine depends on the tillering period (time involved in the number of pods, number of ears, number of tillers) Polymorphine compared to plants before transformation (for example, wild strains) for all buds during the 'early panicle formation period (period related to pollen formation, ear formation, fertility, Z sterility) The amount (especially the amount of spermidine and the amount of spermine) increases by about 1.1 to 3 times (preferably about 1.3 to 2.5 times). As the amount of polyamine increases, the number of pods, ears and tillers is increased by increasing the number of pods, ears and tillers during the tillering period.
  • the amount of polyamine is increased at the tillering stage, the booting stage, and the young panicle formation stage at 1.1% compared with the plant before transformation (for example, a wild strain) in all pods.
  • stress refers to any stress that is also subject to environmental forces, such as high temperature, low temperature, low pH, low oxygen, oxidation, salt, osmotic pressure, drying, water, flooding, cadmium, copper, ozone, Air pollution, ultraviolet rays, strong light, low light, pathogens, pathogens, pests, herbicides, etc.
  • Rice is classified into wild rice and cultivated rice in the genus Gramineae, and cultivated rice is Asian rice (Oryz a sativa L.) and African rice (Oryza. Grabbelima L.), and the other species are wild rice. It is. Rice is used for food and livestock feed, and starch is used as an industrial raw material.
  • "productive and improved traits” means all organs (tissues) of plants, such as ears, pods, seeds, pods, rice, berries, and tillers. , Spikelet size, total weight, quantity, etc., growth period shortened (improvement of productivity), traits related to the organ (tissue) (for example, rice, corn, etc. Increase in the number and size of pods, rice, corn, etc., increase in the number and size of seeds (endosperm), change in shape, coloring (for example, change in balance between pigments and increase in pigment production), etc. ) Is improved. These improvements are based on the action of polyamines during periods specific to gramineous plants such as the tillering stage and the booting stage.
  • the plant obtained by the present invention has an increased polyamine expression level regardless of the cultivation environment (for example, environmental stress), and can improve productivity.
  • the cultivation environment for example, environmental stress
  • Gramae plant means cultivated rice, wild rice, corn, wheat, rye, barley, embatta, and shiba.
  • nucleic acid sequence that regulates the amount of polyamine examples include exogenous polyamine metabolism-related enzyme genes or suppressors of endogenous polyamine metabolism-related enzyme genes.
  • An exogenous polyamine metabolism-related enzyme gene can increase the amount of polyamine in the plant, and an endogenous polyamine metabolism-related enzyme gene suppressor can decrease and increase the amount of polyamine in the plant.
  • a control plant having a nucleic acid sequence that regulates the amount of the polyamine refers to the nucleic acid sequence (for example, an exogenous polyamine metabolism-related enzyme gene or an endogenous polyamine). It means any plant before the introduction of the metabolic factor enzyme inhibitor). Therefore, in addition to so-called wild species, cultivars established by normal mating, natural or artificial mutants thereof, and transgenic plants into which exogenous genes other than polyamine metabolism-related enzyme genes have been introduced. Include.
  • the "polyamine” referred to in the present invention is a general natural product universally present in living organisms, and is an aliphatic hydrocarbon compound having two or more primary amino groups.
  • the “polyamine metabolism-related enzyme gene” is a gene encoding an amino acid of an enzyme involved in polyamine biosynthesis in plants.
  • arginine is representative of putrescine, which is a typical polyamine.
  • Decarboxylase (ADC) gene and orthine decarboxylase (ODC) gene spermidine, S-adenosylmethionine decarboxylase (SAMDC) gene and spermidine synthase (SPDS) gene, spermine About S-adenosylmethionine decarboxylase (SAMDC) gene and spermine synthase Elementary (SPMS) gene is involved, and is considered to be rate-limiting! /.
  • Arginine decarboxylase (ADC: arginine decarboxylase EC4.1.1.19.) Is an enzyme that catalyzes the reaction of L-arginine power to produce agmatine and diacid-carbon.
  • Orthine decarboxylase (ODC: ornithine decarboxylase EC4.1.1.17) is an enzyme that catalyzes the reaction of producing putrescine and carbon dioxide from L-orthine.
  • SAMDC S-adenosylmethionine decarboxylase EC4.1.1.50.
  • SAMDC S-adenosylmethionine decarboxylase EC4.1.1.50.
  • SAMDC S-adenosylmethionine decarboxylase EC4.1.1.50.
  • SAMDC S-adenosylmethionine decarboxylase EC4.1.1.50.
  • SAMDC S-adenosylmethionine decarboxylase EC4.1.1.50.
  • SPDS is an enzyme that catalyzes the reaction of producing spermidine and methylthioadenosine from putrescine and adenosylmethylthiopropylamine.
  • genes may be derived from any source, but can be isolated from various plants, for example.
  • dicotyledonous plants such as cucurbitaceae; solanaceae; Brassicaceae such as Arabidopsis; legumes such as Alf alfa and cowpy (Vigna unguiculata); These include those whose group power has also been selected, or monocotyledonous plants such as rice, wheat, barley, corn and the like.
  • cucurbitaceae plants more preferably Kurodanekabotya!
  • the plant tissue for isolating the plant-derived polyamine metabolism-related enzyme gene of the present invention is in the form of seed or in the growth process.
  • Growing plants can be isolated in whole or in part.
  • the site that can be isolated is not particularly limited, but preferably ears, inflorescences, strawberries, berries, seeds, grains, grains, strawberries, rice, whole strawberries, strawberries, flowers, ovary, fruits, Leaves, stems, roots, etc. More preferably, it is a site showing stress resistance
  • polyamine metabolism-related enzyme genes used in the present invention include supermidine synthase gene, S-adenosylmethionine decarboxylase gene, and alginine decarboxylase gene. be able to.
  • supermidine synthase gene S-adenosylmethionine decarboxylase gene
  • alginine decarboxylase gene alginine decarboxylase gene.
  • the base sequence shown in SEQ ID NO: 3 has the base sequence shown in base numbers 456 to 1547 DNA,
  • Examples include DNA that has a nucleotide sequence that can be hybridized under stringent conditions with any of the above sequences and that encodes a polypeptide having a polyamine metabolism-related enzyme activity equivalent to that sequence. . Furthermore,
  • stringent conditions refers only to a base sequence encoding a polypeptide having a polyamine metabolism-related enzyme activity equivalent to the polyamine metabolism-related enzyme encoded by the specific polyamine metabolism-related enzyme gene sequence.
  • Forms a hybrid with the specific sequence (, so-called specific hybrid)
  • a base sequence encoding a polypeptide having no equivalent activity forms a hybrid with the specific sequence (, so-called non-specific hybrid) Shina!
  • Shina! Means a condition.
  • Those skilled in the art can easily select such conditions by changing the temperature during the hybridization reaction and washing, the salt concentration of the hybridization reaction solution and the washing solution, and the like. Specifically, 6 X SSC (0.9 M NaCl, 0.09 M trisodium citrate) or 6 X SSPE (3 M NaCl, 0.2 M NaH PO, 20 mM EDTA-2
  • the "base sequence in which one or more bases have been deleted, substituted, inserted or added” means that one or more amino acids are generally substituted in the amino acid sequence of a protein having physiological activity. It will be widely recognized by those skilled in the art that even when deleted, inserted or added, the physiological activity may be maintained. Such a modification is added to the present invention, and a gene encoding a polyamine metabolism-related enzyme is also included in the scope of the present invention. For example, polyA tails and untranslated regions at the 5 ′ and 3 ′ ends may be “deleted”. Alternatively, it may be deleted in such a range that amino acids are deleted. In addition, the base may be “substituted” within a range in which no frame shift occurs.
  • modified DNA can be substituted, deleted, inserted, or added at a specific site by, for example, site-directed mutagenesis (Nucleic Acid Research, Vol. 10, No. 20, 6487-6500, 1982). Thus, it is obtained by modifying the base sequence of the DNA of the present invention.
  • stress includes high temperature, low temperature, low pH, low oxygen, oxidation, salt, osmotic pressure, drying, water, flooding, cadmium, copper, ozone, air pollution, ultraviolet light, strong light as described above. Examples of such stress include environmental light such as low light, pathogens, pathogens, pests and herbicides.
  • high temperature stress refers to the stress that a plant experiences when it encounters an environment that exceeds the upper limit of plant growth temperature. Physiological function is impaired and injury is caused.
  • Low-temperature stress refers to the stress that plants receive when they encounter an environment that exceeds the lower limit of plant growth temperature. The physiology of the vesicle is impaired and injury is caused.
  • Salt stress '' is the stress that plants receive when they encounter an environment that exceeds the upper limit of the appropriate salt concentration for plant growth. Excess salt flows into cells in plants that have received salt stress. As a result, the physiology of the cells is gradually or suddenly impaired, causing injury.
  • “Dry stress” refers to the stress that a plant experiences when the plant encounters an environment that exceeds the lower limit of the water concentration suitable for growth of the plant. Function is impaired and injury is caused.
  • Water stress refers to the stress that a plant experiences when it encounters an environment that exceeds the lower limit of the water concentration suitable for growth of the plant. Function is impaired and injury is caused.
  • Low light stress refers to the stress that plants receive when they encounter an environment that exceeds the lower limit of the optimal light intensity for plant growth. In the plant that receives it, the physiological function of the cell is gradually or suddenly damaged, causing injury.
  • Pathogenic stress refers to the stress that a plant receives as a result of encountering or infecting the plant with a pathogenic fungus. A plant that has undergone pathogenic stress gradually or suddenly loses its cellular physiology and causes injury.
  • Pest stress refers to the stress that a plant receives when the plant encounters the pest. The plant that receives the pest stress gradually or suddenly loses its physiological function and causes injury.
  • the grass family with improved stress tolerance and “the grass family with improved stress tolerance” refers to the introduction of an exogenous polyamine metabolism-related enzyme gene.
  • This refers to a grass family that has been given or improved stress tolerance (resistance) compared to before introduction.
  • stress tolerance for example, by introducing polyamine metabolism-related enzyme genes into plants, low temperature stress resistance (resistance) ⁇ salt stress resistance (resistance) ⁇ herbicide stress resistance (resistance), resistance to air pollution stress (resistance) Resistance to pathogenic stress (resistance), resistance to drought stress (resistance), or resistance to osmotic stress (resistance), yield of useful substance or rice, number of rice, etc.
  • Examples of such a plant include, but are not limited to, plants that are improved compared to plants.
  • a gramineous plant with improved salt stress tolerance refers to a rice plant that has been able to avoid or reduce the growth suppression and injury caused by salt stress encountered during the growth process of gramineous plants. It is a family plant. “Gramineae plants with improved resistance to low-temperature stress” are grass plants that have been able to avoid or reduce the growth suppression and injury caused by low-temperature stress encountered during the growth process of gramineous plants. “Gramineae plants with improved resistance to pathogenic stress” refers to grasses that have been able to avoid or reduce the growth inhibition and damage caused by pathogenic stress encountered in the growth process of gramineous plants.
  • Gramae plant with improved resistance to pest stress refers to a gramineous plant that has been able to avoid or reduce the growth inhibition and damage caused by pest stress encountered during the growth process of the gramineous plant. This can be expected to stabilize cultivation, improve productivity and yield, expand cultivation area and area. In addition, the productivity and yield of Gramineae plants and rice can be expected to improve the productivity of various useful substances (starch, protein, etc.) obtained from Gramineae plants. it can.
  • transgenic gynecaceous plant of the present invention is particularly resistant to stress during the booting stage. It can effectively prevent the gramineous plants from becoming sterile.
  • the "blossoming period” is a certain period before the heading period of a gramineous plant (for example, from a few days to about 2 to 3 weeks) and is important for the ears to grow. Say the right time. In general, if stress such as low temperature stress is applied during the booting period, the ear (corn), grain (wheat, barley) or grain (rice) cannot be harvested. “Tillering period” is the time when ears, pods and tillers are formed, and is an important period for determining the number of spikes, pods and tillers. Increasing the number of spikes and pods improves the lodging resistance through a decrease in the height (plant height) of gramineous plants that directly leads to an increase in yield.
  • “productivity” includes all organs (tissues) of the gramineous plants as described above, for example, ears, pods, tillers, seeds, pods, rice, fruits, spikelets, etc.
  • traits of the organ (tissue) include quantity, growth period, shape, color, property, and characteristics.
  • a gramineous plant with improved productivity and “a gramineous plant with improved productivity” mean an exogenous polyamine metabolism-related enzyme gene or an endogenous polyamine metabolism-related enzyme gene.
  • This refers to a grass family plant that has been imparted or improved or suppressed in quantity, growth period, shape, coloration, properties, and characteristics, which are traits related to productivity compared to before introduction.
  • a polyamine metabolism-related enzyme gene or the suppressor into a plant, traits related to ears, pods, tillers, seeds, pods, rice, fruits, and spikelets may be converted into the exogenous polyamine metabolism-related enzymes. Examples thereof include, but are not limited to, V, which has a gene or the repressing factor, and improved gramineous plants compared to gramineous plants.
  • the amount of polyamines in the grass family is high due to the presence of high concentrations (eg, about 1 to 3 times that of the wild strain) in the ears, pods and tillers during the tillering period. Activating tillering increases calories, ears and tillers.
  • the plant of the present invention is not limited to the whole gramineous plant (whole culm), but its callus, seeds, all plant tissues, leaves, stems, ears, buds, tubers, roots, tuberous roots, pods, Includes flowers, petals, ovary, fruit, pods, ovules, fibers, cocoons, rice, etc. Furthermore, the progeny are also included in the plant of the present invention. The important parts of Gramineae plants are ears, buds, tillers, seeds, pods, rice, berries, and spikelets.
  • a useful substance obtained from a gramineous plant and its progeny means that productivity has been improved as compared to that before introduction by introducing an exogenous polyamine metabolism-related enzyme gene.
  • useful substances produced in grasses and their descendants include, for example, amino acids, fats and oils, starches, proteins, phenols, hydrocarbons, cellulose, natural rubber, pigments, enzymes, antibodies, vaccines, pharmaceuticals And biodegradable plastics.
  • Biodegradable plastics include polyhydroxy propylate, polyhydroxy valerate, poly 13-hydroxybutyric acid, poly force prolatatone, polybutylene succinate, polybutylene adipate, polyethylene succinate, poly (D, L, DL) lactic acid (polylactide) ), Polyglycolic acid (polyglycoside), cellulose acetate, chitosan Z cellulose Z starch, modified starch, etc., or a binary copolymer or ternary copolymer thereof.
  • These biodegradable plastics are known and can be produced using known fermentation methods, chemical synthesis methods, and the like.
  • the plant of the present invention is a plant that does not have the exogenous polyamine metabolism-related enzyme gene.
  • polyamine metabolism-related enzyme gene has been introduced and stably maintained by genetic engineering techniques.
  • “stablely maintained” means that the polyamine metabolism-related enzyme gene is expressed at least in the present plant into which the polyamine-metabolism-related enzyme gene has been introduced, which is sufficient to improve stress tolerance. It is retained in the plant cell for a period of time. Therefore, in reality, the polyamine metabolism-related enzyme gene is U, preferably integrated into the plant chromosomes. The polyamine metabolism-related enzyme gene is more preferably inherited stably in the next generation.
  • exogenous means that the plant is not naturally present and is introduced from the outside. Therefore, the “exogenous polyamine metabolism-related enzyme gene” of the present invention may be a polyamine metabolism-related enzyme gene of the same kind as the host plant (ie, derived from the host plant) introduced from the outside by genetic manipulation. . Considering the identity of codon usage, the use of host-derived polyamine metabolism-related enzyme genes is also preferred.
  • An exogenous polyamine metabolism-related enzyme gene may be introduced into a plant by any genetic engineering technique. For example, protoplast fusion with a heterologous plant cell having a polyamine metabolism-related enzyme gene, polyamine metabolism-related enzyme gene Infection with a plant virus having a viral genome genetically engineered to express or transformation of host plant cells with an expression vector containing a polyamine metabolism-related enzyme gene.
  • the plant of the present invention is an expression vector containing an exogenous polyamine metabolism-related enzyme gene under the control of a promoter that can function in the plant, and has the exogenous polyamine metabolism-related enzyme gene.
  • Transgenic plants obtained by transforming cells of non-plants.
  • promoters examples include the cauliflower mosaic virus (CaMV) 35S promoter, nopaline synthase gene (NOS) promoter, and octopine synthase gene (OCS) promoter that are constitutively expressed in plant cells.
  • CaMV cauliflower mosaic virus
  • NOS nopaline synthase gene
  • OCS octopine synthase gene
  • PAL Phenylalanine ammonia lyase
  • CHS canolecon synthase
  • the well-known plant promoter which is not limited to these is also mentioned.
  • an organ- or tissue-specific promoter can be used to express a target gene only in a specific organ or tissue. Only one organ or tissue can improve stress tolerance.
  • polyamine metabolism-related enzyme genes and promoters that specifically act on flower organs for example, W099 / 43818, JP-A-11-178572, JP-A-2000-316582
  • the flower size can be improved.
  • seed The number and size of seeds, ovaries, and fruits can be improved by using a promoter that specifically acts on fruits and ovaries (eg, Plant Mol. Biol, 11, 651-662, 1 988). .
  • polyamine metabolism-related enzyme genes and promoters that can cause transcription only when plants encounter low temperatures (eg, BN115 promoter: Plant physiol., 106, 917-928, 199 9), It can control the body's polyamine metabolism and improve cold stress resistance.
  • polyamine metabolism-related enzyme gene and a promoter that can cause transcription only when the plant encounters drought eg, Atmyb2 promoter: The Plant Cell, 5, 1529-1539, 1993
  • the target gene can be expressed only in a specific organ or tissue.
  • a polyamine metabolism-related enzyme gene and a promoter that specifically acts on the seed stress tolerance can be improved only by the seed.
  • a time-specific promoter the target gene can be expressed only at a specific time, and stress tolerance can be improved only at a specific time.
  • stress tolerance can be improved only during vegetative growth.
  • a target gene can be expressed only at a specific time, and productivity can be improved only at a specific time. For example, by using a polyamine metabolism-related enzyme gene and a promoter that works during the vegetative growth period, productivity can be improved only during the vegetative growth period.
  • the exogenous polyamine metabolism-related enzyme gene is arranged downstream of the promoter so that its transcription is controlled by a promoter that can function in plants. It is preferable that a transcription termination signal (terminator region) capable of functioning in plants is further added downstream of the polyamine metabolism-related enzyme gene.
  • a transcription termination signal capable of functioning in plants is further added downstream of the polyamine metabolism-related enzyme gene.
  • the terminator NOS nopaline synthase
  • the expression vector of the present invention may further contain a cis-regulatory element such as an enhancer sequence.
  • the expression vector is a marker gene for selection of transformants such as drug resistance gene markers, such as neomycin phosphotransferase II (NPTI) It may further include I) a gene, a phosphinothricin acetyl transferase (PAT) gene, a glyphosate resistance gene, and the like. Under conditions where selective pressure is not applied, the incorporated gene may drop out, so if the herbicide-tolerant gene coexists on the vector, the herbicide can be used during cultivation. There is also an advantage that a condition under selective pressure can always be realized.
  • the expression vector has an origin of replication that enables autonomous replication in E. coli and a selectable marker gene in E. coli (eg, ampicillin resistance gene, tetracycline resistance Gene etc.).
  • the expression vector of the present invention is simply constructed by inserting the above-mentioned polyamine metabolism-related enzyme gene expression cassette and, if necessary, a selection gene into the cloning site of a pUC or pBR E. coli vector. can do.
  • the polyamine metabolism-related enzyme gene expression cassette can be inserted into the T DNA region (region transferred to the plant chromosome) on the Ri plasmid.
  • the standard method of transformation by agro-batterium method uses a noinary vector system. The functions required for T-DNA transfer are supplied independently by both T-DNA itself and the Ti (or Ri) plasmid, and each component can be split on separate vectors.
  • the binary plasmid has 25 bp border sequences at both ends necessary for T-DNA excision and integration, and the plant hormone gene that causes crown gall (or hairy root) has been removed, and there is room for insertion of foreign genes at the same time. Is given.
  • binary vectors for example, ⁇ and PBI121 (manufactured by Clontech) are commercially available.
  • the Vir region which acts on T-DNA integration, acts on trans on another Ti (or Ri) plasmid called a helper plasmid.
  • plant cell power protoplasts are isolated by cell wall degrading enzyme treatment such as cellulase or hemicellulase, and the expression cassette of the protoplasts and the above polyamine metabolism-related enzyme genes is isolated.
  • a method in which polyethylene glycol is placed in a suspension with an expression vector containing a phospholipid and the expression vector is incorporated into a protoplast in an endocytic manner PEG method
  • lipid membrane vesicles such as phosphatidylcholine
  • ribosome method lipid membrane vesicles
  • fusing in the same process using a minicell, suspension of protoplast and expression vector For example, a method of applying an electric pulse to the protoplast to incorporate the vector in the external solution into the protoplast (electrovolation method) can be mentioned.
  • a microinjection method in which a micropipette is inserted into the cell and vector DNA in the pipette is injected into the cell by hydraulic pressure or gas pressure, and DNA is coated
  • a direct introduction method such as a particle gun method in which fine gold particles are accelerated using explosive explosion or gas pressure and introduced into the cell, and a method using infection by agrobacterium.
  • Microinstruction has the disadvantages that it requires skill in operation and the number of cells that can be handled is small. Therefore, considering the simplicity of operation, it is preferable to transform plants by the agrobacterium method and the particle gun method.
  • the particle gun method is further useful in that the gene can be directly introduced into the apical meristem of the plant being cultivated.
  • a plant virus for example, a genomic virus DNA such as tomato golden mosaic virus (TGMV)
  • TGMV tomato golden mosaic virus
  • the transformed product produced by the method described above is subjected to Southern analysis or Northern analysis for gene expression analysis of polyamine metabolism-related enzyme genes, polyamine content analysis, stress tolerance evaluation, and productivity evaluation. It can be carried out.
  • polyamine is quantified by sampling a sample of 0.05-: Lg and adding a 5% aqueous perchloric acid solution to extract the polyamine.
  • the quantification of the extracted polyamine After labeling with benzo louis, etc., it can be analyzed by internal standard method using high performance liquid chromatography (HPLC) connected with fluorescence or uv detector.
  • HPLC high performance liquid chromatography
  • a T1 seed or a T2 seed obtained by self-pollination of a transgeneic gramineous plant or a transgeneic gramineous plant is appropriately grown. Planted or sown in culture medium or growing soil, grown at 20-30 ° C under long-day conditions (day Z night: 16 hours Z8 hours day length), number and size of spikelets and pods (eg, parting), It can be evaluated by examining the shape.
  • T1 seeds or T2 seeds obtained by self-pollination of Transgeneic Gramineae plants or Transgenic Gramineae plants in an appropriate growth medium or growth Planted or sown in soil and grown at 20-30 ° C under long-day conditions (day Z night: 16 hours Z8 hours day length), number of inflorescences, fruits, seeds, grains, straw, rice It can be evaluated by examining the size, shape, etc.
  • low-temperature stress tolerance can be evaluated by examining growth conditions, low-temperature injury, etc. after growth at 25-30 ° C after low-temperature treatment at 0-20 ° C for 1-10 days.
  • Low temperature stress tolerance can be evaluated by growing gramineous plants at 10 ° C to 18 ° C for the entire period and examining their growth status and body weight (yield).
  • High temperature stress tolerance can be evaluated by examining growth conditions and high temperature injury after growing at 25-30 ° C after low temperature treatment at 35-50 ° C for 1-: LO days.
  • High temperature stress tolerance can be evaluated by growing grasses at 35 ° C to 45 ° C for the entire period and examining their growth status and fresh body weight (yield).
  • Resistance to salt stress can be evaluated by growing at 25-30 ° C in a medium containing 10-300 mM NaCl and examining the growth status for salt stress disorder.
  • Salt stress tolerance can be evaluated by growing grasses in culture soil containing 10-150 mM NaCl for the entire period and examining the growth status and body weight (yield).
  • the resistance to drought and water stress can be evaluated by examining the growth situation and the degree of damage after stopping the water supply.
  • Dry water stress can be evaluated by growing grasses in culture soil with limited irrigation for the entire period and examining the growth status and body weight (yield).
  • Pathogenic stress can be assessed by inoculating rice with rice blast fungus or rice leaf blight fungus and examining the disease spots, susceptibility response, growth status and degree of damage after inoculation. Pest stress can be evaluated by examining the extent of food damage and growth conditions by releasing rice, rice, rice leafhopper and kokuzo to rice and rice.
  • the method for improving (improving) productivity is a comparative control by stably maintaining a nucleic acid sequence that regulates the amount of polyamine under the control of a promoter capable of functioning in a plant.
  • Yield or useful substance eg starch, fat, protein, cellulose, etc.
  • useful substance eg starch, fat, protein, cellulose, etc.
  • inflorescence, fruit, seed, grain, straw, rice eg rice, corn, wheat, barley
  • rice eg rice, corn, wheat, barley
  • the taste of the edible substance is not deteriorated by the method, and is equal to or higher than that of the control plant.
  • the gramineous plant to be transformed of the present invention is not particularly limited, and examples thereof include monocotyledonous plants. Examples include cultivated rice, wild rice, corn, wheat, rye, wheat, and embata. Rice and corn are preferable.
  • the present invention can be preferably implemented for, for example, rice.
  • Gramineous plant power provides sugars such as starch, which can be used as a raw material for producing biodegradable plastics.
  • Biodegradable plastics include polyhydroxy propylate, polyhydroxy valerate, poly 13-hydroxybutyric acid, poly force prolatatone, polybutylene succinate, polybutylene adipate, polyethylene succinate, poly (D, L, DL) lactic acid (borilactide) And polyglycolic acid (polyglycolide), cellulose acetate, chitosan Z cellulose Z starch, modified starch and the like, and binary copolymers and ternary copolymers thereof.
  • These biodegradable plastics are known and can be produced using known fermentation methods, chemical synthesis methods, and the like.
  • FSPD1 full-length spridine synthase gene
  • FSAM24 S adenosylmethionine decarboxylase gene
  • FAD C76 The arginine decarboxylase gene
  • the polyamine metabolism-related gene FSPD1 shown in SEQ ID NO: 1 was cleaved with Xhol so as to include all open reading frames from the base sequence of FSPD1, and purified by the glass milk method.
  • pGEM-7Zf Promega
  • the FSPD1 fragment was excised again with the restriction enzymes Xbal and Kpnl of the pGEM-7Zf multicloning site and subcloned into the binary vector pBI101-Hm2 linked to the 35S promoter.
  • These plasmids were named PBI35S—FSPD1 +/—.
  • the structure of the expression construct is shown in Fig. 1.
  • the transformed E. coli JM109 was named Escherichia coli JM109 / pBI35S—FSPD1 + Z—.
  • the polyamine metabolism-related gene FSAM24 shown in SEQ ID NO: 3 was cleaved with Notl so as to include all open reading frames from the base sequence of FSAM24, and each was blunt-ended. These fragments were ligated with a blunt-ended 35S promoter and subcloned into the binary vector pBI101-Hm2 in the sense and antisense directions. These plasmids were named PBI35S—FSAM24 + Z—. The structure of the expression construct (sense direction only) is shown in FIG. The transformed E. coli JM109 was named Escheri chia coli JM109 / pBI35S— FSAM24 + / —.
  • the polyamine metabolism-related gene FADC76 shown in SEQ ID NO: 5 was cleaved with Notl so as to include all open reading frames from the base sequence, and each was blunt-ended. These fragments were subcloned in the sense and antisense directions into a binary vector pBI101-Hm2 ligated with a 35S promoter with blunt ends. These plasmids were named PBI35S— FADC76 + Z—. The structure of the expression construct (sense direction only) is shown in FIG. The transformed E. coli JM109 was named Escherichia coli JM109ZpBI35S— FADC76 + Z—.
  • E. coli pBI35S-FSPD 1 + Z— obtained in (1), E. coli pBI35S-FSAM24 + /-, Escherichia coli pBI35S-FADC76 +/- and E. coli HB101 strains with helper plasmid pRK2013, 1 mg at 37 ° C in LB medium each containing 50 mgZl of kanamycin, 50 mgZl of Agrovaterium EHA101 The cells were cultured at 37 ° C for 2 days in LB medium containing kanamycin. 1.5 ml of each culture solution was collected in an Eppendorf tube and then washed with LB medium.
  • Rice transformation was performed by referring to the method of Hiei Y. et al. (Plant J., 6, 271-282, 1994). Ripe seeds of rice varieties 'Yukihikari' (hereinafter referred to as “Yukihikari” or “wild-type”) are removed from the pods, immersed in 70% ethanol for 5 minutes, and then placed in a sterilized beaker in the same manner ( Disinfection was performed by immersing in 5% sodium hypochlorite, 0.02% Triton X-100) for 20 minutes. Sterilized seeds were washed three times with sterile water in a sterile beaker.
  • N6C1 plate N6 inorganic salt, N6 vitamin, 2mgZl 2, 4—D, 30g / l sucrose, 2g / l gellite, pH5.8]
  • plant incubator MLR- 350HT
  • 25 ° C in 25 ° C in
  • bright place 60 mol'm _2 's _1, 16 h light period Z8 hours dark, were cultured in the following this light conditions and photopic) conditions.
  • embryonic callus having the ability to redivide the plant body was selected from the grown tissue. The selected embryonic callus was then transplanted to a new N6C1 plate every month for growth.
  • Agrobataterum infection is caused by transformed agrobataterum strains EHA10lZpBI35S—FSPDl + Z ⁇ , EHA101 / pBIC2—FSPD1 + / — (CaMV35S promoter replaced with peroxidase promoter derived from horseradish rust), EHA101 / pBI35S — FS AM24 + Z—, EHA10lZpBI35S— FADC76 + Z— was cultured on LB agar medium containing 50mgZl kanamycin and 50mgZ lygromycin at 27 ° C Scattered about 2 grains of rice, infection medium (AA: AA mineral salt, amino acid, B5 vitamin, 20g / l sucrose, 2mg / l 2, 4—D, 0.2mg / l force rice, 10mg / l acetosyringone, It was suspended in pH 5.8).
  • AA AA mineral salt, amino acid, B5 vitamin, 20g /
  • This cell suspension was transferred to a 300 ml sterilized beaker containing a sterilized stainless steel net basket.
  • the embryo callus pre-cultured in a beaker is placed in this beaker basket and soaked for 2 minutes. Then, the basket is placed on two sterilized filter papers to remove excess water, and the coculture medium (N6CO plate: N6 inorganic salt) , N6 vitamin, 30 g / ⁇ sucrose, lOgZl glucose, 2 mg / l 2, 4-D, 10 mg / l acetosyringone, 2 g / l gellite, pH 5.8), 3 at 28 ° C in the dark Co-cultured for days.
  • the coculture medium N6CO plate: N6 inorganic salt
  • Embryo callus co-cultured for 3 days is transferred to a 300m 1 beaker basket containing a sterile stainless steel basket containing 50ml of sterilization solution (sterilized water plus carbecillin to a final concentration of 500mgZl) I picked up the basket with tweezers and washed it well for several minutes.
  • the embryonic callus was then transferred to a 300 ml sterilized beaker containing the sterilization solution along with the basket and washed again. Repeat the same procedure, remove excess water on sterile filter paper, and select medium (N6SE plate: N6 mineral salt, N6 vitamin, 30g / l sucrose, 2mgZl 2, 4-D, 50mg / l neugromycin.
  • Regeneration medium MSRE plate: MS mineral salt, MS vitamin, 30g / l sucrose, 30g / l sorbitol, 2g / l casamino acid, lmgZl NAA, 2mg / l BAP 250mg / l force Norebenicillin 50 mg / l Neugromycin, 4 g / l Genorelite, pH 5.8
  • the transplanted cells were cultured at 25 ° C under dark conditions until redifferentiation. Confirmation and expression analysis of the introduced gene were performed on the obtained transformants.
  • the genomic DNA was prepared and then PCR and Southern hybridization were performed.
  • Northern analysis and Western analysis were performed.
  • Western analysis showed that 4 strains were transformed ⁇ (RSP— SS— 1— 1, RSP-SS- 1-2, RSP— CS— 3— 1, RSP -CS- 3-2, 3, RSP—CS— 3— 4)
  • the extracted protein was subjected to SDS-PAGE according to a conventional method and then transferred to a membrane by an electroblot method.
  • Western blotting was performed using a peptide antibody of FSPD1 (SPDS—SP3: LCSTEGPPLDFKHP). Fig. Shown in 2.
  • the transformed rice produced in (3) was selected as a result of PCR (or Southern analysis), Northern analysis, or Western analysis.
  • Polyamine analysis was performed on lines in which a polyamine metabolism-related enzyme gene was reliably introduced and the gene was stably expressed.
  • RSP—CS—3—4 was selected, RSP—SS—1-1, RSP—SS—1-2—has been introduced with CaMV35S promoter as a promoter, RSP—CS—3-1— RSP—CS—3—2, RSP—CS—3—3, and RSP—CS—3—4 are strains into which the horseradish penoleoxidase promoter (C2 promoter) has been introduced.
  • FSPD 1 has been introduced in the antisense direction (1)!
  • Cell lines, RSP-SA-1, RSP-SA-2 have been selected and all are CaMV 35S promoters.
  • FS AM24 is introduced in the sense direction (+) !, Cell Line, RSP—SM—1—1, TSP—SM—1-2, RSP—SM—1-1, RSP—SM—1 -2 is a strain in which the CaMV35S promoter is introduced as a promoter.
  • WT wild strains
  • TSP transformants
  • Add the diluted internal standard solution (1, 6-hexanediamine, internal standard amount 7.5 or 12 nmol) and 5% aqueous perchloric acid solution (sample body weight: 1 to 5 ml per Og: LOml) to the sampled sample, And thoroughly ground and extracted at room temperature. Grinding liquid,
  • the HPLC column used was / z Bondapak C18 (Waters: 027324, 3.9 X 300 mm, particle size 10 m).
  • the polyamine content in the sample was calculated by obtaining the peak areas of each polyamine and internal standard from the standard solution and the HPLC chart of the sample, respectively.
  • cell lines in which polyamine metabolism-related enzyme genes were introduced in the sense direction had significantly higher putrescine content, spermidine content, and spermine content than the wild type strain (WT), and the total polyamine content was also higher than the wild type strain (WT).
  • WT wild type strain
  • WT wild type strain
  • a significant increase was evident. In particular, the increase in spermidine and spermine content was remarkable.
  • Seeds of wild type are growth medium (RGM: MS inorganic salt, MS vitamin, 30g / l sucrose, 8gZ 1 phytowager, pH 5.8), seeds of transformed rice are selective growth medium (RGM: MS inorganic salt MS vitamin, 30 g / l sucrose, 8 g / l phytowager, 50 mgZl kanamycin, 20 mgZl hygromycin, pH 5.8).
  • the cells were grown in a growth chamber set at 26 ° C, low light conditions (4 000 lux), and 16 hours day length (16 hours light period Z8 hours dark period).
  • individuals with the same growth of wild strains and transformed rice were selected and planted in plastic pots filled with commercially available culture soil.
  • Example 4 Evaluation of various stress tolerance of transformed rice
  • the seeds of the wild strain (WT) and the transformed ⁇ (RSP-SS-1-1, RSP—SS—1-2) were removed with a pair of tweezers.
  • 5 ml of seed sterilization solution (2.5% antiformin, Tween20) was added to the seeds and shaken at 150 rpm for 30 minutes.
  • the seed sterilization solution was discarded, 10 ml of sterilized water was added, and this operation was repeated 4 times by shaking at 150 rpm for 10 minutes.
  • Wild strain ( WT) seeds contain NaCl (75mM NaCl, lOOmM NaCl) or no growth medium (RGM: MS inorganic salt, MS vitamin, 30gZl sucrose, 8g / l phytofagger, pH5.8), transformed rice (RSP— SS-1-1, RSP-SS-1-2) seeds with or without NaCl (75 mM NaCl, lOOmM NaCl) or selected growth medium (RGM: MS inorganic salt, MS vitamins, 30 g / l sucrose , 8 g / l fiaguar, 50 mg / l kanamycin, 20 mg ⁇ , igromycin, pH 5.8). Growth tests were conducted in a growth chamber set at 26 ° C, low light conditions (4000 lux), and 16 hours day length (16 hours light period Z8 hours dark period). On the 10th day after sowing, the body weight (total) and shoot length were investigated.
  • RGM MS inorganic salt, MS vitamin, 30gZl suc
  • the seeds of the wild strain (WT) and the transformed ⁇ (RSP-SS-1-1, RSP—SS—1-2) were removed with a pair of tweezers.
  • 5 ml of seed sterilization solution (2.5% antiformin, Tween20) was added to the seeds and shaken at 150 rpm for 30 minutes.
  • the seed sterilization solution was discarded, 10 ml of sterilized water was added, and this operation was repeated 4 times by shaking at 150 rpm for 10 minutes.
  • the seeds of the wild strain are grown in the growth medium (RGM: MS inorganic salt, MS vitamin, 30g / l sucrose, 8g / ⁇ phytowager, ⁇ 5.8), and transformed rice (RSP—SS—1—1, RSP— SS-1-2) seeds are selected growth medium (RGM: MS inorganic salt, MS vitamin, 30g / l sucrose, 8g / 1 phytofaga, 50mg / l kanamycin, 20mg / l neugromycin, pH 5.8) Respectively. They were grown for 3 days in a growth chamber set at 26 ° C, low light conditions (4000 lux), 16 hours long (16 hours light period Z 8 hours dark period) and germinated in the same manner.
  • Fig. 5 shows the results of the growth survey on the 10th day of sowing (live weight 'shoot length), and Fig. 6 shows the appearance of the grass on the 7th day of sowing.
  • Results of Fig. 5 Forces with no difference in weight and shoot length in wild strains and transformed strains in non-stressed areas Both weight and shoot length in cold stressed areas compared to wild strains in transformed rice The growth was significantly large and excellent.
  • the transformed rice showed significantly better growth in both shoots and roots than the wild type. From the above results, it was shown that the transgenic strain into which the polyamine metabolism-related enzyme gene was introduced was more resistant to low temperature stress than the wild type.
  • the present inventors have confirmed that the rice produced in the present invention is resistant to various stresses that are known to reduce fruitiness such as low temperature, high temperature, lack of sunshine, and high salt. Therefore, even when various stresses such as low temperature stress, salt stress, lack of sunshine, drought stress, and water stress are applied during the booting period, the fertility does not decrease.
  • T2 seeds of wild strain WT, cultivar 'Yukihi forceri'
  • transformation ⁇ ⁇ RSP -SS-1-1-2, RSP- SS- 1-2-3
  • the seeds were transferred to a beaker containing water for water absorption treatment.
  • the water-absorbed seeds were sown in deep-bottomed bats packed with commercially available culture soil (Lovely culture soil for rice breeding, manufactured by Sakai Seki). They were covered with Saran wrap and acclimated under humid conditions, and then transferred to a closed glass greenhouse (day / night temperature 25 ° CZ22 ° C, humidity 55%, natural light) to start growing.
  • the supermidine content and the spermine content were maintained high within the range of 1.5 to 2.0 times that of the wild strain.
  • polyamine levels especially spermidine and spermine
  • FSPD1 supermidine synthase gene

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Nutrition Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

A rice plant, or progeny thereof, enhanced in various stress tolerances, which stably retains a gene encoding enzyme associated with polyamine metabolism; a method of creating the plant; and a method of creating a callus of the plant. Further, there is provided a rice plant, or progeny thereof, enhanced in productivity and trait, which stably retains a gene encoding enzyme associated with polyamine metabolism. Still further, there are provided a method of creating the plant, and a method of creating a callus of the plant.

Description

明 細 書  Specification
ストレス耐性及び Z又は生産性を改良したイネ科植物、及びその作出方 法  Gramineae plants with improved stress tolerance and Z or productivity, and methods for producing them
技術分野  Technical field
[0001] 本発明は、改良されたストレス耐性、耐倒伏性、生産性な!/ヽし形質を有するイネ科 植物、詳細には改良された塩ストレス耐性、低温ストレス耐性、あるいは、改良された 穂、稈、種子、籾、コメ、穎果、分げつ、小穂などの生産性ないし形質を有するイネ科 植物に関する。  [0001] The present invention relates to a Gramineae plant having improved stress tolerance, lodging resistance and productivity! / More particularly, improved salt stress tolerance, low temperature stress tolerance, or improved The present invention relates to a gramineous plant having productivity or traits such as ears, pods, seeds, pods, rice, fruits, tillers, and spikelets.
[0002] また、本発明は該イネ科植物の作出方法に関する。  [0002] The present invention also relates to a method for producing the gramineous plant.
[0003] さらに、本発明は、該イネ科植物力も有用物質 (例えばデンプン、タンパク質)或い はその誘導体 (例えば生分解性プラスチック)を製造する方法に関する。  [0003] Further, the present invention relates to a method for producing a useful substance (eg starch, protein) or a derivative thereof (eg biodegradable plastic).
背景技術  Background art
[0004] 植物はそれぞれの生息地の温度や塩などの様々な環境ストレスに適応して生活し ている。しかし、例えば温度ストレスにおいては、植物が生育適温の上限または下限 を越えるような環境に遭遇すると高温ストレスや低温ストレスを受け、徐々にあるいは 急激に細胞の生理機能が損なわれて障害をひきおこす。これまで、種々の温度環境 に適応した野生の植物を食料作物や工芸作物などに利用するために、選抜や交雑 育種など育種的手段によって作物の温度適応性の拡大に努めてきた。しかし、特に 日本は南北に長ぐ地域によっては気候が著しく異なるとともに、四季の変化が著し いので地域や季節によっては作物は生育に不適な温度環境にさらされる危険性が 大きい。例えば、熱帯を起源とするイネは、明治以来の品種改良によって東北地方 や北海道などの冷涼地でも栽培できるようになり、現在ではこれらの地域の基幹作物 として栽培されているが、これらの地域では初夏に異常低温があると冷害を受け、著 しい減収になることが現在でも問題になっている。近年、地球温暖化やエルニーニョ 現象が原因と考えられる異常気象によって作物が重大な被害を受け、 1993年のひ ど 、冷害による米不足は記憶に新 U、。  [0004] Plants live by adapting to various environmental stresses such as temperature and salt in their habitats. However, for example, in the case of temperature stress, if a plant encounters an environment where the upper limit or lower limit of the optimum growth temperature is exceeded, it undergoes high temperature stress or low temperature stress, and the physiological function of cells is gradually or suddenly impaired, causing damage. Until now, in order to use wild plants adapted to various temperature environments for food crops and craft crops, efforts have been made to expand the temperature adaptability of crops by breeding means such as selection and cross breeding. However, especially in Japan, the climate varies significantly depending on the region that extends from north to south, and the changes in the four seasons are significant. Therefore, depending on the region and season, crops are exposed to a temperature environment that is inappropriate for growth. For example, rice originating from the tropics can be cultivated in cool areas such as Tohoku and Hokkaido as a result of cultivar improvement since the Meiji era and is now cultivated as a key crop in these areas. Even if there is an abnormally low temperature in early summer, it is still a problem that it suffers from cold damage and a significant decrease in sales. In recent years, crops have been severely damaged by abnormal weather, which is thought to be caused by global warming and the El Nino phenomenon.
[0005] 塩ストレスについては全陸地面積の約 10%が塩害地域といわれ、近年東南アジア やアフリカなどの乾燥地を中心に塩類土壌の拡大が農業上深刻な問題となっている [0005] About 10% of the land area of salt stress is said to be a salt damage area. Expansion of salt soil is a serious problem in agriculture, especially in dry land such as Africa
[0006] 乾燥ストレス、水ストレスは植物にとって重要なストレスで、温度が制限要因とならな いときには降雨量とその分布によって大きな影響を受ける。特に、主要な作物栽培地 域である半乾燥地帯などでは、作物の生育や収量は乾燥ストレス、水ストレスによつ て著しく左右される。 [0006] Drought stress and water stress are important stresses for plants. When temperature is not a limiting factor, it is greatly affected by rainfall and its distribution. In particular, in semi-arid areas, which are the main crop cultivation areas, the growth and yield of crops are significantly affected by drought stress and water stress.
[0007] また、地球規模で食料危機が問題となっており、植物の生産性ないし形質 (生産ポ テンシャル、以下、背景技術の欄において単に「生産性」ということがある)を向上させ ることは重要な課題となって 、る。  [0007] In addition, the food crisis is a problem on a global scale, and it is necessary to improve plant productivity or traits (production potential, hereinafter simply referred to as “productivity” in the background section). Is an important issue.
[0008] 種々の環境ストレス耐性を高めるために交雑育種、最近の遺伝子工学技術を利用 した育種、植物ホルモンや植物調節剤の作用を利用した方法等が行われて ヽる。  [0008] In order to enhance various environmental stress tolerances, cross breeding, breeding using recent genetic engineering techniques, methods using the action of plant hormones and plant regulators, and the like are performed.
[0009] これまでに遺伝子工学技術を利用した、環境ストレス耐性植物の作出が行われて いる。低温ストレス耐性の改良に用いられた遺伝子としては、生体膜脂質の脂肪酸の 不飽和化酵素遺伝子(ω— 3デサチユラーゼ遺伝子、グリセロール 3—リン酸ァシ ルトランスフェラーゼ遺伝子、ステアロイルー ACP 不飽和化酵素遺伝子)や光合成 に関与するピルビン酸リン酸ジキナーゼ遺伝子、凍結保護'防止活性を持つタンパク 質をコードする遺伝子(COR15、 COR85、 kinl)等が報告されている。  [0009] So far, environmental stress-tolerant plants have been created using genetic engineering techniques. The genes used to improve low-temperature stress tolerance include fatty acid desaturase genes (ω-3 desaturase gene, glycerol 3-phosphate acyltransferase gene, stearoyl-ACP desaturase gene). In addition, pyruvate phosphate dikinase gene involved in photosynthesis, genes encoding proteins with cryoprotective activity (COR15, COR85, kinl) have been reported.
[0010] 塩ストレスや乾燥'水ストレス耐性の改良に用いられた遺伝子としては、浸透圧調節 物質のグリシンべタイン合成酵素遺伝子 (コリンモノォキシゲナーゼ遺伝子、ベタイン アルデヒドデヒドロゲナーゼ遺伝子)、プロリン合成酵素遺伝子(1 ピロリン 5—力 ルボン酸シンテターゼ)等が報告されて 、る。  [0010] Examples of genes used to improve tolerance to salt stress and drought 'water stress include glycine betaine synthase genes (choline monooxygenase gene, betaine aldehyde dehydrogenase gene), proline synthase Genes (1 pyrroline 5-force rubonic acid synthetase) have been reported.
[0011] しかし、これらの遺伝子を形質転換した植物の多くは、実際には産業上利用可能な 程度に十分な効果は得られておらず、実用化に至っていないのが現状である。  [0011] However, many of the plants transformed with these genes have not yet been sufficiently effective to be industrially usable, and have not yet been put into practical use.
[0012] 一方、植物の生産性を改良するために交雑育種、最近の遺伝子工学技術を利用 した育種、植物ホルモンや植物調節剤の作用を利用した方法等が行われている。特 に、イネを中心に交雑育種で生産性の改良が試みられており、これまでに生産性が 飛躍的に向上した多収性品種も数多く開発されている。遺伝子工学技術による育種 では光合成や炭水化物代謝などに関するキー酵素の遺伝子を用いた生産性の改良 が行われている。 [0012] On the other hand, in order to improve the productivity of plants, cross breeding, breeding using recent genetic engineering techniques, methods utilizing the action of plant hormones and plant regulators, and the like have been carried out. In particular, attempts have been made to improve productivity by cross breeding centering on rice, and many high-yielding varieties with dramatically improved productivity have been developed so far. Breeding with genetic engineering technology improves productivity using genes of key enzymes related to photosynthesis and carbohydrate metabolism Has been done.
[0013] 例えば、ラン藻由来のフルクトース一 1, 6—ビスホスファターゼ Zセドヘプッロース  [0013] For example, fructose-derived 1,6-bisphosphatase Z cedeheptulose derived from cyanobacteria
- 1, 7—ビスホスファターゼ遺伝子をタバコの葉緑体中で発現させることで、光合成 能が強化されて光合成代謝中間体 (へキソース、シュクロース、デンプン)の含量が 増加し、生育が促進され生産性が向上した (特許文献 1)。さらに、炭水化物代謝の ショ糖リン酸合成酵素 (SPS)が炭素分配だけでなくて生産能力の向上にも影響する と考えられ、 SPS遺伝子がトマト、ジャガイモ、タバコに導入された。トマトでは SPS遺 伝子を導入することで、栄養生長期の地上部の乾物重が多くなる傾向が確認された (非特許文献 1)。ジャガイモでは地上部 (葉と茎)および塊茎の乾物重が増大して!/ヽ ることが確認された (非特許文献 2 ;非特許文献 3)。しカゝしながら、これらの遺伝子に より形質転換された植物の多くは、実際には産業上利用可能な程度に十分な効果は 得られておらず、実用化に至って ヽな 、のが現状である。  -Expression of 1,7-bisphosphatase gene in tobacco chloroplasts enhances photosynthesis and increases the content of photosynthetic metabolic intermediates (hexose, sucrose, starch) and promotes growth. Productivity improved (Patent Document 1). In addition, sucrose phosphate synthase (SPS), a carbohydrate metabolism, is thought to affect not only carbon partitioning but also production capacity, and SPS genes were introduced into tomatoes, potatoes and tobacco. It was confirmed that the introduction of SPS gene in tomato tends to increase the dry matter weight of the above-ground part during vegetative growth (Non-patent Document 1). In potatoes, it was confirmed that the dry matter weight of the above-ground part (leaves and stems) and tubers increased! / Non-patent document (Non-patent document 2; Non-patent document 3). However, many of the plants transformed with these genes have not yet been sufficiently effective to be industrially usable, and are currently being put into practical use. It is.
[0014] ポリアミンとは第 1級アミノ基を 2つ以上もつ脂肪族炭化水素の総称で生体内に普 遍的に存在する天然物であり、 20種類以上のポリアミンが見いだされている。代表的 なポリアミンとしてはプトレシン、スペルミジン、スペルミンがある。ポリアミンの主な生 理作用としては (1)核酸との相互作用による核酸の安定化と構造変化 (2)種々の核酸 合成系への促進作用 (3)タンパク質合成系の活性化 (4)細胞膜の安定化や物質の膜 透過性の強化などが知られている。植物におけるポリアミンの役割としては細胞増殖 や分裂時に核酸、タンパク質生合成の促進効果や細胞保護が報告されているが、最 近ではポリアミンと環境ストレス耐性との関わりも注目されている。  [0014] Polyamine is a general term for aliphatic hydrocarbons having two or more primary amino groups, and is a natural product that exists universally in the living body. More than 20 types of polyamines have been found. Typical polyamines include putrescine, spermidine and spermine. The main physiological functions of polyamines are as follows: (1) Stabilization and structural changes of nucleic acids by interaction with nucleic acids (2) Promotion of various nucleic acid synthesis systems (3) Activation of protein synthesis systems (4) Cell membranes Stabilization of materials and enhancement of membrane permeability of substances are known. The role of polyamines in plants has been reported to promote nucleic acid and protein biosynthesis and cell protection during cell growth and division, but recently, the relationship between polyamines and environmental stress tolerance has also attracted attention.
[0015] 近年、ポリアミンの種々の環境ストレスに対する関わりが報告されている(特許文献 2)。低温ストレス (非特許文献 4、非特許文献 5、非特許文献 6)、塩ストレス (非特許 文献 7 : Plant Physiol, 91, 500-504, 1984)、酸ストレス(非特許文献 8)、浸透ストレス (非特許文献 9)、病原菌感染ストレス (非特許文献 10)、除草剤ストレス (非特許文献 11)などとの関わりが報告されて 、るが、 、ずれの報告も生長発育反応やストレス抵 抗性とポリアミン濃度の変化の関連性力 ポリアミンの関与を推定したものであり、ポリ ァミン代謝関連酵素をコードするポリアミン代謝関連酵素遺伝子と環境ストレス耐性と の遺伝子レベルでの関与にっ 、ては十分に調べられて ヽな 、。 [0016] 植物のポリアミン生合成に関わるポリアミン代謝関連酵素としてはアルギニン脱炭 酸酵素 (ADC)、オル二チン脱炭酸酵素(ODC)、 S—アデノシルメチォニン脱炭酸 酵素(SAMDC)、スペルミジン合成酵素(SPDS)、スペルミン合成酵素(SPMS)等 が知られている。これらのポリアミン代謝関連酵素をコードするポリアミン代謝関連遺 伝子につ 、ては植物力も既に幾つか単離されて 、る。 ADC遺伝子はェンバタ(非特 許文献 12)、トマト (非特許文献 13)、シロイヌナズナ (非特許文献 14)、エンドゥ (非 特許文献 15)、 ODC遺伝子はチョウセンアサガオ (Datura) (非特許文献 16)、 SAM DC遺伝子はジャガイモ (非特許文献 17)、ホウレンソゥ(非特許文献 18)、タバコ、 S PDS遺伝子はシロイヌナズナ(非特許文献 19)等力ゝら単離されて 、る。 [0015] In recent years, the relationship of polyamines to various environmental stresses has been reported (Patent Document 2). Low temperature stress (Non-patent document 4, Non-patent document 5, Non-patent document 6), salt stress (Non-patent document 7: Plant Physiol, 91, 500-504, 1984), acid stress (non-patent document 8), osmotic stress (Non-patent document 9), pathogen infection stress (Non-patent document 10), herbicide stress (Non-patent document 11), etc. have been reported. This is an estimation of the involvement of polyamines, and the gene-level involvement of polyamine metabolism-related enzyme genes that encode polyamine metabolism-related enzymes and environmental stress tolerance is sufficient. It is obscene to be investigated by. [0016] Polyamine metabolism-related enzymes involved in plant polyamine biosynthesis include arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), spermidine Synthase (SPDS), spermine synthase (SPMS) and the like are known. Some of the polyamine metabolism-related genes encoding these polyamine metabolism-related enzymes have already been isolated. ADC gene is Enmbata (Non-patent document 12), Tomato (Non-patent document 13), Arabidopsis (Non-patent document 14), Endu (Non-patent document 15), ODC gene is Datura (Non-patent document 16), The SAM DC gene is isolated from potato (Non-patent document 17), spinach (Non-patent document 18), tobacco, and SPDS gene from Arabidopsis (Non-patent document 19).
[0017] さらに、ポリアミンの形態形成に対する関わりが報告されている。アルギニン脱炭酸 酵素 (ADC)の活性が抑えられたシロイヌナズナ変異体では、根の成長が変化した ( 非特許文献 20)ことが報告されているが、ポリアミン濃度の変化の関連性力もポリアミ ンの関与を推定したものであり、ポリアミン代謝関連酵素遺伝子と生産性との遺伝子 レベルでの関与にっ 、ては十分に調べられて 、な 、。  [0017] Furthermore, a relationship to polyamine morphogenesis has been reported. In Arabidopsis mutants with reduced arginine decarboxylase (ADC) activity, it has been reported that root growth was altered (Non-patent Document 20). The gene level of polyamine metabolism-related enzyme genes and productivity has been thoroughly investigated.
[0018] さらに、ジャガイモ由来の S—アデノシルメチォニン脱炭酸酵素遺伝子をジャガイモ にセンス方向で導入したところ形質転換体が得られず、アンチセンス方向で導入した ところ生育異常が見られたこと (非特許文献 21)、ェンパク由来のアルギニン脱炭酸 酵素遺伝子をタバコに導入したところ生育異常が見られたこと (非特許文献 22)を各 々開示している力 イネ科植物の生産性の改良については全く調べられていない。 特許文献 1:特許第 3357909号  [0018] Furthermore, when the potato-derived S-adenosylmethionine decarboxylase gene was introduced into potato in the sense direction, no transformant was obtained, and when introduced in the antisense direction, abnormal growth was observed. (Non-patent document 21), the ability of each plant to disclose abnormal growth (non-patent document 22) when arginine decarboxylase gene derived from empak was introduced into tobacco. Has not been investigated at all. Patent Document 1: Patent No. 3357909
特許文献 2 :WO02Z23974  Patent Document 2: WO02Z23974
非特許文献 l : Plant Physiol, 101, 535, 1993、 Planta, 196, 327, 1995  Non-patent literature l: Plant Physiol, 101, 535, 1993, Planta, 196, 327, 1995
非特許文献 2 :Jpn. J. Crop Sci" 65, 102, 1996  Non-Patent Document 2: Jpn. J. Crop Sci "65, 102, 1996
非特許文献 3 :Jpn. J. Crop Sci, 65, 143, 1996  Non-Patent Document 3: Jpn. J. Crop Sci, 65, 143, 1996
非特許文献 4: J. Japan So Hortic. Sci., 68, 780-787, 1999  Non-Patent Document 4: J. Japan So Hortic. Sci., 68, 780-787, 1999
非特許文献 5 : J. Japan Soc. Hortic. Sci., 68, 967-973, 1999  Non-Patent Document 5: J. Japan Soc. Hortic. Sci., 68, 967-973, 1999
非特許文献 6 : Plant Physiol. 124, 431-439, 2000  Non-Patent Document 6: Plant Physiol. 124, 431-439, 2000
非特許文献 7 : Plant Physiol, 91, 500-504, 1984 非特許文献 8: Plant Cell Physiol, 38(10), 156-1166, 1997 Non-Patent Document 7: Plant Physiol, 91, 500-504, 1984 Non-Patent Document 8: Plant Cell Physiol, 38 (10), 156-1166, 1997
非特許文献 9: Plant Physiol.75, 102-109, 1984  Non-Patent Document 9: Plant Physiol. 75, 102-109, 1984
非特許文献 10: New PhytoL, 135, 467-473, 1997  Non-Patent Document 10: New PhytoL, 135, 467-473, 1997
非特許文献 ll:Plant Cell Physiol, 39(9), 987-992, 1998  Non-Patent Document ll: Plant Cell Physiol, 39 (9), 987-992, 1998
非特許文献 12:Mol. Gen. Genet., 224, 431-436, 1990  Non-Patent Document 12: Mol. Gen. Genet., 224, 431-436, 1990
非特許文献 13: Plant Physiol, 103, 829-834, 1993  Non-Patent Document 13: Plant Physiol, 103, 829-834, 1993
非特許文献 14: Plant Physiol., Ill, 1077-1083, 1996  Non-Patent Document 14: Plant Physiol., Ill, 1077-1083, 1996
非特許文献 15: Plant Mol. Biol, 28, 997-1009, 1995  Non-Patent Document 15: Plant Mol. Biol, 28, 997-1009, 1995
非特許文献 16:Biocem. J., 314, 241-248, 1996  Non-Patent Document 16: Biocem. J., 314, 241-248, 1996
非特許文献 17: Plant Mol. Biol, 26, 327-338, 1994  Non-Patent Document 17: Plant Mol. Biol, 26, 327-338, 1994
非特許文献 18: Plant Physiol., 107, 1461-1462, 1995  Non-Patent Document 18: Plant Physiol., 107, 1461-1462, 1995
非特許文献 19: Plant Cell Physiol, 39(1), 73-79, 1998  Non-Patent Document 19: Plant Cell Physiol, 39 (1), 73-79, 1998
非特許文献 20: The Plant Journal, 13(2), 231-239, 1998  Non-Patent Document 20: The Plant Journal, 13 (2), 231-239, 1998
非特許文献 21: The Plant Journal, 9(2), 147-158, 1996  Non-Patent Document 21: The Plant Journal, 9 (2), 147-158, 1996
非特許文献 22: The Plant Journal, 11(3), 465-473, 1997  Non-Patent Document 22: The Plant Journal, 11 (3), 465-473, 1997
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0019] 本発明は、ポリアミン代謝に関連する遺伝子の発現を人為的に制御して、ポリアミン レベルを変化させることによって、生産性が改良されたイネ科植物を作出することを 目的とする。 [0019] An object of the present invention is to produce a grass plant with improved productivity by artificially controlling the expression of genes related to polyamine metabolism and changing polyamine levels.
[0020] また、本発明は、イネ科植物の収量と生産性を向上させ、さらに有用物質をより多く 産生させることを目的とする。  [0020] Another object of the present invention is to improve the yield and productivity of gramineous plants and to produce more useful substances.
[0021] さらに、本発明は、実用的な植物の生産性ないし形質を高める技術を提供すること を目的とする。 [0021] Furthermore, an object of the present invention is to provide a technique for enhancing practical plant productivity or traits.
[0022] イネ科植物(イネ、トウモロコシ、コムギ、ライムギ、ォォムギ、ェンバタ、シバを含む) 、例えばイネは熱帯性植物であることから低温ストレス障害 (冷害)を受けやすく低温 ストレス耐性の向上は極めて重要な課題となっている。イネ科植物の低温ストレス耐 性を高めることができれば、特に寒冷地域 (例えば北海道や東北地域)で問題となつ ている冷害による穀物(コメ、小麦、大麦、トウモロコシなど)収量の低下を軽減するこ とができ穀物の安定供給が可能となる。さらに、塩ストレス耐性を高めることができれ ば、高塩障害によって栽培が困難な地域でもイネ科植物の栽培が可能となる。 [0022] Gramineae plants (including rice, corn, wheat, rye, barley, embata, shiba), for example, rice is a tropical plant, so it is susceptible to low-temperature stress damage (cold damage) and is extremely resistant to low-temperature stress. It is an important issue. If the resistance to low temperature stress of grasses can be increased, it will be a problem especially in cold regions (for example, Hokkaido and Tohoku regions). The decline in the yield of cereals (rice, wheat, barley, corn, etc.) due to cold damage can be reduced, and a stable supply of cereals becomes possible. Furthermore, if the tolerance to salt stress can be increased, grasses can be cultivated even in areas where cultivation is difficult due to high salt damage.
[0023] 本発明は、ポリアミン代謝に関連する遺伝子の発現を人為的に制御して、ポリアミン レベルを変化させることによって、種々のストレス耐性が改良されたイネ科植物を作 出することを目的とする。  [0023] An object of the present invention is to artificially control the expression of genes related to polyamine metabolism and to change the polyamine level to produce a variety of gramineous plants with improved stress tolerance. To do.
[0024] また、本発明は、イネ科植物の収量と生産性を向上させ、さらに有用物質をより多く 産生させることを目的とする。  [0024] Another object of the present invention is to improve the yield and productivity of gramineous plants and to produce more useful substances.
課題を解決するための手段  Means for solving the problem
[0025] 本発明者らは上記の目的を達成すべく鋭意努力した結果、ポリアミン生合成に関 わるポリアミン代謝関連酵素遺伝子を単離して、該遺伝子をイネ科植物に導入して 過剰発現することによって、ポリアミン代謝を操作してポリアミン濃度を変化させること によって、栽培環境と無関係に、換言すれば環境ストレスがあってもなくても生産性 ないし形質のパラメーターが改良されることを見出した。さらには、ポリアミン濃度を変 ィ匕させることによって、種々のストレス耐性のパラメーターが改良された植物が得られ ることが明らかになった。  As a result of diligent efforts to achieve the above object, the present inventors have isolated a polyamine metabolism-related enzyme gene involved in polyamine biosynthesis and introduced the gene into a grass family plant to overexpress it. Thus, it was found that by manipulating polyamine metabolism and changing polyamine concentration, productivity or trait parameters were improved regardless of the cultivation environment, in other words, with or without environmental stress. Furthermore, it was revealed that plants with improved various stress tolerance parameters can be obtained by changing the polyamine concentration.
[0026] 例えば、穂ないし稈が形成される分げつ期にポリアミン量が増加すると穂数、稈数、 稈地上部生体重、地上部乾燥重、籾収量が有意に増加することが示された。さらに、 イネ科植物は、出穂期、花粉形成期ないし穂ばらみ期に低温、乾燥、塩、除草剤、 病害虫などの種々のストレスが力かると稔実性が低下あるいは不稔性になる力 この 時期に増加量のポリアミンが作用することで種々の環境ストレスに対する稔実性の改 善 (不稔性の阻止)がなされることを見出した。  [0026] For example, it is shown that when the amount of polyamine is increased during the tillering period when ears or pods are formed, the number of spikes, the number of pods, the above-ground weight, the above-ground dry weight, and the culm yield are significantly increased. It was. Furthermore, gramineous plants have the ability to reduce fertility or sterility if various stresses such as low temperature, drying, salt, herbicides, pests, etc. are applied during heading, pollen formation or booting. During this period, we found that the increased amount of polyamines acted to improve the fertility against various environmental stresses (inhibition of sterility).
[0027] 本発明は、以下の発明を提供するものである。  [0027] The present invention provides the following inventions.
1. 植物中で機能し得るプロモーターの制御下にあるポリアミン量を調節する核酸 配列を安定に保持し、且つ該核酸配列を有していない比較対照植物に比べて栽培 環境と無関係に生産性ないし形質が改良された、及び Z又は、少なくとも 1種のストレ ス耐性が改良されたイネ科植物及びその子孫。  1. a nucleic acid sequence that regulates the amount of polyamines under the control of a promoter that can function in plants; stably maintains a nucleic acid sequence, and is less productive than a control plant that does not have the nucleic acid sequence, regardless of the cultivation environment. Gramineae plants and their progeny with improved traits and with improved Z or at least one stress tolerance.
17. 項 1に記載のイネ科植物及びその子孫から得られる有用物質。 18. 植物中で機能し得るプロモーターの制御下にあるポリアミン量を調節する核酸 配列を安定に保持し、且つ該核酸配列を有して!/ヽな ヽ植物の細胞を形質転換する 工程を含む、該核酸配列を有していない比較対照植物に比べて栽培環境と無関係 に生産性ないし形質が改良された、及び Z又は、少なくとも 1種のストレス耐性が改良 されたイネ科植物を作出する方法。 17. Useful substances obtained from the grasses and their descendants according to Item 1. 18. A step of stably maintaining a nucleic acid sequence that regulates the amount of polyamine under the control of a promoter that can function in a plant, and transforming cells of a plant that has the nucleic acid sequence! , A method for producing a Gramineae plant having improved productivity or traits irrespective of the cultivation environment and Z or at least one stress tolerance improved compared to a control plant not having the nucleic acid sequence .
20. 植物中で機能し得るプロモーターの制御下にあるポリアミン量を調節する核酸 配列を含む発現ベクターで、該核酸配列を有して!/ヽな ヽ植物の細胞を形質転換する 工程を含む、該核酸配列を有していない比較対照植物に比べて栽培環境と無関係 に生産性ないし形質が改良された、及び Z又は、少なくとも 1種のストレス耐性が改良 されたイネ科植物を作出する方法。  20. An expression vector comprising a nucleic acid sequence that regulates the amount of polyamine under the control of a promoter capable of functioning in a plant, comprising the step of transforming cells of the ヽ plant that has the nucleic acid sequence! A method for producing a Gramineae plant having improved productivity or traits irrespective of the cultivation environment and Z or at least one stress tolerance improved as compared with a comparative control plant not having the nucleic acid sequence.
33. 以下の工程:  33. The following steps:
( 1)植物中で機能し得るプロモーターの制御下にあるポリアミン量を調節する核酸配 列を含む発現ベクターで、該核酸配列を有して ヽな ヽ植物の細胞を形質転換し、 (1) An expression vector comprising a nucleic acid sequence that regulates the amount of polyamine under the control of a promoter capable of functioning in a plant, transforming a cell of a culm plant having the nucleic acid sequence,
(2)該形質転換細胞から、該核酸配列を有して!/、な 、植物に比べて改良された生産 性な!ヽし形質を有する植物体を再生し、 (2) From the transformed cell, regenerate a plant body having the nucleic acid sequence!
(3)該植物体力 受粉により種子を採取し、および  (3) Collecting seeds by pollination of the plant, and
(4)該種子を栽培して得られる植物体力 受粉により得られる種子における該核酸 配列を検定して該核酸配列のホモ接合体を選抜すること  (4) Plant physical strength obtained by cultivating the seed Examining the nucleic acid sequence in the seed obtained by pollination and selecting a homozygote of the nucleic acid sequence
を含む、該核酸配列についてホモ接合体である、該核酸配列を有していない比較対 照植物に比べて栽培環境と無関係に生産性ないし形質が改良された、及び Z又は 、少なくとも 1種のストレス耐性が改良されたイネ科植物を作出する方法。 Which is homozygous for the nucleic acid sequence, has improved productivity or traits independent of the cultivation environment compared to a comparative control plant not having the nucleic acid sequence, and Z or at least one of A method to create a grass family with improved stress tolerance.
発明の効果 The invention's effect
本発明により、イネ科植物の生産性を改良することができ、植物の器官や組織の品 質、価値、生産性、収量の向上などが期待できる。具体的には、穂、稈、分げつ、種 子、籾、米、穎果、小穂の数や大きさが増加することによって、該器官が農作物として 生産される場合、品質、生産性、収量の増加が期待される。特に、ポリアミンが分げ つ期、穂ばらみ期に作用することによって、イネ科植物 (特にイネ)は 1株当たりの穂、 稈、種子 (籾)数が増加することで収穫量が増大することが期待できる。 [0029] 本発明のストレス耐性が改良されたイネ科植物は、環境ストレスを受ける地域のみ ならず、環境ストレスを受けな 、地域であっても予想できな 、環境ストレスに対処する ため使用(生育)されるものである力 環境ストレスを受ける地域にのみ、専ら使用さ れるものであってもよい。 According to the present invention, productivity of gramineous plants can be improved, and improvement in quality, value, productivity, yield, etc. of plant organs and tissues can be expected. Specifically, when the organ is produced as an agricultural crop by increasing the number and size of spikelets, pods, tillers, seeds, pods, rice, berries, and spikelets, quality, productivity An increase in yield is expected. In particular, polyamines act during the tilling and booting periods, and the yield of grasses (especially rice) increases as the number of spikes, pods, and seeds per pod increases. I can expect that. [0029] The gramineous plant with improved stress tolerance according to the present invention is used not only in an area subjected to environmental stress, but also used (growth) to cope with environmental stress that is not subject to environmental stress and cannot be predicted even in the area. ) Power that can be used It may be used exclusively in areas subject to environmental stress.
[0030] 本発明により、イネ科植物の種々の環境ストレス耐性を改良することができ、イネ科 植物の生育過程において遭遇する様々な環境ストレスによる障害の回避や生長抑 制を軽減することができ栽培の安定化、生産性の向上、栽培地域の拡大などが期待 できる。  [0030] According to the present invention, various environmental stress tolerances of gramineous plants can be improved, and avoidance of damages caused by various environmental stresses encountered during the growth process of gramineous plants and suppression of growth can be reduced. Stabilization of cultivation, improvement of productivity, and expansion of cultivation areas can be expected.
[0031] 特に穂ばらみ期におけるストレスに対しても耐性を有し、稔実性を向上させるため、 収穫量の低下を回避できる。  [0031] In particular, since it is resistant to stress during the booting stage and improves the fertility, it is possible to avoid a reduction in the yield.
[0032] さらに、分げつ期において増加量のポリアミンが穂、稈、分げつに作用することで、 穂数、稈数が増大し、収量が増大するだけでなぐ野生株に比べて背丈が低く耐倒 伏性が向上し、台風 (ハリケーン)による収量低下も抑制され得る。  [0032] Furthermore, the increased amount of polyamines acts on the ears, pods and tillers during the tillering period, so that the number of spikes and pods increases and the yield is increased. , Low lodging resistance and improved yield loss due to hurricanes.
図面の簡単な説明  Brief Description of Drawings
[0033] [図 1]ポリアミン代謝関連酵素遺伝子を含む発現コンストラクトの構造を示す図である  [0033] FIG. 1 is a diagram showing the structure of an expression construct containing a polyamine metabolism-related enzyme gene.
[図 2]ポリアミン代謝関連酵素遺伝子を導入したイネのウェスタンブロッテイングの結 果を示す図である。 FIG. 2 is a diagram showing the results of Western blotting of rice introduced with a polyamine metabolism-related enzyme gene.
[図 3]ポリアミン代謝関連酵素遺伝子を導入したイネと野生株との塩ストレス耐性 (生 育)の比較を示す図である。  FIG. 3 is a diagram showing a comparison of salt stress tolerance (growth) between rice and a wild strain into which a polyamine metabolism-related enzyme gene has been introduced.
[図 4]ポリアミン代謝関連酵素遺伝子を導入したイネと野生株との塩ストレス耐性 (草 姿)の比較を示す図である。  FIG. 4 is a diagram showing a comparison of salt stress tolerance (grass form) between rice and a wild strain introduced with a polyamine metabolism-related enzyme gene.
[図 5]ポリアミン代謝関連酵素遺伝子を導入したイネと野生株との低温ストレス耐性( 生育)の比較を示す図である。  FIG. 5 is a diagram showing a comparison of low temperature stress tolerance (growth) between rice and a wild strain introduced with a polyamine metabolism-related enzyme gene.
[図 6]ポリアミン代謝関連酵素遺伝子を導入したイネと野生株との低温ストレス耐性( 草姿)の比較を示す写真である。  FIG. 6 is a photograph showing a comparison of low temperature stress tolerance (grass form) between rice and a wild strain introduced with a polyamine metabolism-related enzyme gene.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] ポリアミンは分子中にアミンを多く含む塩基性物質であり、代表的なポリアミンとして は二分子のアミンを含むプトレシン、三分子のアミンを含むスペルミジン、四分子のァ ミンを含むスペルミン等がある。植物において、これらのポリアミン生合成に関わるポリ ァミン代謝関連酵素としてはプトレシンについては ADC、 ODC、スペルミジンについ ては SAMDC、 SPDS、スペルミンについては SAMDC、 SPMS等が見つかつてい る。これらのポリアミン代謝関連酵素をコードしているポリアミン代謝関連酵素遺伝子 についても既に幾つかの植物で単離されている。例えば、植物のポリアミン生合成に 関わるポリアミン代謝関連酵素としてはアルギニン脱炭酸酵素 (ADC)、オル二チン 脱炭酸酵素(ODC)、 S—アデノシルメチォニン脱炭酸酵素(SAMDC)、スペルミジ ン合成酵素(SPDS)、スペルミン合成酵素(SPMS)等が知られて ヽる。これらのポリ ァミン代謝関連酵素をコードするポリアミン代謝関連遺伝子については植物から既に 幾つか単離されている。 ADC遺伝子はェンバタ(Mol. Gen. Genet., 224, 431-436, 1 990)、トマト(Plant Physiol, 103, 829-834, 1993)、シロイヌナズナ(Plant Physiol, 11 1, 1077-1083, 1996)、エンドゥ(Plant Mol. Biol, 28, 997-1009, 1995)、 ODC遺伝 子はチョウセンアサガオ(Datura) (Biocem. J., 314, 241-248, 1996)、 SAMDC遺伝 子はジャガイモ(Plant Mol. Biol, 26, 327-338, 1994)、ホウレンソゥ(Plant Physiol, 1 07, 1461-1462, 1995)、タバコ、 SPDS遺伝子はシロイヌナズナ(Plant cell Physiol, 39(1), 73-79, 1998)等から単離されている。さらに、幾つかのポリアミン代謝関連酵 素遺伝子については植物への導入が試みられている力 得られた形質転,物で 生産性な 、し形質の改良にっ ヽては報告されて ヽな 、。 [0034] Polyamine is a basic substance that contains a large amount of amine in the molecule. There are putrescine containing two molecules of amine, spermidine containing three molecules of amine, spermine containing four molecules of amine, and the like. In plants, ADC, ODC, SAMDC, SPDS, and SAMDC, SPMS, etc. for putrescine and SAMDC have been found as enzymes related to polyamine metabolism involved in polyamine biosynthesis. Polyamine metabolism-related enzyme genes encoding these polyamine metabolism-related enzymes have already been isolated in several plants. For example, polyamine metabolism-related enzymes involved in plant polyamine biosynthesis include arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and spermidine synthesis. Enzymes (SPDS), spermine synthase (SPMS), etc. are known. Several polyamine metabolism-related genes encoding these polyamine metabolism-related enzymes have already been isolated from plants. ADC gene is embata (Mol. Gen. Genet., 224, 431-436, 1 990), tomato (Plant Physiol, 103, 829-834, 1993), Arabidopsis (Plant Physiol, 11 1, 1077-1083, 1996) Endo (Plant Mol. Biol, 28, 997-1009, 1995), ODC gene is Datura (Biocem. J., 314, 241-248, 1996), SAMDC gene is potato (Plant Mol. Biol, 26, 327-338, 1994), spinach (Plant Physiol, 107, 1461-1462, 1995), tobacco, SPDS genes from Arabidopsis (Plant cell Physiol, 39 (1), 73-79, 1998), etc. It has been isolated. Furthermore, some polyamine metabolism-related enzyme genes have been tried to be introduced into plants. The obtained transformations, products are productive, and improvements in traits have been reported. .
[0035] イネ科植物は、穂を形成する時期 (穂ばらみ期)にストレスを受けると、それ以外の 時期にストレスがなくても不稔性となり収穫量が大きく低下してしまう。本発明者は、 穂ばらみ期のストレスに対してもポリアミン代謝関連酵素遺伝子(SPDS、 SAMDC, ADC等)が有効であり、稔実性を改善 (不稔性を阻止)できることを見出した。  [0035] If a grass plant is stressed at the time of ear formation (blossoming season), it will become sterile even if there is no stress at other times, and the yield will be greatly reduced. The present inventor has found that polyamine metabolism-related enzyme genes (SPDS, SAMDC, ADC, etc.) are effective against the stress at the booting stage and can improve fertility (prevent sterility).
[0036] また、イネ科植物は、穂な 、し稈と呼ばれる根元力も伸びる組織により構成され、こ の穂ないし稈を形成する時期 (分げつ期)に増大量のポリアミンの作用を受けると、穂 数 Z稈数が増大し、結果として収量の増加、あるいは草丈 (背丈)の低下による耐倒 伏性の改善が得られることを本発明者は見出した。  [0036] Gramineae plants are composed of a tissue called panicles and pods that grows their root strength, and when subjected to the action of an increased amount of polyamines during the formation of these spikes or pods (split period). The present inventors have found that the number of spikes Z is increased, resulting in an improvement in lodging resistance due to an increase in yield or a decrease in plant height (height).
[0037] ポリアミン量は分げつ期(稈数、穂数、分げつ数に関与する時期)あるいは穂ばらみ 期'幼穂形成期 (花粉形成、穂形成、稔実性 Z不稔性に関与する時期)にお ヽて、 全榭にお ヽて形質転換前の植物(例えば野性株)と比較してポリミン量 (特にスペルミ ジン量とスペルミン量)が 1. 1〜3倍程度 (好ましくは 1. 3〜2. 5倍程度)増加する。こ のポリアミン量の増加に伴い、分げつ期中の稈、穂、分げつ形成を活性ィ匕して稈数、 穂数、分げつ数を増加させることにより、また、穂ばらみ期、幼穂形成期のストレスに よる花粉形成や穂形成阻害ゃ稔実性の低下、不稔性を回避でき収量の増大と背丈 の低下 (耐倒伏性の向上)を達成できる。従って、本発明において、ポリアミン量の増 加は分げつ期又は穂ばらみ期、幼穂形成期において、全榭において形質転換前の 植物(例えば野性株)と比較してポリアミン量が 1. 1〜3倍程度 (好ましくは 1. 3〜2. 5倍程度)増加するように、遺伝子、プロモーター、ェンノヽンサ一等を調節し、あるい は、このようなポリアミン量を実現できる形質転換植物を選抜することができる。 [0037] The amount of polyamine depends on the tillering period (time involved in the number of pods, number of ears, number of tillers) Polymorphine compared to plants before transformation (for example, wild strains) for all buds during the 'early panicle formation period (period related to pollen formation, ear formation, fertility, Z sterility) The amount (especially the amount of spermidine and the amount of spermine) increases by about 1.1 to 3 times (preferably about 1.3 to 2.5 times). As the amount of polyamine increases, the number of pods, ears and tillers is increased by increasing the number of pods, ears and tillers during the tillering period. Inhibition of pollen formation and spike formation due to stress during the young panicle formation period can avoid deterioration of fertility and sterility, and increase yield and reduction of height (improvement of lodging resistance). Therefore, in the present invention, the amount of polyamine is increased at the tillering stage, the booting stage, and the young panicle formation stage at 1.1% compared with the plant before transformation (for example, a wild strain) in all pods. A transgenic plant that regulates genes, promoters, enzymes, etc. to increase by about 3 times (preferably about 1.3 to 2.5 times), or can realize such polyamine content. Can be selected.
[0038] 本発明において「ストレス」とは、環境力も受けるあらゆるストレスで、例えば高温、低 温、低 pH、低酸素、酸化、塩、浸透圧、乾燥、水、冠水、カドミウム、銅、オゾン、大気 汚染、紫外線、強光、弱光、病原体、病原菌、害虫、除草剤などを指す。  [0038] In the present invention, "stress" refers to any stress that is also subject to environmental forces, such as high temperature, low temperature, low pH, low oxygen, oxidation, salt, osmotic pressure, drying, water, flooding, cadmium, copper, ozone, Air pollution, ultraviolet rays, strong light, low light, pathogens, pathogens, pests, herbicides, etc.
[0039] イネはイネ科イネ属で野生イネと栽培イネに分類され、栽培イネはアジアイネ(Oryz a sativa L.)とアフリカイネ (Oryza. grabbelima L.)の 2種で他の種は野生イネである。ィ ネは食用や家畜の飼料として利用されるば力りでなぐデンプンは工業原料としても 利用されている。  [0039] Rice is classified into wild rice and cultivated rice in the genus Gramineae, and cultivated rice is Asian rice (Oryz a sativa L.) and African rice (Oryza. Grabbelima L.), and the other species are wild rice. It is. Rice is used for food and livestock feed, and starch is used as an industrial raw material.
[0040] 本発明にお 、て「生産性な 、し形質が改良される」とは、植物のあらゆる器官 (組織 )、例えば、穂、稈、種子、籾、米、穎果、分げつ、小穂などのサイズ、総重量、数量な どが増大することや生育期間が短縮すること (生産性の改良)、該器官 (組織)に関わ る形質 (例えば、イネ、トウモロコシなどは穂、稈の数や大きさの増大、イネ、トウモロコ シなどは種子 (胚乳)の数や大きさの増大、その他、形の変化、着色 (例えば色素間 のバランスの変化や色素産生量の増大)など)が改良されることをいう。これらの改良 は、分げつ期および穂ばらみ期のようなイネ科植物に特有の時期におけるポリアミン の作用に基づく。  [0040] In the present invention, "productive and improved traits" means all organs (tissues) of plants, such as ears, pods, seeds, pods, rice, berries, and tillers. , Spikelet size, total weight, quantity, etc., growth period shortened (improvement of productivity), traits related to the organ (tissue) (for example, rice, corn, etc. Increase in the number and size of pods, rice, corn, etc., increase in the number and size of seeds (endosperm), change in shape, coloring (for example, change in balance between pigments and increase in pigment production), etc. ) Is improved. These improvements are based on the action of polyamines during periods specific to gramineous plants such as the tillering stage and the booting stage.
[0041] 1つの好ま 、実施形態にぉ ヽて、本発明で得られる植物は、栽培環境 (例えば環 境ストレス)に左右されずポリアミンの発現量が増大し、生産性を改良することができ る。 [0041] According to one preferred embodiment, the plant obtained by the present invention has an increased polyamine expression level regardless of the cultivation environment (for example, environmental stress), and can improve productivity. The
[0042] 本明細書にぉ 、て、「イネ科植物」とは、栽培イネ、野生イネ、トウモロコシ、コムギ、 ライムギ、ォォムギ、ェンバタ、シバを意味する。  [0042] As used herein, the term "Gramineae plant" means cultivated rice, wild rice, corn, wheat, rye, barley, embatta, and shiba.
[0043] ポリアミン量を調節する核酸配列としては、外因性ポリアミン代謝関連酵素遺伝子ま たは内因性ポリアミン代謝関連酵素遺伝子の抑制因子が挙げられる。外因性ポリアミ ン代謝関連酵素遺伝子は植物体中のポリアミン量を増大させることができ、内因性ポ リアミン代謝関連酵素遺伝子の抑制因子は植物体中のポリアミン量を減少と増大さ せることができる。  [0043] Examples of the nucleic acid sequence that regulates the amount of polyamine include exogenous polyamine metabolism-related enzyme genes or suppressors of endogenous polyamine metabolism-related enzyme genes. An exogenous polyamine metabolism-related enzyme gene can increase the amount of polyamine in the plant, and an endogenous polyamine metabolism-related enzyme gene suppressor can decrease and increase the amount of polyamine in the plant.
[0044] 本発明にお 、て「該ポリアミン量を調節する核酸配列を有して 、な 、比較対照植物 」、とは該核酸配列(例えば外因性のポリアミン代謝関連酵素遺伝子又は内因性ポリ ァミン代謝関連酵素遺伝子の抑制因子)を導入する前のあらゆる植物を意味する。 従って、いわゆる野生種のほか、通常の交配によって榭立された栽培品種、それらの 自然または人工変異体、並びにポリアミン代謝関連酵素遺伝子以外の外因性遺伝 子を導入されたトランスジエニック植物などをすベて包含する。  In the present invention, “a control plant having a nucleic acid sequence that regulates the amount of the polyamine” refers to the nucleic acid sequence (for example, an exogenous polyamine metabolism-related enzyme gene or an endogenous polyamine). It means any plant before the introduction of the metabolic factor enzyme inhibitor). Therefore, in addition to so-called wild species, cultivars established by normal mating, natural or artificial mutants thereof, and transgenic plants into which exogenous genes other than polyamine metabolism-related enzyme genes have been introduced. Include.
[0045] 本発明で言うところの「ポリアミン」は生物体内に普遍的に存在する一般的な天然物 であり、第一級アミノ基を 2つ以上もつ脂肪族炭化水素化合物である。例えば、 1, 3 ージァミノプロパン、プトレシン、カダベリン、カルジン、スペルミジン、ホモスペルミジ ン、ァミノプロピルカダベリン、テルミン、スペルミン、テルモスペルミン、カナバルミン、 ァミノペンチルノルスペルミジン、 N, N—ビス(ァミノプロピル)カダベリン、ホモスペル ミン、力ルドペンタミン、ホモ力ルドペンタミン、力ルドへキサミン、ホモ力ルドへキサミン などが挙げられる。  [0045] The "polyamine" referred to in the present invention is a general natural product universally present in living organisms, and is an aliphatic hydrocarbon compound having two or more primary amino groups. For example, 1,3-diaminopropane, putrescine, cadaverine, cardine, spermidine, homospermidine, aminopropylcadaverine, theremin, spermine, thermospermine, canabalmine, amaminopentylnorspermidine, N, N-bis (amaminopropyl) Examples include cadaverine, homospermine, force dodopentamine, homo force dodopentamine, force dodohexamine, and homo force dodohexamine.
ポリアミン代謝閣 酵 遺伝子  Polyamine metabolism
本発明にお 、て「ポリアミン代謝関連酵素遺伝子」とは、植物におけるポリアミンの 生合成に関与する酵素のアミノ酸をコードする遺伝子であり、例えば代表的なポリア ミンであるプトレシンにっ ヽてはアルギニン脱炭酸酵素 (ADC)遺伝子とオル-チン 脱炭酸酵素(ODC)遺伝子、スペルミジンにっ 、ては S—アデノシルメチォニン脱炭 酸酵素(SAMDC)遺伝子とスペルミジン合成酵素(SPDS)遺伝子、スペルミンにつ いては S—アデノシルメチォニン脱炭酸酵素(SAMDC)遺伝子とスペルミン合成酵 素(SPMS)遺伝子が関与し、律速になって!/、ると考えられて 、る。 In the present invention, the “polyamine metabolism-related enzyme gene” is a gene encoding an amino acid of an enzyme involved in polyamine biosynthesis in plants. For example, arginine is representative of putrescine, which is a typical polyamine. Decarboxylase (ADC) gene and orthine decarboxylase (ODC) gene, spermidine, S-adenosylmethionine decarboxylase (SAMDC) gene and spermidine synthase (SPDS) gene, spermine About S-adenosylmethionine decarboxylase (SAMDC) gene and spermine synthase Elementary (SPMS) gene is involved, and is considered to be rate-limiting! /.
[0046] アルギニン脱炭酸酵素(ADC: arginine decarboxylase EC4.1.1.19.)は L—アルギ ニン力もァグマチンと二酸ィ匕炭素を生成する反応を触媒する酵素である。オル-チン 脱炭酸酵素(ODC : ornithine decarboxylase EC4.1.1.17.)は L—オル-チンからプト レシンと二酸化炭素を生成する反応を触媒する酵素である。 S—アデノシルメチォ二 ン脱炭酸酵素(SAMDC : S- adenosylmethionine decarboxylase EC4.1.1.50.)は S— アデノシルメチォニン力 アデノシルメチルチオプロピルァミンと二酸ィ匕炭素を生成 する反応を触媒する酵素である。スペルミジン合成酵素(SPDS : spermidine synthas e EC2.5.1.16.)はプトレシンとアデノシルメチルチオプロピルァミンからスペルミジンと メチルチオアデノシンを生成する反応を触媒する酵素である。 [0046] Arginine decarboxylase (ADC: arginine decarboxylase EC4.1.1.19.) Is an enzyme that catalyzes the reaction of L-arginine power to produce agmatine and diacid-carbon. Orthine decarboxylase (ODC: ornithine decarboxylase EC4.1.1.17) is an enzyme that catalyzes the reaction of producing putrescine and carbon dioxide from L-orthine. S-adenosylmethionine decarboxylase (SAMDC: S-adenosylmethionine decarboxylase EC4.1.1.50.) Catalyzes the reaction to produce S-adenosylmethionine force adenosylmethylthiopropylamine and diacid-carbon. It is an enzyme. Spermidine synthase (SPDS) is an enzyme that catalyzes the reaction of producing spermidine and methylthioadenosine from putrescine and adenosylmethylthiopropylamine.
[0047] これらの遺伝子は、いずれの由来であってもいいが、例えば、種々の植物から単離 することができる。具体的には、双子葉植物、例えばゥリ科;ナス科;シロイヌナズナ等 のアブラナ科;アルフアルファ、カウピー (Vigna unguiculata)等のマメ科;ァオイ科;キ ク科;ァカザ科;ヒルガオ科力もなる群力も選ばれたもの、又は単子葉植物、例えばィ ネ、小麦、大麦、トウモロコシ等のイネ科などが含まれる。好ましくは、ゥリ科植物、より 好ましくはクロダネカボチヤがよ!、。 [0047] These genes may be derived from any source, but can be isolated from various plants, for example. Specifically, dicotyledonous plants such as cucurbitaceae; solanaceae; Brassicaceae such as Arabidopsis; legumes such as Alf alfa and cowpy (Vigna unguiculata); These include those whose group power has also been selected, or monocotyledonous plants such as rice, wheat, barley, corn and the like. Preferably, cucurbitaceae plants, more preferably Kurodanekabotya!
[0048] 本発明の植物由来のポリアミン代謝関連酵素遺伝子を単離する植物組織としては 種子形態、または生育過程にあるものである。生育中の植物は全体、あるいは部分 的な組織力 単離することができる。単離することができる部位としては、特に限定は されないが、好ましくは穂、花序、稈、穎果、種子、粒、穀粒、籾、米、全榭、蕾、花、 子房、果実、葉、茎、根などである。さらに好ましくはストレス抵抗性を示す部位である [0048] The plant tissue for isolating the plant-derived polyamine metabolism-related enzyme gene of the present invention is in the form of seed or in the growth process. Growing plants can be isolated in whole or in part. The site that can be isolated is not particularly limited, but preferably ears, inflorescences, strawberries, berries, seeds, grains, grains, strawberries, rice, whole strawberries, strawberries, flowers, ovary, fruits, Leaves, stems, roots, etc. More preferably, it is a site showing stress resistance
[0049] 本発明にお ヽて使用されるポリアミン代謝関連酵素遺伝子の好ま ヽ例として、ス ペルミジン合成酵素遺伝子、 S—アデノシルメチォニン脱炭酸酵素遺伝子、アルギ- ン脱炭酸酵素遺伝子を挙げることができる。具体的には、 [0049] Preferable examples of polyamine metabolism-related enzyme genes used in the present invention include supermidine synthase gene, S-adenosylmethionine decarboxylase gene, and alginine decarboxylase gene. be able to. In particular,
•配列番号 1に示される塩基配列中塩基番号 77〜1060で示される塩基配列を有する DNA、  A DNA having a base sequence represented by base numbers 77 to 1060 in the base sequence represented by SEQ ID NO: 1,
•配列番号 3に示される塩基配列中塩基番号 456〜1547で示される塩基配列を有す る DNA、 • The base sequence shown in SEQ ID NO: 3 has the base sequence shown in base numbers 456 to 1547 DNA,
•配列番号 5に示される塩基配列中塩基番号 541〜2661で示される塩基配列を有す る DNA、  A DNA having a base sequence represented by base numbers 541 to 2661 in the base sequence represented by SEQ ID NO: 5;
が挙げられる。さらに、  Is mentioned. In addition,
•該上記 、ずれかの配列とストリンジェントな条件下でノ、イブリダィズし得る塩基配列 を有し、且つ該配列と同等のポリアミン代謝関連酵素活性を有するポリペプチドをコ ードする DNAが挙げられる。更に、  Examples include DNA that has a nucleotide sequence that can be hybridized under stringent conditions with any of the above sequences and that encodes a polypeptide having a polyamine metabolism-related enzyme activity equivalent to that sequence. . Furthermore,
-該上記いずれかの配列において、 1又は複数の塩基が欠失、置換、挿入若しくは 付加された塩基配列力もなり且つ該配列と同等のポリアミン代謝関連酵素活性を有 するポリペプチドをコードする DNAが挙げられる。  -In any of the above sequences, a DNA encoding a polypeptide having a base sequence ability in which one or more bases are deleted, substituted, inserted or added and having a polyamine metabolism-related enzyme activity equivalent to that sequence. Can be mentioned.
[0050] ここで 、う「ストリンジェント条件」とは、特定ポリアミン代謝関連酵素遺伝子配列にコ ードされるポリアミン代謝関連酵素と同等のポリアミン代謝関連酵素活性を有するポリ ペプチドをコードする塩基配列のみが該特定配列とハイブリット ( 、わゆる特異的ハイ ブリット)を形成し、同等の活性を有しないポリペプチドをコードする塩基配列は該特 定配列とハイブリット ( 、わゆる非特異的ハイブリット)を形成しな!、条件を意味する。 当業者は、ハイブリダィゼーシヨン反応および洗浄時の温度や、ハイブリダィゼーショ ン反応液および洗浄液の塩濃度等を変化させることによって、このような条件を容易 に選択することができる。具体的には、 6 X SSC (0. 9M NaCl, 0. 09M クェン酸 三ナトリウム)または 6 X SSPE (3M NaCl, 0. 2M NaH PO , 20mM EDTA- 2 [0050] Here, "stringent conditions" refers only to a base sequence encoding a polypeptide having a polyamine metabolism-related enzyme activity equivalent to the polyamine metabolism-related enzyme encoded by the specific polyamine metabolism-related enzyme gene sequence. Forms a hybrid with the specific sequence (, so-called specific hybrid), and a base sequence encoding a polypeptide having no equivalent activity forms a hybrid with the specific sequence (, so-called non-specific hybrid) Shina! Means a condition. Those skilled in the art can easily select such conditions by changing the temperature during the hybridization reaction and washing, the salt concentration of the hybridization reaction solution and the washing solution, and the like. Specifically, 6 X SSC (0.9 M NaCl, 0.09 M trisodium citrate) or 6 X SSPE (3 M NaCl, 0.2 M NaH PO, 20 mM EDTA-2
2 4  twenty four
Na, pH7. 4)中 420Cでノヽイブリダィズさせ、さら【こ 420Cで 0. 5 X SSC【こより洗净す る条件が、本発明のストリンジェントな条件の 1例として挙げられる力 これに限定され るものではない。 Na, pH 7.4) Noble at 42 0 C, then 0.5 X SSC at 42 0 C. This is one of the stringent conditions of the present invention. This is not a limitation.
[0051] ここでいう「1又は複数の塩基が欠失、置換、挿入若しくは付加された塩基配列」と は、一般的に生理活性を有するタンパク質のアミノ酸配列において 1個もしくは複数 のアミノ酸が置換、削除、挿入または付加された場合であっても、その生理活性が維 持される場合があることは当業者にぉ ヽて広く認識されて ヽる。本発明にはこのよう な修飾が加えられ、かつポリアミン代謝関連酵素をコードする遺伝子も本発明の範囲 に含まれる。例えば、 polyAテールや 5'、 3'末端の非翻訳領域が「欠失」されてもよ いし、アミノ酸を欠失するような範囲で塩基力 ^欠失」されてもよい。また、フレームシフ トが起こらない範囲で塩基が「置換」されてもよい。また、アミノ酸が付加されるような 範囲で塩基力 ^付加」されてもよい。但し、そのような修飾があっても、ポリアミン代謝 関連酵素活性を有することが必要である。好ましくは、「1又は数個の塩基が欠失、置 換又は付加された遺伝子」がよ 、。 [0051] The "base sequence in which one or more bases have been deleted, substituted, inserted or added" means that one or more amino acids are generally substituted in the amino acid sequence of a protein having physiological activity. It will be widely recognized by those skilled in the art that even when deleted, inserted or added, the physiological activity may be maintained. Such a modification is added to the present invention, and a gene encoding a polyamine metabolism-related enzyme is also included in the scope of the present invention. For example, polyA tails and untranslated regions at the 5 ′ and 3 ′ ends may be “deleted”. Alternatively, it may be deleted in such a range that amino acids are deleted. In addition, the base may be “substituted” within a range in which no frame shift occurs. Further, it may be “added with a basic strength” in such a range that an amino acid is added. However, even with such modifications, it is necessary to have polyamine metabolism-related enzyme activity. Preferably, “a gene in which one or several bases have been deleted, replaced or added” is preferred.
このような改変された DNAは例えば、部位特異的変異法 (Nucleic Acid Research, Vol.10, No. 20, 6487-6500, 1982)等によって、特定の部位のアミノ酸が置換、削除、 挿入、付加されるように本発明の DNAの塩基配列を改変することによって得られる。 ストレス耐件が己 良されたイネ科植物及びその子孫  Such modified DNA can be substituted, deleted, inserted, or added at a specific site by, for example, site-directed mutagenesis (Nucleic Acid Research, Vol. 10, No. 20, 6487-6500, 1982). Thus, it is obtained by modifying the base sequence of the DNA of the present invention. Gramineae plants and their progeny with improved stress tolerance
本発明において、「ストレス」としては、上述のごとぐ高温、低温、低 pH、低酸素、 酸化、塩、浸透圧、乾燥、水、冠水、カドミウム、銅、オゾン、大気汚染、紫外線、強光 、弱光、病原体、病原菌、害虫、除草剤などの環境力 受けるストレスが例示される。 この中で「高温ストレス」とは、植物の生育適温度の上限を越えるような環境に植物が 遭遇することによって植物が受けるストレスであり、高温ストレスを受けた植物は徐々 にあるいは急激に細胞の生理機能が損なわれて傷害が引き起こされる。「低温ストレ ス」とは、植物の生育適温度の下限を越えるような環境に植物が遭遇することによつ て植物が受けるストレスであり、低温ストレスを受けた植物は徐々にあるいは急激に細 胞の生理機能が損なわれて傷害が引き起こされる。「塩ストレス」とは、植物の生育適 塩濃度の上限を越えるような環境に植物が遭遇することによって植物が受けるストレ スであり、塩ストレスを受けた植物は過剰な塩が細胞内に流入して徐々にあるいは急 激に細胞の生理機能が損なわれて傷害が引き起こされる。「乾燥ストレス」とは、植物 の生育適水分濃度の下限を越えるような環境に植物が遭遇することによって植物が 受けるストレスであり、乾燥ストレスを受けた植物は徐々にあるいは急激に細胞の生 理機能が損なわれて傷害が引き起こされる。「水ストレス」とは、植物の生育適水分濃 度の下限を越えるような環境に植物が遭遇することによって植物が受けるストレスで あり、水ストレスを受けた植物は徐々にあるいは急激に細胞の生理機能が損なわれ て傷害が引き起こされる。「弱光ストレス」とは、植物の生育適光強度の下限を越える ような環境に植物が遭遇することによって植物が受けるストレスであり、弱光ストレスを 受けた植物は徐々にあるいは急激に細胞の生理機能が損なわれて傷害が引き起こ される。「病原菌ストレス」とは、植物が病原菌に遭遇または感染することによって植物 が受けるストレスであり、病原菌ストレスを受けた植物は徐々にあるいは急激に細胞 の生理機能が損なわれて傷害が引き起こされる。「害虫ストレス」とは、植物が害虫に 遭遇することによって植物が受けるストレスであり、害虫ストレスを受けた植物は徐々 にあるいは急激に細胞の生理機能が損なわれて傷害が引き起こされる。 In the present invention, “stress” includes high temperature, low temperature, low pH, low oxygen, oxidation, salt, osmotic pressure, drying, water, flooding, cadmium, copper, ozone, air pollution, ultraviolet light, strong light as described above. Examples of such stress include environmental light such as low light, pathogens, pathogens, pests and herbicides. In this context, “high temperature stress” refers to the stress that a plant experiences when it encounters an environment that exceeds the upper limit of plant growth temperature. Physiological function is impaired and injury is caused. “Low-temperature stress” refers to the stress that plants receive when they encounter an environment that exceeds the lower limit of plant growth temperature. The physiology of the vesicle is impaired and injury is caused. `` Salt stress '' is the stress that plants receive when they encounter an environment that exceeds the upper limit of the appropriate salt concentration for plant growth. Excess salt flows into cells in plants that have received salt stress. As a result, the physiology of the cells is gradually or suddenly impaired, causing injury. “Dry stress” refers to the stress that a plant experiences when the plant encounters an environment that exceeds the lower limit of the water concentration suitable for growth of the plant. Function is impaired and injury is caused. “Water stress” refers to the stress that a plant experiences when it encounters an environment that exceeds the lower limit of the water concentration suitable for growth of the plant. Function is impaired and injury is caused. “Low light stress” refers to the stress that plants receive when they encounter an environment that exceeds the lower limit of the optimal light intensity for plant growth. In the plant that receives it, the physiological function of the cell is gradually or suddenly damaged, causing injury. “Pathogenic stress” refers to the stress that a plant receives as a result of encountering or infecting the plant with a pathogenic fungus. A plant that has undergone pathogenic stress gradually or suddenly loses its cellular physiology and causes injury. “Pest stress” refers to the stress that a plant receives when the plant encounters the pest. The plant that receives the pest stress gradually or suddenly loses its physiological function and causes injury.
[0053] 本発明において、 「ストレス耐性が改良されたイネ科植物」および「改良されたストレ ス耐性を有するイネ科植物」とは、外因性ポリアミン代謝関連酵素遺伝子を導入する こと〖こよって、導入前に比してストレス耐性 (抵抗性)が付与若しくは向上したイネ科 植物をいう。例えば、ポリアミン代謝関連酵素遺伝子を植物に導入することにより、低 温ストレス抵抗性 (耐性)ゝ塩ストレス抵抗性 (耐性)ゝ除草剤ストレス抵抗性 (耐性)、 大気汚染ストレスに対する抵抗性 (耐性)、病原菌ストレスに対する抵抗性 (耐性)、乾 燥ストレスに対する抵抗性 (耐性)、若しくは浸透圧ストレスに対する抵抗性 (耐性)、 有用物質ないし米の収量、数などが、該外因性ポリアミン代謝関連酵素遺伝子を有 して 、な 、植物に比べて向上した植物などが挙げられるが、これらに限定されるもの ではない。  [0053] In the present invention, "the grass family with improved stress tolerance" and "the grass family with improved stress tolerance" refers to the introduction of an exogenous polyamine metabolism-related enzyme gene. This refers to a grass family that has been given or improved stress tolerance (resistance) compared to before introduction. For example, by introducing polyamine metabolism-related enzyme genes into plants, low temperature stress resistance (resistance) ゝ salt stress resistance (resistance) ゝ herbicide stress resistance (resistance), resistance to air pollution stress (resistance) Resistance to pathogenic stress (resistance), resistance to drought stress (resistance), or resistance to osmotic stress (resistance), yield of useful substance or rice, number of rice, etc. Examples of such a plant include, but are not limited to, plants that are improved compared to plants.
[0054] 具体的には、「塩ストレス耐性が改良されたイネ科植物」とは、イネ科植物の生育過 程において遭遇する塩ストレスによる生長抑制や傷害を回避若しくは低減することが できたイネ科植物である。「低温ストレス耐性が改良されたイネ科植物」とは、イネ科 植物の生育過程において遭遇する低温ストレスによる生長抑制や傷害を回避若しく は低減することができたイネ科植物である。「病原菌ストレス耐性が改良されたイネ科 植物」とは、イネ科植物の生育過程において遭遇する病原菌ストレスによる生長抑制 や傷害を回避若しくは低減することができたイネ科植物である。「害虫ストレス耐性が 改良されたイネ科植物」とは、イネ科植物の生育過程において遭遇する害虫ストレス による生長抑制や傷害を回避若しくは低減することができたイネ科植物である。これ によって、栽培の安定化、生産性、収量の向上、栽培地域、面積の拡大などが期待 できる。さらに、イネ科植物、米の生産性や収量が高まることによって、イネ科植物か ら得られる種々の有用物質 (澱粉、タンパク質等)の生産性の向上も期待することが できる。 [0054] Specifically, "a gramineous plant with improved salt stress tolerance" refers to a rice plant that has been able to avoid or reduce the growth suppression and injury caused by salt stress encountered during the growth process of gramineous plants. It is a family plant. “Gramineae plants with improved resistance to low-temperature stress” are grass plants that have been able to avoid or reduce the growth suppression and injury caused by low-temperature stress encountered during the growth process of gramineous plants. “Gramineae plants with improved resistance to pathogenic stress” refers to grasses that have been able to avoid or reduce the growth inhibition and damage caused by pathogenic stress encountered in the growth process of gramineous plants. “Gramineae plant with improved resistance to pest stress” refers to a gramineous plant that has been able to avoid or reduce the growth inhibition and damage caused by pest stress encountered during the growth process of the gramineous plant. This can be expected to stabilize cultivation, improve productivity and yield, expand cultivation area and area. In addition, the productivity and yield of Gramineae plants and rice can be expected to improve the productivity of various useful substances (starch, protein, etc.) obtained from Gramineae plants. it can.
[0055] 特にイネ科植物の場合には、穂ばらみ期にストレスを受けると不稔性になる力 本 発明のトランスジエニックイネ科植物は、穂ばらみ期のストレスに対して特に耐性があ り、イネ科植物が不稔性になるのを有効に防止し得る。  [0055] Particularly in the case of gramineous plants, the ability to become sterile when stressed during the booting stage. The transgenic gynecaceous plant of the present invention is particularly resistant to stress during the booting stage. It can effectively prevent the gramineous plants from becoming sterile.
[0056] 本明細書において、「穂ばらみ期」とは、イネ科植物の出穂期の前の一定期間(例 えば数日から 2ないし 3週間程度)であって、穂が実るのに重要な時期をいう。一般に 、穂ばらみ期に低温ストレスなどのストレスが力かると、穂(トウモロコシ)、穀粒 (小麦、 大麦)ないし粒 (コメ)が収穫できなくなる。「分げつ期」とは、穂、稈、分げつを形成す る時期であって、穂数、稈数、分げつ数を決めるのに重要な時期をいう。穂数、稈数 が増加すると、収量の増加に直結するだけでなぐイネ科植物の背丈 (草丈)の低下を 通して耐倒伏性も向上させる。  [0056] In the present specification, the "blossoming period" is a certain period before the heading period of a gramineous plant (for example, from a few days to about 2 to 3 weeks) and is important for the ears to grow. Say the right time. In general, if stress such as low temperature stress is applied during the booting period, the ear (corn), grain (wheat, barley) or grain (rice) cannot be harvested. “Tillering period” is the time when ears, pods and tillers are formed, and is an important period for determining the number of spikes, pods and tillers. Increasing the number of spikes and pods improves the lodging resistance through a decrease in the height (plant height) of gramineous plants that directly leads to an increase in yield.
が己 された ti 及びその  Ti who was self and its
本発明において、「生産性」としては、上述のごとぐイネ科植物のあらゆる器官 (組織 )、例えば、穂、稈、分げつ、種子、籾、米、穎果、小穂などを包含し、該器官 (組織) の形質として数量、生育期間、形、着色、性質、特性が例示される。  In the present invention, “productivity” includes all organs (tissues) of the gramineous plants as described above, for example, ears, pods, tillers, seeds, pods, rice, fruits, spikelets, etc. Examples of the traits of the organ (tissue) include quantity, growth period, shape, color, property, and characteristics.
[0057] 本発明において、「生産性が改良されたイネ科植物」および「改良された生産性を 有するイネ科植物」とは、外因性ポリアミン代謝関連酵素遺伝子または内因性ポリアミ ン代謝関連酵素遺伝子の抑制因子を導入することによって、導入前に比して生産性 に関わる形質である、数量、生育期間、形、着色、性質、特性が付与若しくは向上若 しくは抑制したイネ科植物をいう。例えば、ポリアミン代謝関連酵素遺伝子または該 抑制因子を植物に導入することにより、穂、稈、分げつ、種子、籾、米、穎果、小穂に 関わる形質が、該外因性ポリアミン代謝関連酵素遺伝子または該抑制因子を有して V、な 、イネ科植物に比べて向上したイネ科植物などが挙げられるが、これらに限定さ れるものではない。 In the present invention, “a gramineous plant with improved productivity” and “a gramineous plant with improved productivity” mean an exogenous polyamine metabolism-related enzyme gene or an endogenous polyamine metabolism-related enzyme gene. This refers to a grass family plant that has been imparted or improved or suppressed in quantity, growth period, shape, coloration, properties, and characteristics, which are traits related to productivity compared to before introduction. For example, by introducing a polyamine metabolism-related enzyme gene or the suppressor into a plant, traits related to ears, pods, tillers, seeds, pods, rice, fruits, and spikelets may be converted into the exogenous polyamine metabolism-related enzymes. Examples thereof include, but are not limited to, V, which has a gene or the repressing factor, and improved gramineous plants compared to gramineous plants.
[0058] イネ科植物体内のポリアミン量は、分げつ期において、穂、稈、分げつに高濃度 (例 えば野生株の 1. 1〜3倍程度)存在することにより、稈、穂、分げつ形成を活性化して 稈数、穂数、分げつ数を増カロさせる。  [0058] The amount of polyamines in the grass family is high due to the presence of high concentrations (eg, about 1 to 3 times that of the wild strain) in the ears, pods and tillers during the tillering period. Activating tillering increases calories, ears and tillers.
[0059] これによつてイネ科植物 (器官'組織など)の生産性、収量、収穫量、品質の向上、 商品性の向上などが期待できる。また、イネ科植物では、食用部分 (米、トウモロコシ 、小麦、大麦など)のポリアミン量を減らすことで品質などの特性に好影響を与える可 能性がある。従って、これらの部分では抑制因子を発現させ、その他の部分ではポリ ァミン関連酵素遺伝子を発現させて品質を向上しつつ収量の向上を図ることも可能 である。 [0059] This improves the productivity, yield, yield and quality of gramineous plants (organs' tissues, etc.) Expected to improve merchantability. In grasses, reducing the amount of polyamines in the edible part (rice, corn, wheat, barley, etc.) may positively affect quality and other characteristics. Therefore, it is possible to increase the yield while improving the quality by expressing a suppressor in these parts and expressing a polyamine-related enzyme gene in the other parts.
[0060] 本発明の植物には、イネ科植物体全体(全榭)に限らず、そのカルス、種子、あらゆ る植物組織、葉、茎、穂、稈、塊茎、根、塊根、蕾、花、花弁、子房、果実、さや、胚珠 、繊維、籾、米などが含まれる。更にその子孫も本発明の植物に含まれる。イネ科植 物で重要な部位は、穂、稈、分げつ、種子、籾、米、穎果、小穂である。  [0060] The plant of the present invention is not limited to the whole gramineous plant (whole culm), but its callus, seeds, all plant tissues, leaves, stems, ears, buds, tubers, roots, tuberous roots, pods, Includes flowers, petals, ovary, fruit, pods, ovules, fibers, cocoons, rice, etc. Furthermore, the progeny are also included in the plant of the present invention. The important parts of Gramineae plants are ears, buds, tillers, seeds, pods, rice, berries, and spikelets.
[0061] 本発明にお 、て「イネ科植物及びその子孫から得られる有用物質」とは、外因性ポ リアミン代謝関連酵素遺伝子を導入することによって、導入前に比して生産性が向上 したイネ科植物およびその子孫で生産された有用物質をさし、有用物質としては例え ば、アミノ酸、油脂、デンプン、タンパク質、フエノール、炭化水素、セルロース、天然 ゴム、色素、酵素、抗体、ワクチン、医薬品、生分解性プラスチックなどが含まれる。  [0061] In the present invention, "a useful substance obtained from a gramineous plant and its progeny" means that productivity has been improved as compared to that before introduction by introducing an exogenous polyamine metabolism-related enzyme gene. Examples of useful substances produced in grasses and their descendants include, for example, amino acids, fats and oils, starches, proteins, phenols, hydrocarbons, cellulose, natural rubber, pigments, enzymes, antibodies, vaccines, pharmaceuticals And biodegradable plastics.
[0062] イネ科植物力 はデンプン等の糖質が大量に得られ、該糖質は生分解性プラスチ ックの製造原料とすることができる。生分解性プラスチックとしては、ポリヒドロキシプチ レート、ポリヒドロキシバリレート、ポリ 13ーヒドロキシ酪酸、ポリ力プロラタトン、ポリブ チレンサクシネート、ポリブチレンアジペート、ポリエチレンサクシネート、ポリ(D, L, DL)乳酸 (ボリラクチド)、ポリグリコール酸 (ポリグリコシド)、酢酸セルロース、キトサン Zセルロース Zデンプン、変性デンプンなど、或いはこれらの 2元共重合体、 3元共 重合体が例示される。これらの生分解性プラスチックは公知であり、公知の発酵法、 化学合成法などを用いて製造することができる。  [0062] Gramineous plant power provides a large amount of carbohydrates such as starch, which can be used as a raw material for producing biodegradable plastics. Biodegradable plastics include polyhydroxy propylate, polyhydroxy valerate, poly 13-hydroxybutyric acid, poly force prolatatone, polybutylene succinate, polybutylene adipate, polyethylene succinate, poly (D, L, DL) lactic acid (polylactide) ), Polyglycolic acid (polyglycoside), cellulose acetate, chitosan Z cellulose Z starch, modified starch, etc., or a binary copolymer or ternary copolymer thereof. These biodegradable plastics are known and can be produced using known fermentation methods, chemical synthesis methods, and the like.
[0063] 本発明の植物は、該外因性ポリアミン代謝関連酵素遺伝子を有していない植物に [0063] The plant of the present invention is a plant that does not have the exogenous polyamine metabolism-related enzyme gene.
、遺伝子工学的手法により外因性ポリアミン代謝関連酵素遺伝子が導入され、且つ 安定に保持されたものである。ここで「安定に保持される」とは、少なくともポリアミン代 謝関連酵素遺伝子が導入された当代の植物体で該ポリアミン代謝関連酵素遺伝子 が発現し、それによつてストレス耐性が改良するのに十分な期間、該植物細胞内に 保持されることをいう。従って、現実的には、該ポリアミン代謝関連酵素遺伝子は宿主 植物の染色体上に組み込まれるのが好ま U、。該ポリアミン代謝関連酵素遺伝子は 次世代に安定に遺伝することがより好ましい。 An exogenous polyamine metabolism-related enzyme gene has been introduced and stably maintained by genetic engineering techniques. Here, “stablely maintained” means that the polyamine metabolism-related enzyme gene is expressed at least in the present plant into which the polyamine-metabolism-related enzyme gene has been introduced, which is sufficient to improve stress tolerance. It is retained in the plant cell for a period of time. Therefore, in reality, the polyamine metabolism-related enzyme gene is U, preferably integrated into the plant chromosomes. The polyamine metabolism-related enzyme gene is more preferably inherited stably in the next generation.
[0064] また、ここで「外因性」とは、植物が生来有しておらず、外部より導入されたものを意 味する。従って、本発明の「外因性ポリアミン代謝関連酵素遺伝子」は、遺伝子操作 により外部より導入される、宿主植物と同種の(すなわち、該宿主植物由来の)ポリア ミン代謝関連酵素遺伝子であってもよい。コドン使用(codon usage)の同一性を考慮 すれば、宿主由来のポリアミン代謝関連酵素遺伝子の使用もまた好ましい。  [0064] Here, "exogenous" means that the plant is not naturally present and is introduced from the outside. Therefore, the “exogenous polyamine metabolism-related enzyme gene” of the present invention may be a polyamine metabolism-related enzyme gene of the same kind as the host plant (ie, derived from the host plant) introduced from the outside by genetic manipulation. . Considering the identity of codon usage, the use of host-derived polyamine metabolism-related enzyme genes is also preferred.
[0065] 外因性ポリアミン代謝関連酵素遺伝子は!、かなる遺伝子工学的手法によって植物 に導入されてもよぐ例えば、ポリアミン代謝関連酵素遺伝子を有する異種植物細胞 とのプロトプラスト融合、ポリアミン代謝関連酵素遺伝子を発現するように遺伝子操作 されたウィルスゲノムを有する植物ウィルスによる感染、あるいはポリアミン代謝関連 酵素遺伝子を含有する発現ベクターによる宿主植物細胞の形質転換が挙げられる。  [0065] An exogenous polyamine metabolism-related enzyme gene may be introduced into a plant by any genetic engineering technique. For example, protoplast fusion with a heterologous plant cell having a polyamine metabolism-related enzyme gene, polyamine metabolism-related enzyme gene Infection with a plant virus having a viral genome genetically engineered to express or transformation of host plant cells with an expression vector containing a polyamine metabolism-related enzyme gene.
[0066] 好ましくは、本発明の植物は、植物中で機能し得るプロモーターの制御下にある外 因性ポリアミン代謝関連酵素遺伝子を含む発現ベクターで、該外因性ポリアミン代謝 関連酵素遺伝子を有していない植物の細胞を形質転換することにより得られる、トラ ンスジヱニック植物である。  [0066] Preferably, the plant of the present invention is an expression vector containing an exogenous polyamine metabolism-related enzyme gene under the control of a promoter that can function in the plant, and has the exogenous polyamine metabolism-related enzyme gene. Transgenic plants obtained by transforming cells of non-plants.
[0067] 植物中で機能し得るプロモーターとしては、例えば、植物細胞で構成的に発現する カリフラワーモザイクウィルス (CaMV)の 35Sプロモーター、ノパリン合成酵素遺伝子 (NOS)プロモーター、ォクトピン合成酵素遺伝子(OCS)プロモーター、フ ニルァ ラニンアンモニアリアーゼ(PAL)遺伝子プロモーター、カノレコンシンターゼ (CHS) 遺伝子プロモーター等を挙げることができる。さらにこれらに限定されない公知の植 物プロモーターも挙げられる。  [0067] Examples of promoters that can function in plants include the cauliflower mosaic virus (CaMV) 35S promoter, nopaline synthase gene (NOS) promoter, and octopine synthase gene (OCS) promoter that are constitutively expressed in plant cells. , Phenylalanine ammonia lyase (PAL) gene promoter, canolecon synthase (CHS) gene promoter, and the like. Furthermore, the well-known plant promoter which is not limited to these is also mentioned.
[0068] 35Sプロモーターのような器官全体に恒常的に発現させるプロモーターだけでなく 、器官または組織特異的プロモーターを用いれば、特定の器官、又は組織だけに目 的遺伝子を発現させることができ、特定の器官又は組織だけストレス耐性を改良する ことができる。例えば、ポリアミン代謝関連酵素遺伝子と花器に特異的に働くプロモ 一ター(例えば、 W099/43818,特開平 11-178572、特開 2000-316582)を用いること によって、花の器官のみで花の数や花の大きさを改良することができる。さらに、種子 、果実、子房に特異的に働くプロモーター(例えば、 Plant Mol. Biol, 11, 651-662, 1 988)を用いることによって、種子、子房、果実の数や大きさを改良することができる。 さらに、ポリアミン代謝関連酵素遺伝子と植物が低温に遭遇した時だけ転写を起こさ せ得るプロモーター(例えば、 BN115プロモーター: Plant physiol.,106, 917-928, 199 9)を用いることによって、低温時のみ植物体のポリアミン代謝を制御し低温ストレス抵 抗性を改良することができる。さらに、ポリアミン代謝関連酵素遺伝子と植物が乾燥に 遭遇した時だけ転写を起こさせ得るプロモーター(例えば、 Atmyb2プロモーター: Th e Plant Cell, 5, 1529-1539, 1993)を用いることによって、乾燥時のみ植物体のポリア ミン代謝を制御し乾燥ストレス抵抗性を改良することができる。 [0068] Not only a promoter that is constitutively expressed throughout the organ, such as the 35S promoter, but also an organ- or tissue-specific promoter can be used to express a target gene only in a specific organ or tissue. Only one organ or tissue can improve stress tolerance. For example, by using polyamine metabolism-related enzyme genes and promoters that specifically act on flower organs (for example, W099 / 43818, JP-A-11-178572, JP-A-2000-316582) The flower size can be improved. In addition, seed The number and size of seeds, ovaries, and fruits can be improved by using a promoter that specifically acts on fruits and ovaries (eg, Plant Mol. Biol, 11, 651-662, 1 988). . Furthermore, by using polyamine metabolism-related enzyme genes and promoters that can cause transcription only when plants encounter low temperatures (eg, BN115 promoter: Plant physiol., 106, 917-928, 199 9), It can control the body's polyamine metabolism and improve cold stress resistance. Furthermore, by using a polyamine metabolism-related enzyme gene and a promoter that can cause transcription only when the plant encounters drought (eg, Atmyb2 promoter: The Plant Cell, 5, 1529-1539, 1993), It can control the body's polyamine metabolism and improve drought stress resistance.
[0069] また、器官、または組織特異的なプロモーターを用いれば、特定の器官、又は組織 だけに目的遺伝子を発現させることができる。例えば、ポリアミン代謝関連酵素遺伝 子と種子に特異的に働くプロモーターを用いることによって、種子のみでストレス耐性 を改良することができる。時期特異的なプロモーターを用いれば、特定の時期だけに 目的遺伝子を発現させることができ、特定の時期だけにストレス耐性を改良すること ができる。例えば、ポリアミン代謝関連酵素遺伝子と栄養生長期に働くプロモーター を用いることによって、栄養生長期のみでストレス耐性を改良することができる。  [0069] If an organ- or tissue-specific promoter is used, the target gene can be expressed only in a specific organ or tissue. For example, by using a polyamine metabolism-related enzyme gene and a promoter that specifically acts on the seed, stress tolerance can be improved only by the seed. If a time-specific promoter is used, the target gene can be expressed only at a specific time, and stress tolerance can be improved only at a specific time. For example, by using a polyamine metabolism-related enzyme gene and a promoter that works during vegetative growth, stress tolerance can be improved only during vegetative growth.
[0070] 時期特異的なプロモーターを用いれば、特定の時期だけに目的遺伝子を発現させ ることができ、特定の時期だけに生産性を改良することができる。例えば、ポリアミン 代謝関連酵素遺伝子と栄養生長期に働くプロモーターを用いることによって、栄養 生長期のみで生産性を改良することができる。  [0070] If a time-specific promoter is used, a target gene can be expressed only at a specific time, and productivity can be improved only at a specific time. For example, by using a polyamine metabolism-related enzyme gene and a promoter that works during the vegetative growth period, productivity can be improved only during the vegetative growth period.
[0071] 本発明の発現ベクターにおいて、外因性ポリアミン代謝関連酵素遺伝子は、植物 中で機能し得るプロモーターによりその転写が制御されるように、該プロモーターの 下流に配置される。該ポリアミン代謝関連酵素遺伝子の下流には、植物で機能し得 る転写終結シグナル (ターミネータ一領域)がさらに付加されて 、ることが好ま 、。 例えば、ターミネータ一 NOS (ノパリン合成酵素)遺伝子等が挙げられる。  [0071] In the expression vector of the present invention, the exogenous polyamine metabolism-related enzyme gene is arranged downstream of the promoter so that its transcription is controlled by a promoter that can function in plants. It is preferable that a transcription termination signal (terminator region) capable of functioning in plants is further added downstream of the polyamine metabolism-related enzyme gene. For example, the terminator NOS (nopaline synthase) gene and the like can be mentioned.
[0072] 本発明の発現ベクターは、ェンハンサー配列等のシス調節エレメントをさらに含ん でもよい。また、該発現べクタ一は、薬剤耐性遺伝子マーカーなどの形質転換体選 抜のためのマーカー遺伝子、例えば、ネオマイシンホスホトランスフェラーゼ II (NPTI I)遺伝子、ホスフィノスリシンァセチルトランスフェラーゼ (PAT)遺伝子、グリフォセー ト耐性遺伝子等をさらに含んでもよい。選択圧をかけない条件では、組み込まれた遺 伝子が脱落する現象が起こる場合があるので、除草剤耐性遺伝子をベクター上で共 存させておけば、栽培中該除草剤を使用することにより、常に選択圧がかかった条件 を実現できると 、う利点もある。 [0072] The expression vector of the present invention may further contain a cis-regulatory element such as an enhancer sequence. In addition, the expression vector is a marker gene for selection of transformants such as drug resistance gene markers, such as neomycin phosphotransferase II (NPTI It may further include I) a gene, a phosphinothricin acetyl transferase (PAT) gene, a glyphosate resistance gene, and the like. Under conditions where selective pressure is not applied, the incorporated gene may drop out, so if the herbicide-tolerant gene coexists on the vector, the herbicide can be used during cultivation. There is also an advantage that a condition under selective pressure can always be realized.
[0073] さらに、大量調製および精製を容易にするために、該発現べクタ一は、大腸菌での 自律複製を可能にする複製起点および大腸菌での選択マーカー遺伝子 (例えばァ ンピシリン耐性遺伝子、テトラサイクリン耐性遺伝子等)を含むことが望ましい。本発明 の発現ベクターは、簡便には、 pUC系または pBR系の大腸菌ベクターのクローニン グ部位に上記ポリアミン代謝関連酵素遺伝子の発現カセットと必要に応じて選択マ 一力一遺伝子を挿入することにより構築することができる。  [0073] Furthermore, to facilitate large-scale preparation and purification, the expression vector has an origin of replication that enables autonomous replication in E. coli and a selectable marker gene in E. coli (eg, ampicillin resistance gene, tetracycline resistance Gene etc.). The expression vector of the present invention is simply constructed by inserting the above-mentioned polyamine metabolism-related enzyme gene expression cassette and, if necessary, a selection gene into the cloning site of a pUC or pBR E. coli vector. can do.
[0074] ァグロバタテリゥム ·ッメファシエンス (Agrobacterium tumefaciens)ゃァグロバタテリ ゥム'リゾゲネス(Agrobacterium rhizogenes)による感染を利用して外因性ポリアミン 代謝関連酵素遺伝子を導入する場合には、該細菌が保持する Tほたは Riプラスミド 上の T DNA領域 (植物染色体に転移する領域)内に該ポリアミン代謝関連酵素遺 伝子発現カセットを挿入して用いることができる。現在、ァグロバタテリゥム法による形 質転換の標準的な方法ではノイナリーベクター系が使用される。 T—DNA転移に必 要な機能は、 T— DNA自身と Ti (または Ri)プラスミドの両者力も独立に供給され、そ れぞれの構成要素は別々のベクター上に分割できる。バイナリープラスミドは T—D NAの切り出しと組込みに必要な両端の 25bpボーダー配列を有し、クラウンゴール ( または毛状根)を引き起こす植物ホルモン遺伝子が除去されており、同時に外来遺 伝子の挿入余地を与えている。このようなバイナリーベクターとして、例えば ρΒΙΙΟΙ や PBI121 (Clontech社製)などが市販されている。なお、 T—DNAの組込みに作用 する Vir領域は、ヘルパープラスミドと呼ばれる別の Ti (または Ri)プラスミド上にあつ てトランスに作用する。  [0074] When an exogenous polyamine metabolism-related enzyme gene is introduced by using an infection by Agrobacterium rhizogenes, Agrobacterium tumefaciens In general, the polyamine metabolism-related enzyme gene expression cassette can be inserted into the T DNA region (region transferred to the plant chromosome) on the Ri plasmid. At present, the standard method of transformation by agro-batterium method uses a noinary vector system. The functions required for T-DNA transfer are supplied independently by both T-DNA itself and the Ti (or Ri) plasmid, and each component can be split on separate vectors. The binary plasmid has 25 bp border sequences at both ends necessary for T-DNA excision and integration, and the plant hormone gene that causes crown gall (or hairy root) has been removed, and there is room for insertion of foreign genes at the same time. Is given. As such binary vectors, for example, ρΒΙΙΟΙ and PBI121 (manufactured by Clontech) are commercially available. The Vir region, which acts on T-DNA integration, acts on trans on another Ti (or Ri) plasmid called a helper plasmid.
[0075] 植物の形質転換には、従来公知の種々の方法を使用することができる。例えば、セ ルラーゼゃへミセルラーゼなどの細胞壁分解酵素処理により、植物の細胞力 プロト プラストを単離し、該プロトプラストと上記ポリアミン代謝関連酵素遺伝子の発現カセッ トを含む発現ベクターとの懸濁液にポリエチレングリコールをカ卩えてエンドサイトーシ ス様の過程で該発現ベクターをプロトプラスト内に取り込ませる方法 (PEG法)、ホス ファチジルコリン等の脂質膜小胞内に超音波処理等により発現ベクターを入れ、該 小胞とプロトプラストを PEG存在下に融合させる方法 (リボソーム法)、ミニセルを用い て同様の過程で融合させる方法、プロトプラストと発現ベクターの懸濁液に電気パル スを印加して外液中のベクターをプロトプラスト内に取り込ませる方法(エレクトロボレ ーシヨン法)が挙げられる。しかしながら、これらの方法は、プロトプラストから植物体 へ再分化させる培養技術を必要とする点で煩雑である。細胞壁を有するインタタトな 細胞への遺伝子導入手段としては、マイクロピペットを細胞に刺し込み、油圧やガス 圧でピペット内のベクター DNAを細胞内に注入するマイクロインジェクション法、およ び DNAをコ一ティングした微小金粒子を火薬の爆発やガス圧を利用して加速し、細 胞内に導入するパーティクルガン法等の直接導入法と、ァグロバタテリゥムによる感 染を利用した方法とがある。マイクロインジヱクシヨンは操作に熟練を要し、また、扱え る細胞数が少ないという欠点がある。従って、操作の簡便性を考慮すれば、ァグロバ クテリゥム法および、パーティクルガン法により植物を形質転換することが好ま 、。 パーティクルガン法は、栽培中の植物の頂端分裂組織に直接遺伝子を導入すること が可能である点さらに有用である。また、ァグロバタテリゥム法において、バイナリーべ クタ一に植物ウィルス、例えばトマトゴールデンモザイクウィルス (TGMV)等のジエミ 二ウィルスのゲノム DN Aをボーダー配列の間に同時に挿入することにより、栽培中の 植物の任意の部位の細胞に注射筒などを用いて菌懸濁液を接種するだけで、植物 体全体にウィルス感染が拡がり、同時に目的遺伝子も植物体全体に導入される。こ れらの方法は、当該分野に置いて周知であり、形質転換する植物に適した方法が、 当該者により適宜選択され得る。 [0075] Various conventionally known methods can be used for plant transformation. For example, plant cell power protoplasts are isolated by cell wall degrading enzyme treatment such as cellulase or hemicellulase, and the expression cassette of the protoplasts and the above polyamine metabolism-related enzyme genes is isolated. A method in which polyethylene glycol is placed in a suspension with an expression vector containing a phospholipid and the expression vector is incorporated into a protoplast in an endocytic manner (PEG method), lipid membrane vesicles such as phosphatidylcholine Putting an expression vector into the cell by sonication, etc., fusing the vesicle and protoplast in the presence of PEG (ribosome method), fusing in the same process using a minicell, suspension of protoplast and expression vector For example, a method of applying an electric pulse to the protoplast to incorporate the vector in the external solution into the protoplast (electrovolation method) can be mentioned. However, these methods are complicated in that they require a culture technique for redifferentiating protoplasts into plants. As a means of gene transfer into an intact cell with a cell wall, a microinjection method in which a micropipette is inserted into the cell and vector DNA in the pipette is injected into the cell by hydraulic pressure or gas pressure, and DNA is coated There are a direct introduction method such as a particle gun method in which fine gold particles are accelerated using explosive explosion or gas pressure and introduced into the cell, and a method using infection by agrobacterium. Microinstruction has the disadvantages that it requires skill in operation and the number of cells that can be handled is small. Therefore, considering the simplicity of operation, it is preferable to transform plants by the agrobacterium method and the particle gun method. The particle gun method is further useful in that the gene can be directly introduced into the apical meristem of the plant being cultivated. In addition, in the agrobacterium method, a plant virus, for example, a genomic virus DNA such as tomato golden mosaic virus (TGMV), is inserted into a binary vector at the same time between border sequences. By simply inoculating cells at any part of the plant with a bacterial suspension using a syringe or the like, viral infection spreads throughout the plant, and at the same time, the target gene is introduced into the entire plant. These methods are well known in the art, and a method suitable for the plant to be transformed can be appropriately selected by those skilled in the art.
[0076] 上記に示した方法で作製された形質転,物は、サザン解析やノーザン解析でポ リアミン代謝関連酵素遺伝子の遺伝子発現解析、ポリアミン量の分析、ストレス耐性 の評価、生産性の評価を行うことができる。  [0076] The transformed product produced by the method described above is subjected to Southern analysis or Northern analysis for gene expression analysis of polyamine metabolism-related enzyme genes, polyamine content analysis, stress tolerance evaluation, and productivity evaluation. It can be carried out.
[0077] 例えば、ポリアミンの定量は、 0. 05〜: Lgの試料をサンプリングして、 5%過塩素酸 水溶液を加えて、ポリアミンを抽出する。抽出したポリアミンの定量はダンシルイ匕また はべンゾィルイ匕等で標識した後、蛍光又は uv検出器を接続した高速液体クロンマト グラフィー (HPLC)を用いて内部標準法で分析することができる。 [0077] For example, polyamine is quantified by sampling a sample of 0.05-: Lg and adding a 5% aqueous perchloric acid solution to extract the polyamine. The quantification of the extracted polyamine After labeling with benzo louis, etc., it can be analyzed by internal standard method using high performance liquid chromatography (HPLC) connected with fluorescence or uv detector.
[0078] 例えば、生産性の評価として穂、稈につ 、ては、トランスジエニックイネ科植物、また はトランスジエニックイネ科植物の自家受粉で得られた T1種子又は T2種子を適当な 生育培地又は生育土壌に定植あるいは播種し、長日条件下 (昼 Z夜: 16時間 Z8時 間日長)、 20〜30°Cで生育させて穂、稈 (例えば分けつ)の数、大きさ、形等を調べ ることにより評価することができる。花序、穎果、種子、穀粒、籾、米については、トラ ンスジエニックイネ科植物、またはトランスジエニックイネ科植物の自家受粉で得られ た T1種子又は T2種子を適当な生育培地又は生育土壌に定植あるいは播種し、長 日条件下 (昼 Z夜: 16時間 Z8時間日長)、 20〜30°Cで生育させて花序、穎果、種 子、穀粒、籾、米の数、大きさ、形等を調べることにより評価することができる。 [0078] For example, as an evaluation of productivity, a T1 seed or a T2 seed obtained by self-pollination of a transgeneic gramineous plant or a transgeneic gramineous plant is appropriately grown. Planted or sown in culture medium or growing soil, grown at 20-30 ° C under long-day conditions (day Z night: 16 hours Z8 hours day length), number and size of spikelets and pods (eg, parting), It can be evaluated by examining the shape. For inflorescences, fruits, seeds, grains, grapes, and rice, use T1 seeds or T2 seeds obtained by self-pollination of Transgeneic Gramineae plants or Transgenic Gramineae plants in an appropriate growth medium or growth Planted or sown in soil and grown at 20-30 ° C under long-day conditions (day Z night: 16 hours Z8 hours day length), number of inflorescences, fruits, seeds, grains, straw, rice It can be evaluated by examining the size, shape, etc.
[0079] 例えば、低温ストレス耐性は、 0〜20°Cに 1〜10日間低温処理後、 25〜30°Cで生 育させて生育状況や低温傷害等を調べることにより評価することができる。 10°C〜1 8°Cでイネ科植物を全期間生育させて生育状況や生体重 (収量)を調べることにより 低温ストレス耐性を評価することができる。高温ストレス耐性は、 35〜50°Cに 1〜: LO 日間低温処理後、 25〜30°Cで生育させて生育状況や高温傷害等を調べることによ り評価することができる。 35°C〜45°Cでイネ科植物を全期間生育させて生育状況や 生体重 (収量)を調べることにより高温ストレス耐性を評価することができる。塩ストレス 耐性は、 10〜300mM NaClを含んだ培地中で、 25〜30°Cで生育させて生育状 況ゃ塩ストレス障害等を調べることにより評価できる。 10〜150mM NaClを含んだ 培養土でイネ科植物を全期間生育させて生育状況や生体重 (収量)調べることにより 塩ストレス耐性を評価できる。乾燥'水ストレス耐性は、水の供給を停止させて停止後 の生育状況や障害程度を調べることにより評価することができる。灌水制限した培養 土でイネ科植物を全期間生育させて生育状況や生体重 (収量)調べることにより乾燥 •水ストレスを評価できる。病原菌ストレスは、イネにイネいもち病菌やイネ白葉枯病菌 を接種して接種後の病斑、罹病性反応、生育状況や障害程度を調べることにより評 価することができる。害虫ストレスは、イネや米にゥン力、ツマグロョコバイ、コクゾゥを 放飼して食害程度や生育状況を調べることにより評価することができる。 [0080] 本発明において、生産性の向上 (改良)方法とは、植物を植物中で機能し得るプロ モーターの制御下にあるポリアミン量を調節する核酸配列を安定に保持することで比 較対照植物に比して花序、穎果、種子、穀粒、籾、米 (例えばイネ、トウモロコシ、コム ギ、ォォムギ)、などの収量ないし有用物質 (例えばデンプン、油脂、タンパク質、セ ルロース等)の量 (含有率)が増大する方法をいう。好ましくは、該方法により食用物 質の味覚は劣化せず、比較対照植物と同等以上である。 [0079] For example, low-temperature stress tolerance can be evaluated by examining growth conditions, low-temperature injury, etc. after growth at 25-30 ° C after low-temperature treatment at 0-20 ° C for 1-10 days. Low temperature stress tolerance can be evaluated by growing gramineous plants at 10 ° C to 18 ° C for the entire period and examining their growth status and body weight (yield). High temperature stress tolerance can be evaluated by examining growth conditions and high temperature injury after growing at 25-30 ° C after low temperature treatment at 35-50 ° C for 1-: LO days. High temperature stress tolerance can be evaluated by growing grasses at 35 ° C to 45 ° C for the entire period and examining their growth status and fresh body weight (yield). Resistance to salt stress can be evaluated by growing at 25-30 ° C in a medium containing 10-300 mM NaCl and examining the growth status for salt stress disorder. Salt stress tolerance can be evaluated by growing grasses in culture soil containing 10-150 mM NaCl for the entire period and examining the growth status and body weight (yield). The resistance to drought and water stress can be evaluated by examining the growth situation and the degree of damage after stopping the water supply. Dry water stress can be evaluated by growing grasses in culture soil with limited irrigation for the entire period and examining the growth status and body weight (yield). Pathogenic stress can be assessed by inoculating rice with rice blast fungus or rice leaf blight fungus and examining the disease spots, susceptibility response, growth status and degree of damage after inoculation. Pest stress can be evaluated by examining the extent of food damage and growth conditions by releasing rice, rice, rice leafhopper and kokuzo to rice and rice. [0080] In the present invention, the method for improving (improving) productivity is a comparative control by stably maintaining a nucleic acid sequence that regulates the amount of polyamine under the control of a promoter capable of functioning in a plant. Yield or useful substance (eg starch, fat, protein, cellulose, etc.) such as inflorescence, fruit, seed, grain, straw, rice (eg rice, corn, wheat, barley), etc. A method in which (content) increases. Preferably, the taste of the edible substance is not deteriorated by the method, and is equal to or higher than that of the control plant.
[0081] 本発明の形質転換されるイネ科植物は、特に限定されるものではないが、単子葉 植物などが挙げられる。例えば、栽培イネ、野生イネ、トウモロコシ、コムギ、ライムギ、 ォォムギ、ェンバタ等が挙げられる。好ましくは、イネ、トウモロコシである。  [0081] The gramineous plant to be transformed of the present invention is not particularly limited, and examples thereof include monocotyledonous plants. Examples include cultivated rice, wild rice, corn, wheat, rye, wheat, and embata. Rice and corn are preferable.
[0082] 本発明は、例えばイネについて好適に実施できる。  [0082] The present invention can be preferably implemented for, for example, rice.
[0083] イネ科植物力 はデンプン等の糖質が得られ、該糖質は生分解性プラスチックの製 造原料とすることができる。生分解性プラスチックとしては、ポリヒドロキシプチレート、 ポリヒドロキシバリレート、ポリ 13ーヒドロキシ酪酸、ポリ力プロラタトン、ポリブチレン サクシネート、ポリブチレンアジペート、ポリエチレンサクシネート、ポリ(D, L, DL)乳 酸 (ボリラクチド)、ポリグリコール酸 (ポリグリコリド)、酢酸セルロース、キトサン Zセル ロース Zデンプン、変性デンプンなど、或いはこれらの 2元共重合体、 3元共重合体 が例示される。これらの生分解性プラスチックは公知であり、公知の発酵法、化学合 成法などを用いて製造することができる。  [0083] Gramineous plant power provides sugars such as starch, which can be used as a raw material for producing biodegradable plastics. Biodegradable plastics include polyhydroxy propylate, polyhydroxy valerate, poly 13-hydroxybutyric acid, poly force prolatatone, polybutylene succinate, polybutylene adipate, polyethylene succinate, poly (D, L, DL) lactic acid (borilactide) And polyglycolic acid (polyglycolide), cellulose acetate, chitosan Z cellulose Z starch, modified starch and the like, and binary copolymers and ternary copolymers thereof. These biodegradable plastics are known and can be produced using known fermentation methods, chemical synthesis methods, and the like.
実施例  Example
[0084] 以下に実施例を示して本発明をより具体的に説明するが、これらは単なる例示であ つて、本発明の範囲を何ら限定するものではない。  [0084] The present invention will be described more specifically with reference to the following examples. However, these are merely examples and do not limit the scope of the present invention.
[0085] なお、以下の実施例ではイネ科植物としてイネを使用した例を記載する力 トウモロ コシ、コムギ、ォォムギ等の他のイネ科植物についても同様に種々の環境ストレス耐 性、収量が増大する。 [0085] It should be noted that in the following examples, an example of using rice as a gramineous plant is described. With respect to other gramineous plants such as corn, wheat, and barley, various environmental stress tolerances and yields are similarly increased. To do.
^ l:植物由来のポリアミン代謝関連酵素遺伝子のクローユング  ^ l: Cloning of plant-derived polyamine metabolism-related enzyme genes
WO02Z23974の実施例 2の記載に従い、完全長のクロダネカボチヤ由来のスぺ ルミジン合成酵素遺伝子 (FSPD1 ;配列番号 1, 2)、 S アデノシルメチォニン脱炭 酸酵素遺伝子 (FSAM24 ;配列番号 3, 4)、アルギニン脱炭酸酵素遺伝子を (FAD C76;配列番号 5, 6)を得た。 In accordance with the description in Example 2 of WO02Z23974, a full-length spridine synthase gene (FSPD1; SEQ ID NO: 1, 2), S adenosylmethionine decarboxylase gene (FSAM24; SEQ ID NO: 3, 4) ), The arginine decarboxylase gene (FAD C76; SEQ ID NO: 5, 6) was obtained.
実施例 2 :トランスジエニックイネの作製と解析  Example 2: Production and analysis of transgenic rice
(1)発現コンストラクトの作製  (1) Production of expression construct
配列番号 1に示したポリアミン代謝関連遺伝子 FSPD1の塩基配列よりオープンリ ーデイングフレームをすベて含むように、 Xholで切断し、グラスミルク法で精製した。 次に pGEM— 7Zf (Promega社製)を Xhol切断して、 FSPD1断片をセンスとアンチ センス方向にそれぞれサブクローユングした。 pGEM— 7Zfのマルチクロー-ングサ イトの制限酵素 Xbalと Kpnlで再度 FSPD1断片を切り出して、 35Sプロモーターが 連結しているバイナリーベクター pBI101—Hm2にサブクローユングした。これらのプ ラスミドを PBI35S— FSPD1 + /—と命名した。その発現コンストラクトの構造を図 1 に示した。なお、形質転換された大腸菌 JM109を、 Escherichia coli JM109/p BI35S— FSPD1 + Z—と命名した。  The polyamine metabolism-related gene FSPD1 shown in SEQ ID NO: 1 was cleaved with Xhol so as to include all open reading frames from the base sequence of FSPD1, and purified by the glass milk method. Next, pGEM-7Zf (Promega) was cleaved with Xhol, and the FSPD1 fragment was subcloned in the sense and antisense directions, respectively. The FSPD1 fragment was excised again with the restriction enzymes Xbal and Kpnl of the pGEM-7Zf multicloning site and subcloned into the binary vector pBI101-Hm2 linked to the 35S promoter. These plasmids were named PBI35S—FSPD1 +/—. The structure of the expression construct is shown in Fig. 1. The transformed E. coli JM109 was named Escherichia coli JM109 / pBI35S—FSPD1 + Z—.
[0086] 配列番号 3に示したポリアミン代謝関連遺伝子 FSAM24の塩基配列よりオープン リーディングフレームをすベて含むように、 Notlで切断し、それぞれ平滑末端化した 。これらの断片を平滑末端ィ匕した 35Sプロモーターが連結して 、るバイナリーベクタ 一 pBI101—Hm2にセンス方向とアンチセンス方向にサブクローユングした。これら のプラスミドを PBI35S—FSAM24 + Z—と命名した。その発現コンストラクト(センス 方向のみ)の構造を図 1に示した。なお、形質転換された大腸菌 JM109を、 Escheri chia coli JM109/pBI35S— FSAM24 + /—と命名した。  [0086] The polyamine metabolism-related gene FSAM24 shown in SEQ ID NO: 3 was cleaved with Notl so as to include all open reading frames from the base sequence of FSAM24, and each was blunt-ended. These fragments were ligated with a blunt-ended 35S promoter and subcloned into the binary vector pBI101-Hm2 in the sense and antisense directions. These plasmids were named PBI35S—FSAM24 + Z—. The structure of the expression construct (sense direction only) is shown in FIG. The transformed E. coli JM109 was named Escheri chia coli JM109 / pBI35S— FSAM24 + / —.
[0087] 配列番号 5に示したポリアミン代謝関連遺伝子 FADC76の塩基配列よりオープンリ ーデイングフレームをすベて含むように、 Notlで切断し、それぞれ平滑末端化した。 これらの断片を平滑末端ィ匕した 35Sプロモーターが連結しているバイナリーベクター pBI101—Hm2にセンス方向とアンチセンス方向にサブクローユングした。これらの プラスミドを PBI35S— FADC76 + Z—と命名した。その発現コンストラクト(センス方 向のみ)の構造を図 1に示した。なお、形質転換された大腸菌 JM109を、 Escherich ia coli JM109ZpBI35S— FADC76 + Z—と命名した。  [0087] The polyamine metabolism-related gene FADC76 shown in SEQ ID NO: 5 was cleaved with Notl so as to include all open reading frames from the base sequence, and each was blunt-ended. These fragments were subcloned in the sense and antisense directions into a binary vector pBI101-Hm2 ligated with a 35S promoter with blunt ends. These plasmids were named PBI35S— FADC76 + Z—. The structure of the expression construct (sense direction only) is shown in FIG. The transformed E. coli JM109 was named Escherichia coli JM109ZpBI35S— FADC76 + Z—.
(2)プラスミドのァグロバタテリゥムへの導入  (2) Introduction of plasmid into agrobacterium
(1)で得られた大腸菌 pBI35S - FSPD 1 + Z—、大腸菌 pBI35S - FSAM24 + / -、大腸菌 pBI35S - FADC76 + /—とへルパープラスミド pRK2013を持つ大 腸菌 HB101株を、それぞれ 50mgZlのカナマイシンを含む LB培地で 37°Cで 1晚、 ァグロバタテリゥム EHA101株を 50mgZlのカナマイシンを含む LB培地で 37°Cで 2 晚培養した。各培養液 1. 5mlをエツペンドルフチューブに取り集菌したのち、 LB培 地で洗浄した。これらの菌体を lmlの LB培地に懸濁後、 3種の菌を 100 1ずつ混合 し、 LB培地寒天培地にまき、 28°Cで培養してプラスミドをァグロバタテリゥムに接合 伝達 (三者接合法)させた。 1から 2日後に一部を白金耳でかきとり、 50mgZlカナマ イシン、 20mg/レヽィグロマイシン、 25mg/lクロラムフエ-コールを含む LB寒天培 地上に塗布した。 28°Cで 2日間培養した後、単一コロニーを選択した。得られた形質 転換体を EHA10lZpBI35S— FSPD1 + Z—、 EHA10lZpBI35S— FSAM2 4 + Z—、 EHA101/pBI35S— FADC76 + /—と命名した。 E. coli pBI35S-FSPD 1 + Z— obtained in (1), E. coli pBI35S-FSAM24 + /-, Escherichia coli pBI35S-FADC76 +/- and E. coli HB101 strains with helper plasmid pRK2013, 1 mg at 37 ° C in LB medium each containing 50 mgZl of kanamycin, 50 mgZl of Agrovaterium EHA101 The cells were cultured at 37 ° C for 2 days in LB medium containing kanamycin. 1.5 ml of each culture solution was collected in an Eppendorf tube and then washed with LB medium. After suspending these cells in 1 ml of LB medium, mix three types of bacteria 100 1 at a time, spread them on LB medium agar medium, and incubate at 28 ° C to transfer the plasmid to agrobacterium. Three-party joining method). One or two days later, a portion was scraped with a platinum loop and applied to LB agar medium containing 50 mg Zl kanamycin, 20 mg / remyromycin, and 25 mg / l chloramphee-chol. After culturing at 28 ° C for 2 days, a single colony was selected. The resulting transformants were named EHA10lZpBI35S—FSPD1 + Z—, EHA10lZpBI35S—FSAM2 4 + Z—, EHA101 / pBI35S—FADC76 +/—.
(3)イネの形質転換 (3) Rice transformation
イネの形質転換は Hiei Y.らの方法(Plant J. , 6, 271— 282, 1994)を参考に した。イネ品種'ゆきひかり'(以下「ゆきひかり」又は「野生株」という)の完熟種子を籾 を取り除いた後、 70%エタノールで 5分浸漬の後、同様に滅菌したビーカーに入れ た滅菌液(5%次亜塩素酸ナトリウム、 0. 02%Triton X—100)に 20分浸漬して滅 菌を行った。滅菌した種子は、滅菌ビーカーに入れた滅菌水で 3回洗浄を行った。 洗浄後、カルス誘導培地〔N6C1プレート: N6無機塩、 N6ビタミン、 2mgZl 2, 4— D 、 30g/lシュクロース、 2g/lゲルライト、 pH5. 8〕上に置床し、植物インキュベータ 一(サンヨーネ土製、 MLR— 350HT)中で 25°C、明所(60 mol'm_2' s_1、 16時間 明期 Z8時間暗期、以下この光条件を明所とする)条件下にて培養した。約 1ヶ月後 、増殖した組織より植物体への再分ィ匕能を持つ胚性カルスを選抜した。選抜した胚 性カルスは以後、 1ヶ月毎に新しい N6C1プレートに移植し、増殖させた。ァグロバタ テリゥムの感染は形質転換ァグロバタテリゥム株 EHA10lZpBI35S— FSPDl + Z ―、 EHA101/pBIC2— FSPD1 + /— (CaMV35Sプロモーターを西洋ヮサビ由 来のペルォキシダーゼプロモーターに置き換えたもの)、 EHA101/pBI35S— FS AM24 + Z—、 EHA10lZpBI35S— FADC76 + Z—を 50mgZlカナマイシン 及び 50mgZレヽィグロマイシンを含む LB寒天培地にて 27°C、 2晚培養後、菌体を 飯粒 2粒程度搔き取り、感染培地 (AA:AA無機塩、アミノ酸、 B5ビタミン、 20g/lシ ュクロース、 2mg/l 2, 4— D、 0. 2mg/l力イネチン、 10mg/lァセトシリンゴン、 p H5. 8)に懸濁した。この菌体懸濁液を、滅菌したステンレスネット製バスケットを入れ た 300ml滅菌ビーカーに移した。ビーカーに前培養した胚性カルスをこのビーカー のバスケットに入れて 2分間浸したのち、 2枚重ねた滅菌濾紙上にバスケットごと乗せ て余分な水分を除き、共存培養培地(N6COプレート: N6無機塩、 N6ビタミン、 30g /\シュクロース、 lOgZlグルコース、 2mg/l 2, 4— D、 10mg/lァセトシリンゴン 、 2g/lゲルライト、 pH5. 8)に移して、 28°C、暗黒条件下にて 3日間共存培養した 。 3日間共存培養した胚性カルスを、除菌液 (滅菌水にカルべ-シリンを終濃度 500 mgZlとなるように加えたもの) 50mlを入れた滅菌したステンレスバスケット入り 300m 1ビーカーのバスケットに移し、ピンセットでバスケットをつまみ、数分間良く洗浄した。 次に胚性カルスを、バスケットごと除菌液を入れた 300ml滅菌ビーカーに移し、再び 洗浄を行った。同じ操作を再度繰り返した後、滅菌濾紙上で余分な水分を除き、選 抜培地(N6SEプレート: N6無機塩、 N6ビタミン、 30g/lシュクロース、 2mgZl 2, 4— D、 50mg/lノヽィグロマイシン、 500mg/lカルべ-シリン、 2g/lゲルライト、 ρ Η5. 8)に並べて 25°C、暗黒条件下にて約 3〜4週間培養した。ほぼ全てのカルスを 再分化培地(MSREプレート: MS無機塩、 MSビタミン、 30g/lシュクロース、 30g /\ソルビトール、 2g/l casamino酸、 lmgZl NAA、 2mg/l BAP 250mg/l力 ノレべニシリン、 50mg/lノヽィグロマイシン、 4g/lゲノレライト、 pH5. 8)【こ移植して 25 °C、暗黒条件下にて再分化するまで培養した。得られた形質転換体について導入遺 伝子の確認と発現解析を行った。具体的には導入遺伝子の確認については、ゲノム DNAを調整した後に、 PCR法とサザンノヽイブリダ一ゼーシヨンを行った。導入遺伝 子の発現解析は、ノーザン解析とウェスタン解析を行った。ウェスタン解析は 4系統 の形質転^ ^ネ(RSP— SS— 1— 1, RSP-SS- 1 - 2, RSP— CS— 3— 1, RSP -CS- 3- 2, RSP-CS- 3- 3, RSP— CS— 3— 4)から葉をサンプリングしてタ ンパク質を抽出した。抽出したタンパク質を常法に従って SDS— PAGEした後にェ レクトロブロット法でメンブレンに転写した。 FSPD1のペプチド抗体(SPDS— SP3 : LCSTEGPPLDFKHP)を用いてウェスタンブロッテイングを行った。その結果を図 2に示した。図 2の結果から明らかなように形質転^ネ (RSP— SS— 1— 1, RSP- SS- 1 - 2, RSP-CS - 3- 1, RSP— CS— 3— 2, RSP— CS— 3— 3, RSP— C S— 3— 4)は FSPD1ペプチド抗体と免疫反応を示すバンドが検出され、 目的遺伝子 が転写、翻訳されていることが示された。以上のことから、 目的遺伝子が導入されて V、る形質転 ネを得ることができた。 Rice transformation was performed by referring to the method of Hiei Y. et al. (Plant J., 6, 271-282, 1994). Ripe seeds of rice varieties 'Yukihikari' (hereinafter referred to as “Yukihikari” or “wild-type”) are removed from the pods, immersed in 70% ethanol for 5 minutes, and then placed in a sterilized beaker in the same manner ( Disinfection was performed by immersing in 5% sodium hypochlorite, 0.02% Triton X-100) for 20 minutes. Sterilized seeds were washed three times with sterile water in a sterile beaker. After washing, place on a callus induction medium [N6C1 plate: N6 inorganic salt, N6 vitamin, 2mgZl 2, 4—D, 30g / l sucrose, 2g / l gellite, pH5.8], plant incubator , MLR- 350HT) 25 ° C in, bright place (60 mol'm _2 's _1, 16 h light period Z8 hours dark, were cultured in the following this light conditions and photopic) conditions. About one month later, embryonic callus having the ability to redivide the plant body was selected from the grown tissue. The selected embryonic callus was then transplanted to a new N6C1 plate every month for growth. Agrobataterum infection is caused by transformed agrobataterum strains EHA10lZpBI35S—FSPDl + Z ―, EHA101 / pBIC2—FSPD1 + / — (CaMV35S promoter replaced with peroxidase promoter derived from horseradish rust), EHA101 / pBI35S — FS AM24 + Z—, EHA10lZpBI35S— FADC76 + Z— was cultured on LB agar medium containing 50mgZl kanamycin and 50mgZ lygromycin at 27 ° C Scattered about 2 grains of rice, infection medium (AA: AA mineral salt, amino acid, B5 vitamin, 20g / l sucrose, 2mg / l 2, 4—D, 0.2mg / l force rice, 10mg / l acetosyringone, It was suspended in pH 5.8). This cell suspension was transferred to a 300 ml sterilized beaker containing a sterilized stainless steel net basket. The embryo callus pre-cultured in a beaker is placed in this beaker basket and soaked for 2 minutes. Then, the basket is placed on two sterilized filter papers to remove excess water, and the coculture medium (N6CO plate: N6 inorganic salt) , N6 vitamin, 30 g / \ sucrose, lOgZl glucose, 2 mg / l 2, 4-D, 10 mg / l acetosyringone, 2 g / l gellite, pH 5.8), 3 at 28 ° C in the dark Co-cultured for days. Embryo callus co-cultured for 3 days is transferred to a 300m 1 beaker basket containing a sterile stainless steel basket containing 50ml of sterilization solution (sterilized water plus carbecillin to a final concentration of 500mgZl) I picked up the basket with tweezers and washed it well for several minutes. The embryonic callus was then transferred to a 300 ml sterilized beaker containing the sterilization solution along with the basket and washed again. Repeat the same procedure, remove excess water on sterile filter paper, and select medium (N6SE plate: N6 mineral salt, N6 vitamin, 30g / l sucrose, 2mgZl 2, 4-D, 50mg / l neugromycin. , 500 mg / l carbe-cillin, 2 g / l gellite, ρρ5.8) and cultured at 25 ° C. under dark conditions for about 3 to 4 weeks. Regeneration medium (MSRE plate: MS mineral salt, MS vitamin, 30g / l sucrose, 30g / l sorbitol, 2g / l casamino acid, lmgZl NAA, 2mg / l BAP 250mg / l force Norebenicillin 50 mg / l Neugromycin, 4 g / l Genorelite, pH 5.8) [The transplanted cells were cultured at 25 ° C under dark conditions until redifferentiation. Confirmation and expression analysis of the introduced gene were performed on the obtained transformants. Specifically, for the confirmation of the transgene, the genomic DNA was prepared and then PCR and Southern hybridization were performed. For the expression analysis of the introduced gene, Northern analysis and Western analysis were performed. Western analysis showed that 4 strains were transformed ^^ (RSP— SS— 1— 1, RSP-SS- 1-2, RSP— CS— 3— 1, RSP -CS- 3-2, 3, RSP—CS— 3— 4) We extracted leaves by sampling leaves. The extracted protein was subjected to SDS-PAGE according to a conventional method and then transferred to a membrane by an electroblot method. Western blotting was performed using a peptide antibody of FSPD1 (SPDS—SP3: LCSTEGPPLDFKHP). Fig. Shown in 2. As is clear from the results in Fig. 2, the transformations (RSP— SS— 1— 1, RSP- SS- 1-2, RSP-CS-3- 1, RSP— CS— 3— 2, RSP— CS— In 3-3, RSP-CS-3-4), a band showing immunoreactivity with the FSPD1 peptide antibody was detected, indicating that the target gene was transcribed and translated. Based on the above, it was possible to obtain V, a transformant with the target gene introduced.
(4)ポリアミンの解析 (4) Analysis of polyamine
(3)で作製した形質転換イネについて、 PCR (またはサザン解析)、ノーザン解析、 ウェスタン解析の結果力 セルラインの選抜を行った。確実にポリアミン代謝関連酵 素遺伝子が導入され、且つ該遺伝子を安定的に発現している系統についてポリアミ ン分析を行った。 FSPD1がセンス方向(+ )で導入されているセルライン、 RSP— SS 1 1、RSP— SS— 1 2、 RSP— CS— 3— 1、RSP— CS— 3— 2、RSP— CS— 3— 3、RSP— CS— 3— 4を選抜し、 RSP— SS— 1— 1、 RSP— SS— 1— 2はプロモ 一ターとして CaMV35Sプロモーターが導入されている系統、 RSP— CS— 3— 1、 R SP— CS— 3— 2、 RSP— CS— 3— 3、 RSP— CS— 3— 4は西洋わさび由来のぺノレ ォキシダーゼプロモーター(C2プロモーター)が導入されている系統である。 FSPD 1がアンチセンス方向(一)で導入されて!、るセルライン、 RSP— SA— 1、 RSP - S A —2を選抜し、いずれも CaMV 35Sプロモーターが導入されている系統である。 FS AM24がセンス方向( + )で導入されて!、るセルライン、 RSP— SM— 1— 1、 TSP - SM- 1 - 2を選抜し、 RSP— SM— 1— 1、 RSP— SM— 1 - 2はプロモーターとして CaMV35Sプロモーターが導入されている系統である。同時に栽培を行った野生株 (WT)と形質転換体 (TSP)から約 0. 3〜1. Ogの若葉をサンプリングして凍結保存し た。サンプリングした試料に希釈内部標準液(1, 6-hexanediamine,内部標準量 = 7. 5又は 12nmol)と 5%過塩素酸水溶液 (試料生体重 1. Og当たり 5〜: LOml)を 加え、ォムニミキサーを用いて室温下で十分に磨砕抽出した。磨砕液を、  The transformed rice produced in (3) was selected as a result of PCR (or Southern analysis), Northern analysis, or Western analysis. Polyamine analysis was performed on lines in which a polyamine metabolism-related enzyme gene was reliably introduced and the gene was stably expressed. Cell lines with FSPD1 introduced in the sense direction (+), RSP—SS 1 1, RSP—SS—1, 2, RSP—CS—3—1, RSP—CS—3—2, RSP—CS—3— 3. RSP—CS—3—4 was selected, RSP—SS—1-1, RSP—SS—1-2—has been introduced with CaMV35S promoter as a promoter, RSP—CS—3-1— RSP—CS—3—2, RSP—CS—3—3, and RSP—CS—3—4 are strains into which the horseradish penoleoxidase promoter (C2 promoter) has been introduced. FSPD 1 has been introduced in the antisense direction (1)! Cell lines, RSP-SA-1, RSP-SA-2 have been selected and all are CaMV 35S promoters. FS AM24 is introduced in the sense direction (+) !, Cell Line, RSP—SM—1—1, TSP—SM—1-2, RSP—SM—1-1, RSP—SM—1 -2 is a strain in which the CaMV35S promoter is introduced as a promoter. About 0.3 to 1. Og young leaves were sampled and stored frozen from wild strains (WT) and transformants (TSP) grown at the same time. Add the diluted internal standard solution (1, 6-hexanediamine, internal standard amount = 7.5 or 12 nmol) and 5% aqueous perchloric acid solution (sample body weight: 1 to 5 ml per Og: LOml) to the sampled sample, And thoroughly ground and extracted at room temperature. Grinding liquid,
4°C · 35, 000 X gで 20分間遠心分離して上清液を採取し本液を遊離型ポリアミン溶 液とした。スクリューキャップ付きのマイクロチューブに 400 1の遊離型ポリアミン溶 液、 200 1の飽和炭酸ナトリウム水溶液、 200 1のダンシルク口ライド Zアセトン溶 液(lOmgZml)を加えて軽く混和した。チューブの栓をしつ力りと閉めたのちアルミ 箔で覆い、 60°Cのウォーターノ スで 1時間加温してダンシルイ匕を行った。チューブを 放冷した後、プロリン水溶液(lOOmgZml)を 200 /z lカ卩えて混和した。アルミ箔で覆 つてウォーターバスで 30分間再加温した。放冷後、窒素ガスを吹き付けてアセトンを 除いた後に、 600 1のトルエンをカ卩えて激しく混和した。チューブを静置して 2相に 分かれた後に、上層のトルエン層を 300 1マイクロチューブに分取した。分取したト ルェンに窒素ガスを吹き付けてトルエンを完全除去した。チューブに 200 1のメタノ ールをカ卩えてダンシル化遊離型ポリアミンを溶解させた。プトレシン、スペルミジン、ス ペルミンの遊離型ポリアミン量の定量は蛍光検出器 (励起波長: 365nm ·発光波長:51 Onm)を接続した高速液体クロマトグラフィーを用いて内部標準法で分析した。 HPLC カラムは/ z Bondapak C18 (Waters社製: 027324、 3. 9 X 300mm、粒子径 10 m)を使用した。試料中のポリアミン含量は標準液と試料の HPLCチャートから、そ れぞれ各ポリアミンと内部標準のピーク面積を求めて算出した。その結果、ポリアミン 代謝関連酵素遺伝子をセンス方向に導入したセルラインは、プトレシン含量、スペル ミジン含量、スペルミン含量が野生株 (WT)より有意に増加し、総ポリアミン含量も野 生株 (WT)より有意に増大していることが明ら力となった。特にスペルミジンとスペルミ ン含量の増加が顕著であった。さらに、ポリアミン代謝関連酵素遺伝子をアンチセン ス方向に導入したセルラインは、プトレシン含量は増加した力 特にスペルミジン含量 とスペルミン含量が野生株 (WT)より有意に減少し、総ポリアミン含量も野生株 (WT) より有意に減少していることが明らかとなった。以上の結果から、ポリアミン代謝関連 酵素遺伝子をイネにセンス方向又はアンチセンス方向で遺伝子導入することで、内 性のポリアミン含量を増加又は減少させることが可能であることが明ら力となった。こ れらのことから、ポリアミン代謝関連酵素遺伝子を植物に遺伝子導入することで、ポリ ァミン代謝を操作してポリアミン含量を制御できることが示された。 Centrifugation was carried out at 4 ° C · 35,000 Xg for 20 minutes to collect the supernatant, and this solution was used as a free polyamine solution. To a microtube with a screw cap, 400 1 free polyamine solution, 200 1 saturated aqueous sodium carbonate solution, 200 1 Dansilk mouthride Z acetone solution (lOmgZml) were added and mixed gently. After tightly closing the tube stopper, aluminum It was covered with foil and heated for 1 hour with water nose at 60 ° C, and then dansill candy was performed. After allowing the tube to cool, an aqueous proline solution (lOOmgZml) was added at 200 / zl and mixed. It was covered with aluminum foil and reheated in a water bath for 30 minutes. After standing to cool, nitrogen gas was blown to remove acetone, and 6001 toluene was added and mixed vigorously. After leaving the tube to separate into two phases, the upper toluene layer was fractionated into 3001 microtubes. Toluene was completely removed by blowing nitrogen gas to the collected toluene. The tube was filled with 200 1 methanol to dissolve the dansylated free polyamine. The amount of free polyamines of putrescine, spermidine, and spermine was analyzed by an internal standard method using high performance liquid chromatography connected with a fluorescence detector (excitation wavelength: 365 nm · emission wavelength: 51 Onm). The HPLC column used was / z Bondapak C18 (Waters: 027324, 3.9 X 300 mm, particle size 10 m). The polyamine content in the sample was calculated by obtaining the peak areas of each polyamine and internal standard from the standard solution and the HPLC chart of the sample, respectively. As a result, cell lines in which polyamine metabolism-related enzyme genes were introduced in the sense direction had significantly higher putrescine content, spermidine content, and spermine content than the wild type strain (WT), and the total polyamine content was also higher than the wild type strain (WT). A significant increase was evident. In particular, the increase in spermidine and spermine content was remarkable. Furthermore, cell lines in which polyamine metabolism-related enzyme genes were introduced in the direction of antisense showed increased putrescine content, especially spermidine content and spermine content were significantly reduced compared to the wild strain (WT), and the total polyamine content was also increased in the wild strain (WT ) It became clear that it decreased more significantly. From the above results, it has become clear that it is possible to increase or decrease the content of endogenous polyamines by introducing a polyamine metabolism-related enzyme gene into rice in the sense or antisense direction. These results indicate that polyamine content can be controlled by manipulating polyamine metabolism by introducing polyamine metabolism-related enzyme genes into plants.
^Mffi:生産性の評価  ^ Mffi: Productivity evaluation
野生株(WT)と形質転^ ^ネ(RSP— SS— 1— 1, RSP-SS - 1 - 2, RSP— CS - 3- 1, RSP-CS- 3- 2, RSP-CS- 3- 3, RSP— CS— 3—4)の種子を一粒 ずつピンセットで籾を取り外した。種子に 5mlの種子滅菌液(2. 5%アンチホルミン、 Tween20)を加えて、 150rpmで 30分間振とうした。種子滅菌液を捨てて、 10mlの 滅菌水を加えて、 150rpm、 10分間振とうしてこの操作を 4回繰り返した。野生株 (W T)の種子は生育培地(RGM : MS無機塩、 MSビタミン、 30g/lシュクロース、 8gZ 1ファイトァガー、 pH5. 8)、形質転換イネの種子は選抜生育培地 (RGM : MS無機 塩、 MSビタミン、 30g/lシュクロース、 8g/lファイトァガー、 50mgZlカナマイシ ン、 20mgZlハイグロマイシン、 pH5. 8)にそれぞれ播種した。 26°C、弱光条件(4 000ルクス)、 16時間日長(16時間明期 Z8時間暗期)に設定したグロースチャンバ 一で生育させた。播種 7〜10日目に野生株と形質転換イネについて生育がそろった 個体を選抜し、市販の培養土を詰めたプラスチック製の鉢に定植した。多湿順化させ た後に閉鎖系ガラス室 (設定気温昼 Z夜: 23〜24°CZ21〜22°C、湿度 55%、自然 日長)で栽培試験を始めた。生育状況として穂ばらみ期、出穂期、開花期、成熟期な どを調べた。その結果、穂ばらみ期、出穂期、開花期は野生株と形質転換イネで違 いは見られな力つた。成熟期については形質転^ネで野生株に比べて 4〜7日程 遅くなる傾向が見られた。播種日力 4ヶ月後に収量構成要素を調べた。その結果を 表 1に示した。表 1の結果から、ポリアミン代謝関連酵素遺伝子を導入した形質転換 イネでは野生株に比べて生産性ないし形質が改良できることが確認された。 Transform with wild strain (WT) ^ ^ (RSP— SS— 1— 1, RSP-SS-1-2, RSP— CS-3- 1, RSP-CS- 3- 2, RSP-CS- 3- 3, RSP—CS— 3-4) Seeds were removed one by one with tweezers. To the seeds, 5 ml of a seed sterilizing solution (2.5% antiformin, Tween 20) was added and shaken at 150 rpm for 30 minutes. Discard the seed sterilization solution, This operation was repeated 4 times by adding sterilized water and shaking at 150 rpm for 10 minutes. Seeds of wild type (WT) are growth medium (RGM: MS inorganic salt, MS vitamin, 30g / l sucrose, 8gZ 1 phytowager, pH 5.8), seeds of transformed rice are selective growth medium (RGM: MS inorganic salt MS vitamin, 30 g / l sucrose, 8 g / l phytowager, 50 mgZl kanamycin, 20 mgZl hygromycin, pH 5.8). The cells were grown in a growth chamber set at 26 ° C, low light conditions (4 000 lux), and 16 hours day length (16 hours light period Z8 hours dark period). On the 7th to 10th days after sowing, individuals with the same growth of wild strains and transformed rice were selected and planted in plastic pots filled with commercially available culture soil. After acclimatization, the cultivation test was started in a closed glass room (set temperature daytime Z night: 23-24 ° C Z21-22 ° C, humidity 55%, natural day length). The growth status was examined during the booting, heading, flowering, and maturity periods. As a result, there was no difference in the booting, heading, and flowering periods between wild-type and transformed rice. During maturity, the transformation showed a tendency to be 4 to 7 days later than the wild type. Yield components were examined 4 months after sowing. The results are shown in Table 1. From the results in Table 1, it was confirmed that the productivity and traits of transformed rice plants into which polyamine metabolism-related enzyme genes were introduced can be improved compared to the wild type.
[0088] [表 1] [0088] [Table 1]
Figure imgf000030_0001
Figure imgf000030_0001
[0089] 実施例 4:形質転換イネの種々のストレス耐性の評価 [0089] Example 4: Evaluation of various stress tolerance of transformed rice
(1)塩ストレス耐性の評価  (1) Evaluation of salt stress tolerance
野生株 (WT)と形質転^ ^ネ (RSP -SS- 1 - 1, RSP— SS— 1— 2)の種子を一 粒ずつピンセットで籾を取り外した。種子に 5mlの種子滅菌液(2. 5%アンチホルミ ン、 Tween20)をカ卩えて、 150rpmで 30分間振とうした。種子滅菌液を捨てて、 10m 1の滅菌水を加えて、 150rpm、 10分間振とうしてこの操作を 4回繰り返した。野生株( WT)の種子は NaClを含む(75mM NaCl, lOOmM NaCl)か含まない生育培地( RGM : MS無機塩、 MSビタミン、 30gZlシュクロース、 8g/lファイトァガー、 pH5. 8)、形質転換イネ(RSP— SS— 1— 1, RSP— SS— 1— 2)の種子は NaClを含む(7 5mM NaCl, lOOmM NaCl)か含まない選抜生育培地(RGM: MS無機塩、 MSビ タミン、 30g/lシュクロース、 8g/lフアイ卜ァガー、 50mg/lカナマイシン、 20mg Λ ノ、ィグロマイシン、 pH5. 8)にそれぞれ播種した。 26°C、弱光条件(4000ルクス )、 16時間日長(16時間明期 Z8時間暗期)に設定したグロースチャンバ一で生育試 験を行った。播種 10日目に生体重 (全体)とシュート長を調査した。 The seeds of the wild strain (WT) and the transformed ^^ (RSP-SS-1-1, RSP—SS—1-2) were removed with a pair of tweezers. 5 ml of seed sterilization solution (2.5% antiformin, Tween20) was added to the seeds and shaken at 150 rpm for 30 minutes. The seed sterilization solution was discarded, 10 ml of sterilized water was added, and this operation was repeated 4 times by shaking at 150 rpm for 10 minutes. Wild strain ( WT) seeds contain NaCl (75mM NaCl, lOOmM NaCl) or no growth medium (RGM: MS inorganic salt, MS vitamin, 30gZl sucrose, 8g / l phytofagger, pH5.8), transformed rice (RSP— SS-1-1, RSP-SS-1-2) seeds with or without NaCl (75 mM NaCl, lOOmM NaCl) or selected growth medium (RGM: MS inorganic salt, MS vitamins, 30 g / l sucrose , 8 g / l fiaguar, 50 mg / l kanamycin, 20 mg Λ, igromycin, pH 5.8). Growth tests were conducted in a growth chamber set at 26 ° C, low light conditions (4000 lux), and 16 hours day length (16 hours light period Z8 hours dark period). On the 10th day after sowing, the body weight (total) and shoot length were investigated.
NaClを含まない区 (非ストレス区)では野生株と形質転^ネは播種 2日目から同 じょうに発芽した。一方、塩ストレス区では形質転換イネは 3日目力も発芽したのに対 して、野生株では発芽が遅れ 4〜5日目力も発芽した。形質転換イネは野生株に比 ベて、塩ストレス条件下での発芽勢が優れていることが確認された。播種 10日目の 生育調査(生体重 'シュート長)の結果を図 3、 75mM NaCl区の草姿を図 4に示した 。図 3の結果力 非ストレス区では野生株と形質転^ネでは生体重やシュート長に 違いは見られな力つたが、塩ストレス区では生体重とシュート長ともに形質転^ネで は野生株に比べて有意に大きぐ優れた生長を示した。図 4の結果からも明らかなよ うに、形質転換イネでは野生株に比べてシュート '根ともに生育が顕著に優れていた 。以上の結果から、ポリアミン代謝関連酵素遺伝子を導入した形質転換イネでは野 生株に比べて塩ストレス耐性が高まっていることが示された。  In the group containing no NaCl (non-stressed group), the wild strain and the transformed rice germinated in the same manner from the second day of sowing. On the other hand, in the salt-stressed area, transformed rice germinated on the third day, whereas in the wild strain, germination was delayed and on the 4th and 5th days, germination occurred. It was confirmed that transformed rice was superior in germination vigor under salt stress conditions compared to the wild type. Fig. 3 shows the results of the growth survey (live weight 'shoot length) on the 10th day after sowing, and Fig. 4 shows the appearance of the 75mM NaCl. Results of Figure 3 In the non-stressed area, there was no difference in the live weight and shoot length between the wild strain and the transformed strain, but in the salt stress area, both the live weight and the shoot length were wild. The growth was significantly larger than that of. As can be seen from the results in FIG. 4, the transformed rice showed significantly better growth of both shoots and roots than the wild type. From the above results, it was shown that transgenic rice introduced with a polyamine metabolism-related enzyme gene has higher tolerance to salt stress than wild-type strains.
(2)低温ストレス耐性の評価 (2) Evaluation of low temperature stress tolerance
野生株 (WT)と形質転^ ^ネ (RSP -SS- 1 - 1, RSP— SS— 1— 2)の種子を一 粒ずつピンセットで籾を取り外した。種子に 5mlの種子滅菌液(2. 5%アンチホルミ ン、 Tween20)をカ卩えて、 150rpmで 30分間振とうした。種子滅菌液を捨てて、 10m 1の滅菌水を加えて、 150rpm、 10分間振とうしてこの操作を 4回繰り返した。野生株( WT)の種子は生育培地(RGM : MS無機塩、 MSビタミン、 30g/lシュクロース、 8g /\ファイトァガー、 ρΗ5. 8)、形質転 ネ(RSP— SS— 1— 1, RSP— SS— 1—2 )の種子は選抜生育培地 (RGM : MS無機塩、 MSビタミン、 30g/lシュクロース、 8 g/1ファイトァガ一、 50mg/lカナマイシン、 20mg/l ノヽィグロマイシン、 pH5. 8) にそれぞれ播種した。 26°C、弱光条件 (4000ルクス)、 16時間日長(16時間明期 Z 8時間暗期)に設定したグロースチャンバ一で 3日間育成して、同じように発芽させた 。その後、野生株と形質転 ネの半分の個体を低温ストレス条件(18°C '4000ルク ス)に設定したグロースチャンバ一移し、残りの半分の個体は 26°Cに設定したグロ一 スチャンバ一でそのまま生育を続けた。播種 10日目に生体重 (全体)とシュート長を 調査した。 The seeds of the wild strain (WT) and the transformed ^^ (RSP-SS-1-1, RSP—SS—1-2) were removed with a pair of tweezers. 5 ml of seed sterilization solution (2.5% antiformin, Tween20) was added to the seeds and shaken at 150 rpm for 30 minutes. The seed sterilization solution was discarded, 10 ml of sterilized water was added, and this operation was repeated 4 times by shaking at 150 rpm for 10 minutes. The seeds of the wild strain (WT) are grown in the growth medium (RGM: MS inorganic salt, MS vitamin, 30g / l sucrose, 8g / \ phytowager, ρΗ5.8), and transformed rice (RSP—SS—1—1, RSP— SS-1-2) seeds are selected growth medium (RGM: MS inorganic salt, MS vitamin, 30g / l sucrose, 8g / 1 phytofaga, 50mg / l kanamycin, 20mg / l neugromycin, pH 5.8) Respectively. They were grown for 3 days in a growth chamber set at 26 ° C, low light conditions (4000 lux), 16 hours long (16 hours light period Z 8 hours dark period) and germinated in the same manner. After that, half of the wild and transformed plants were transferred to a growth chamber set at low temperature stress (18 ° C '4000 lux), and the other half were transferred to a growth chamber set at 26 ° C. Continued to grow. On the 10th day after sowing, live weight (total) and shoot length were investigated.
[0091] 播種 10日目の生育調査 (生体重'シュート長)の結果を図 5、播種 7日目の草姿を 図 6に示した。図 5の結果力 非ストレス区では野生株と形質転^ネでは生体重や シュート長に違いは見られな力つた力 低温ストレス区では生体重とシュート長ともに 形質転換イネでは野生株に比べて有意に大きぐ優れた生長を示した。図 6の結果 からも明らかなように、形質転換イネでは野生株に比べてシュート '根ともに生育が顕 著に優れていた。以上の結果から、ポリアミン代謝関連酵素遺伝子を導入した形質 転^ネでは野生株に比べて低温ストレス耐性が高まっていることが示された。  [0091] Fig. 5 shows the results of the growth survey on the 10th day of sowing (live weight 'shoot length), and Fig. 6 shows the appearance of the grass on the 7th day of sowing. Results of Fig. 5 Forces with no difference in weight and shoot length in wild strains and transformed strains in non-stressed areas Both weight and shoot length in cold stressed areas compared to wild strains in transformed rice The growth was significantly large and excellent. As is clear from the results in Fig. 6, the transformed rice showed significantly better growth in both shoots and roots than the wild type. From the above results, it was shown that the transgenic strain into which the polyamine metabolism-related enzyme gene was introduced was more resistant to low temperature stress than the wild type.
[0092] また、本発明で作製したイネは、低温、高温、 日照不足、高塩などの稔実性を低下 させることが知られている各種ストレスに対し耐性を示すことを本発明者は確認してい るので、穂ばらみ期において低温ストレス、塩ストレス、日照不足、乾燥ストレス、水ス トレスなどの各種ストレスをかけた場合にも、稔実性の低下が起こらないものである。 [0092] In addition, the present inventors have confirmed that the rice produced in the present invention is resistant to various stresses that are known to reduce fruitiness such as low temperature, high temperature, lack of sunshine, and high salt. Therefore, even when various stresses such as low temperature stress, salt stress, lack of sunshine, drought stress, and water stress are applied during the booting period, the fertility does not decrease.
:通常栽培条件下または塩ストレス条件下でのコメ収量の評価  : Evaluation of rice yield under normal cultivation conditions or salt stress conditions
実施例 2記載の RSP-SS-1-1、 RSP-SS-1-2の形質転^^ネからホモ系統として RSP - SS- 1- 1- 2と RSP- SS- 1- 2- 3を選抜した。  RSP-SS-1-1 and RSP-SS-1-2 as described in Example 2 Selected.
[0093] 野生株 (WT、品種 'ゆきひ力り')と形質転^ ^ネ (RSP -SS - 1 - 1 - 2, RSP- SS- 1 - 2- 3)の T2種子を一粒ずつピンセットで籾を取り外した。種子を水が入つ たビーカーに移して吸水処理を行った。吸水させた種子を市販の培養土 (イネ育苗 用ラブリー培養土,ヰセキ社製)を詰めた深底バットに播種した。ノ ノトをサランラップ で覆い、多湿条件下で順化させた後に閉鎖系ガラス温室 (昼夜温度 25°CZ22°C, 湿度 55%, 自然光)に移して育成を開始した。 3週間後に生育が揃った苗をセルライ ン (系統)当たり 16株づっ選抜した。選抜した幼苗を 15Lの市販の培養土 (イネ育苗 用ナウエル培養土,ヰセキ社製)を詰めた 30L用大型プランターに 8株づっ定植した (田植え)。定植したプランターの内の半分は無処理区 (通常栽培条件:無)として前 記の巿販培養土を 15Lのみを詰めている力 残りの半分は塩ストレス区 (塩ストレス条 件:塩)として市販の培養土に加えて NaClを 43. 8g (50mM NaCl濃度)添力卩し十 分に攪拌混和させたものを詰めている。地表から 5. 5cmの位置まで給水させて常に 維持して評価試験を始めた。生育状況として分げつ期、穂ばらみ期、出穂期、開花 期、成熟期などを調べた。播種日から 4ヶ月後に収穫を行い、生育特性を評価した。 その結果を表 2に示した。表 2の結果力 ストレス処理に関わらず形質転^ネでは 野性株に比べて穂数、地上部生体重、地上部乾燥重が有意に増加することが示さ れた。さらに、塩ストレス区における籾収量を野生株 (WT)と形質転^ネ (RSP— S S— 1— 1— 2, RSP— SS— l— 2— 3)の両方について調べた。結果を表 3に示す。 [0093] T2 seeds of wild strain (WT, cultivar 'Yukihi forceri') and transformation ^ ^ (RSP -SS-1-1-2, RSP- SS- 1-2-3) one by one I removed the bag with tweezers. The seeds were transferred to a beaker containing water for water absorption treatment. The water-absorbed seeds were sown in deep-bottomed bats packed with commercially available culture soil (Lovely culture soil for rice breeding, manufactured by Sakai Seki). They were covered with Saran wrap and acclimated under humid conditions, and then transferred to a closed glass greenhouse (day / night temperature 25 ° CZ22 ° C, humidity 55%, natural light) to start growing. After 3 weeks, 16 seedlings per cell line (line) were selected. The selected young seedlings were planted in groups of 8 on a 30L large planter packed with 15L of commercially available culture soil (Nawell culture soil for rice breeding, manufactured by Sakai Seki). (Rice planting). Half of the planted planters are untreated (normal cultivation conditions: none), and the power to pack only 15L of the above-mentioned sales culture soil The other half is salt stress (salt stress condition: salt) In addition to commercially available culture soil, 43.8 g of NaCl (50 mM NaCl concentration) is added, and the mixture is thoroughly stirred and mixed. The evaluation test was started with water maintained at a distance of 5.5 cm from the surface and constantly maintained. As the growth status, the tillering period, the booting period, the heading period, the flowering period, the maturation period, etc. were examined. Harvesting was conducted 4 months after the sowing date, and growth characteristics were evaluated. The results are shown in Table 2. Results shown in Table 2 It was shown that the number of spikes, the above-ground weight, and the above-ground dry weight were significantly increased in the transformed strains regardless of the stress treatment compared to the wild type strain. In addition, the yield of salmon in the salt-stressed area was examined for both wild-type strains (WT) and transformed strains (RSP—SS—1-1—2, RSP—SS—l—2-3). The results are shown in Table 3.
[0094] 栽培期間中にポリアミン含量を調べたところ、形質転換イネでは野性株に比べてス ペルミジン含量やスペルミン含量が 1. 5〜2. 0倍の範囲内で高く維持されていた。ス ペルミジン合成酵素遺伝子 (FSPD1)を過剰発現させた形質転換イネではポリアミン レベル (特にスペルミジン、スペルミン)が野性株に比べて高く維持されることで、スト レス処理の有無に関わらず生育や生長が優れることが明ら力となった。  [0094] As a result of examining the polyamine content during the cultivation period, in the transformed rice, the supermidine content and the spermine content were maintained high within the range of 1.5 to 2.0 times that of the wild strain. In transgenic rice overexpressing the supermidine synthase gene (FSPD1), polyamine levels (especially spermidine and spermine) are maintained higher than in wild-type strains, so that growth and growth can be achieved regardless of the presence or absence of stress treatment. It was obvious that it was excellent.
[0095] 特に穂数の増加については、ポリアミンレベルが高く維持されることで、特に分げつ 期中における細胞分裂活性が高まり分げつ形成が促進されたのではな 、かと考えら れる。野性株に比べて優れた生育や生長を示した形質転換イネでは、穂数が増加す ることで籾や米の収量が有意に増加することが確認された。さらに、形質転^ネで は背丈が低くなり、耐倒伏性が改善されたことが明らかになった。加えて形質転^ ネでは、栽培試験中に病原菌や虫による被害が全く観察されな力つたことから、スぺ ルミジン合成酵素遺伝子を過剰発現させることでスペルミジンやスペルミン含量が高 く維持された結果、病原菌ストレスや害虫ストレス耐性も向上していることが示された  [0095] With regard to the increase in the number of ears in particular, it is considered that maintaining the high polyamine level promotes the formation of tillering, particularly by increasing cell division activity during the tillering stage. It was confirmed that the yield of rice and rice increased significantly with the increase in the number of spikes in the transgenic rice that showed superior growth and growth compared to the wild type. Furthermore, it was found that the transformed animals had a shorter height and improved lodging resistance. In addition, in transgenic plants, damage caused by pathogenic bacteria and insects was not observed at all during the cultivation test, and as a result, the spermidine and spermine contents were maintained at a high level by overexpressing the spuridine synthase gene. , Showed that pathogen stress and pest stress resistance also improved
[0096] [表 2] 処理区一系統 穂数 (本) 草丈 (cm) 背丈 (cm) 地上部生体重 (g) 地上部乾燥重 (g〉 無一 WT - 6 17.00 ±0.98 106.1 ±1.2 99.8±0.7 99.0±6.7 55.6 ±3.5 無一 RSP - SS十 1- 2 22.63±0.99* 103.9 ±1.0 96.5±1.1 118.8±4.4* 65.8 ±2.7* 無一 RSP - SS十 2- 3 24.57 ±0.97** 104.5 ±1.2 95.3 ±1.4 127.7 ±6.3** 69.0±2.8* 塩— WT-6 15.60 ±1.33 94.7 ±2.4 91.0±2.8 68.2±11.6 33.4±5.9 塩— RSP-SS-1十 2 22.29±1.41* 93.0 ±1.8 87.5 ±1.7 89.6±9.6* 44.0±4.7# 塩一 RSP - SS十 2 - 3 21.33 ±0.84* 93.3 ±2.5 88.4 ±1.2 86.0±5.1* 42.2 ±4.1* [0096] [Table 2] One line of treatment area Number of spikelets (plant) Plant height (cm) Height of back (cm) Above ground weight (g) Above ground dry weight (g) None WT-6 17.00 ± 0.98 106.1 ± 1.2 99.8 ± 0.7 99.0 ± 6.7 55.6 ± 3.5 No RSP-SS + 1-2 22.63 ± 0.99 * 103.9 ± 1.0 96.5 ± 1.1 118.8 ± 4.4 * 65.8 ± 2.7 * No RSP-SS + 2-3 3 24.57 ± 0.97 ** 104.5 ± 1.2 95.3 ± 1.4 127.7 ± 6.3 ** 69.0 ± 2.8 * Salt— WT-6 15.60 ± 1.33 94.7 ± 2.4 91.0 ± 2.8 68.2 ± 11.6 33.4 ± 5.9 Salt— RSP-SS-1 +2 22.29 ± 1.41 * 93.0 ± 1.8 87.5 ± 1.7 89.6 ± 9.6 * 44.0 ± 4.7 # salt one RSP - SS tens of 2 - 3 21.33 ± 0.84 * 93.3 ± 2.5 88.4 ± 1.2 86.0 ± 5.1 * 42.2 ± 4.1 *
:1¾水準で有 S差あり、':59ί水準で有意差あり ] : Yes, there is an S difference at the level of 1¾, and there is a significant difference at the level of ': 59ί]
Figure imgf000034_0001
Figure imgf000034_0001
:5X水準で有意差ぁリ  : Significant difference at 5X level

Claims

請求の範囲 The scope of the claims
[1] 植物中で機能し得るプロモーターの制御下にあるポリアミン量を調節する核酸配列を 安定に保持し、且つ該核酸配列を有していない比較対照植物に比べて栽培環境と 無関係に生産性ないし形質が改良された、及び Z又は、少なくとも 1種のストレス耐 性が改良されたイネ科植物及びその子孫。  [1] A nucleic acid sequence that regulates the amount of polyamine under the control of a promoter that can function in plants is stably maintained, and productivity is higher than a control plant that does not have the nucleic acid sequence, regardless of the cultivation environment. Or a rice plant and its progeny with improved traits and Z or at least one improved stress tolerance.
[2] ポリアミン量を調節する核酸配列が外因性ポリアミン代謝関連酵素遺伝子である請 求項 1記載のイネ科植物及びその子孫。  [2] The grass plant and its progeny according to claim 1, wherein the nucleic acid sequence that regulates the amount of polyamine is an exogenous polyamine metabolism-related enzyme gene.
[3] 該生産性ないし形質、あるいは、該ストレス耐性が改良された植物が、植物中で機能 し得るプロモーターの制御下にあるポリアミン量を調節する核酸配列を含む発現べク ターで、該核酸配列を有して ヽな ヽ植物を形質転換して得られる形質転換植物であ る、請求項 1記載のイネ科植物及びその子孫。  [3] An expression vector containing a nucleic acid sequence that regulates the amount of polyamine under the control of a promoter capable of functioning in the plant, wherein the plant having improved productivity or trait or the stress tolerance is the nucleic acid. 2. The gramineous plant and its progeny according to claim 1, which are a transformed plant obtained by transforming a dwarf cocoon plant having a sequence.
[4] 該ポリアミン代謝関連酵素遺伝子が、アルギニン脱炭酸酵素 (ADC)をコードする遺 伝子、オル-チン脱炭酸酵素(ODC)をコードする遺伝子、 S—アデノシルメチォ- ン脱炭酸酵素(SAMDC)をコードする遺伝子、スペルミジン合成酵素(SPDS)をコ ードする遺伝子、スペルミン合成酵素(SPMS)をコードする遺伝子からなる群から選 択される少なくとも 1種である請求項 2に記載のイネ科植物及びその子孫。  [4] The polyamine metabolism-related enzyme gene is a gene encoding arginine decarboxylase (ADC), a gene encoding ortine decarboxylase (ODC), S-adenosylmethine decarboxylase (SAMDC). The grass plant according to claim 2, which is at least one selected from the group consisting of a gene encoding spermidine synthase (SPDS) and a gene encoding spermine synthase (SPMS). And their descendants.
[5] 該ポリアミン代謝関連酵素遺伝子力 スペルミジン合成酵素をコードする遺伝子であ る請求項 4記載のイネ科植物及びその子孫。  [5] The grass plant and its progeny according to claim 4, which is a gene encoding spermidine synthase.
[6] 該ポリアミン代謝関連酵素遺伝子が、以下の (a)または (b)または (c)の塩基配列を 有するスペルミジン合成酵素遺伝子である、請求項 2記載のイネ科植物及びその子 孫。  6. The grass plant and its progeny according to claim 2, wherein the polyamine metabolism-related enzyme gene is a spermidine synthase gene having the following base sequence (a), (b) or (c):
(a)配列番号 1 (SPDS、 1328)に示される塩基配列中塩基番号 77〜 1060で示さ れる塩基配列、  (a) a base sequence represented by base numbers 77 to 1060 in the base sequence represented by SEQ ID NO: 1 (SPDS, 1328),
(b)上記(a)の塩基配列とストリンジェントな条件下でハイブリダィズし、且つスペルミ ジン合成酵素活性を有するタンパク質をコードする塩基配列、  (b) a nucleotide sequence that hybridizes with the nucleotide sequence of (a) above under stringent conditions and encodes a protein having spermidine synthase activity;
(c) (a)または (b)の塩基配列において、 1又は複数の塩基が欠失、置換、挿入若し くは付加された塩基配列からなり、且つスペルミジン合成酵素活性を有するタンパク 質をコードする塩基配列。 (c) In the nucleotide sequence of (a) or (b), it encodes a protein consisting of a nucleotide sequence in which one or more bases are deleted, substituted, inserted or added, and having spermidine synthase activity. Base sequence.
[7] 該ポリアミン代謝関連酵素遺伝子が、以下の (a)または (b)または (c)の塩基配列を 有する S—アデノシルメチォニン脱炭酸酵素遺伝子である、請求項 2記載のイネ科植 物及びその子孫。 [7] The grass family according to claim 2, wherein the polyamine metabolism-related enzyme gene is an S-adenosylmethionine decarboxylase gene having the following base sequence (a), (b) or (c): Plants and their descendants.
(a)配列番号 3 (SAMDC、 1814)に示される塩基配列中塩基番号 456〜 1547で 示される塩基配列、  (a) a base sequence represented by base numbers 456 to 1547 in the base sequence represented by SEQ ID NO: 3 (SAMDC, 1814),
(b)上記 (a)の塩基配列とストリンジェントな条件下でハイブリダィズし、且つ S—アデ ノシルメチォニン脱炭酸酵素活性を有するタンパク質をコードする塩基配列、 (b) a nucleotide sequence that hybridizes with the nucleotide sequence of (a) above under stringent conditions and encodes a protein having S-adenosylmethionine decarboxylase activity;
(c) (a)または (b)の塩基配列において、 1又は複数の塩基が欠失、置換、挿入若し くは付加された塩基配列からなり、且つ S—アデノシルメチォニン脱炭酸酵素活性を 有するタンパク質をコードする塩基配列。 (c) S-adenosylmethionine decarboxylase consisting of a base sequence in which one or more bases are deleted, substituted, inserted or added in the base sequence of (a) or (b) A nucleotide sequence encoding a protein having activity.
[8] 該ポリアミン代謝関連酵素遺伝子が、以下の (a)または (b)または (c)の塩基配列を 有するアルギニン脱炭酸酵素遺伝子である、請求項 2記載のイネ科植物及びその子 孫。  [8] The grass family plant and its progeny according to claim 2, wherein the polyamine metabolism-related enzyme gene is an arginine decarboxylase gene having the following base sequence (a), (b) or (c):
(a)配列番号 5 (ADC、 3037)に示される塩基配列中塩基番号 541〜2661で示さ れる塩基配列、  (a) a base sequence represented by base numbers 541 to 2661 in the base sequence represented by SEQ ID NO: 5 (ADC, 3037),
(b)上記(a)の塩基配列とストリンジェントな条件下でハイブリダィズし、且つアルギ- ン脱炭酸酵素活性を有するタンパク質をコードする塩基配列、  (b) a nucleotide sequence that hybridizes with the nucleotide sequence of (a) above under stringent conditions and encodes a protein having an arginine decarboxylase activity;
(c) (a)または (b)の塩基配列において、 1又は複数の塩基が欠失、置換、挿入若し くは付加された塩基配列からなり、且つアルギニン脱炭酸酵素活性を有するタンパク 質をコードする塩基配列。  (c) A protein having a base sequence in which one or more bases are deleted, substituted, inserted or added in the base sequence of (a) or (b) and having arginine decarboxylase activity. The base sequence to encode.
[9] 塩ストレス耐性が改良されたイネ科植物である請求項 1に記載のイネ科植物及びそ の子孫。  [9] The gramineous plant and its progeny according to claim 1, which are gramineous plants with improved salt stress tolerance.
[10] 低温ストレス耐性が改良されたイネ科植物である請求項 1に記載のイネ科植物及び その子孫。  10. The gramineous plant and its progeny according to claim 1, wherein the gramineous plant has improved low-temperature stress tolerance.
[11] 病原菌ストレス耐性及び Z又は害虫ストレス耐性が改良されたイネ科植物である請 求項 1に記載のイネ科植物及びその子孫。  [11] The gramineous plant and the progeny thereof according to claim 1, which are gramineous plants with improved resistance to pathogenic stress and Z or pest stress.
[12] 生産性ないし形質が改良される器官が、穂、稈、種子、籾、米、穎果、分げつおよび 小穂力 なる群力 選ばれる少なくとも 1種である請求項 1に記載のイネ科植物及び その子孫。 [12] The organ according to claim 1, wherein the organ whose productivity or trait is improved is at least one selected from the group power of ear, cocoon, seed, cocoon, rice, fruit, tiller and small spike power. Grasses and Its descendants.
[13] 生産性ないし形質が分げつ期、穂ばらみ期、幼穂形成期において顕著に改良される 請求項 1に記載のイネ科植物及びその子孫。  [13] The gramineous plant and its progeny according to claim 1, wherein the productivity or traits are remarkably improved in the tillering stage, the booting stage, and the juvenile stage.
[14] イネ科植物がイネである請求項 1に記載のイネ科植物及びその子孫。 14. The gramineous plant and its progeny according to claim 1, wherein the gramineous plant is rice.
[15] 穂、稈、種子、籾、米、穎果、分げつまたは小穂の形態である請求項 1に記載のイネ 科植物及びその子孫。 [15] The gramineous plant and its progeny according to claim 1, which are in the form of a panicle, anther, a seed, anther, rice, a fruit, a tiller or a spikelet.
[16] 請求項 1〜15のいずれかに記載のイネ科植物及びその子孫力も得られる穂、稈、種 子、籾、米、穎果、分げつまたは小穂。  [16] A spike, anther, a seed, a pod, rice, a fruit, a tiller, or a spikelet from which the gramineous plant according to any one of claims 1 to 15 and its progeny can be obtained.
[17] 請求項 1〜15のいずれかに記載のイネ科植物及びその子孫力も得られる有用物質 [17] Useful substances which can also be obtained from the gramineous plant according to any one of claims 1 to 15 and its progeny
[18] 植物中で機能し得るプロモーターの制御下にあるポリアミン量を調節する核酸配列を 安定に保持し、且つ該核酸配列を有して ヽな ヽ植物の細胞を形質転換する工程を 含む、該核酸配列を有していない比較対照植物に比べて栽培環境と無関係に生産 性ないし形質が改良された、及び Z又は、少なくとも 1種のストレス耐性が改良された イネ科植物を作出する方法。 [18] a step of stably retaining a nucleic acid sequence that regulates the amount of polyamine under the control of a promoter capable of functioning in a plant, and transforming a cell of a dwarf pod plant with the nucleic acid sequence, A method for producing a Gramineae plant having improved productivity or traits irrespective of the cultivation environment and Z or at least one stress tolerance improved as compared to a control plant not having the nucleic acid sequence.
[19] ポリアミン量を調節する核酸配列が外因性ポリアミン代謝関連酵素遺伝子である請 求項 18記載の方法。  [19] The method according to claim 18, wherein the nucleic acid sequence that regulates the amount of polyamine is an exogenous polyamine metabolism-related enzyme gene.
[20] 植物中で機能し得るプロモーターの制御下にあるポリアミン量を調節する核酸配列を 含む発現ベクターで、該核酸配列を有して!/ヽな!ヽ植物の細胞を形質転換する工程を 含む、該核酸配列を有していない比較対照植物に比べて栽培環境と無関係に生産 性ないし形質が改良された、及び Z又は、少なくとも 1種のストレス耐性が改良された イネ科植物を作出する方法。  [20] An expression vector containing a nucleic acid sequence that regulates the amount of polyamine under the control of a promoter that can function in plants, and having the nucleic acid sequence! / Cunning! Including the step of transforming the cells of the plant, the productivity or trait is improved independently of the cultivation environment compared to the control plant not having the nucleic acid sequence, and Z or at least one stress tolerance To produce a grass plant that has improved.
[21] ポリアミン量を調節する核酸配列が外因性ポリアミン代謝関連酵素遺伝子である請 求項 20記載の方法。  [21] The method according to claim 20, wherein the nucleic acid sequence that regulates the amount of polyamine is an exogenous polyamine metabolism-related enzyme gene.
[22] 該形質転換細胞からイネ科植物を再生する工程をさらに含む、請求項 20記載の方 法。  [22] The method according to claim 20, further comprising the step of regenerating a gramineous plant from the transformed cell.
[23] 該ポリアミン代謝関連酵素遺伝子が、アルギニン脱炭酸酵素 (ADC)をコードする遺 伝子、オル-チン脱炭酸酵素(ODC)をコードする遺伝子、 S—アデノシルメチォ- ン脱炭酸酵素(SAMDC)をコードする遺伝子、スペルミジン合成酵素(SPDS)をコ ードする遺伝子、スペルミン合成酵素(SPMS)をコードする遺伝子からなる群から選 択される少なくとも 1種である請求項 21に記載の方法。 [23] The polyamine metabolism-related enzyme gene is a gene encoding arginine decarboxylase (ADC), a gene encoding ortine decarboxylase (ODC), S-adenosylmethio- And at least one selected from the group consisting of a gene encoding carboxydecarboxylase (SAMDC), a gene encoding spermidine synthase (SPDS), and a gene encoding spermine synthase (SPMS). The method according to 21.
[24] 該ポリアミン代謝関連酵素遺伝子が、以下の (a)または (b)または (c)の塩基を有す るスペルミジン合成酵素遺伝子である、請求項 21記載の方法。 24. The method according to claim 21, wherein the polyamine metabolism-related enzyme gene is a spermidine synthase gene having the following base (a) or (b) or (c):
(a)配列番号 1に示される塩基配列中塩基番号 77〜1060で示される塩基配列、 (a) a base sequence represented by base numbers 77 to 1060 in the base sequence represented by SEQ ID NO: 1,
(b)上記(a)の塩基配列とストリンジェントな条件下でハイブリダィズし、且つスペルミ ジン合成酵素活性を有するタンパク質をコードする塩基配列、 (b) a nucleotide sequence that hybridizes with the nucleotide sequence of (a) above under stringent conditions and encodes a protein having spermidine synthase activity;
(c) (a)または (b)の塩基配列において、 1又は複数の塩基が欠失、置換、挿入若し くは付加された塩基配列からなり、且つスペルミジン合成酵素活性を有するタンパク 質をコードする塩基配列。  (c) In the nucleotide sequence of (a) or (b), it encodes a protein consisting of a nucleotide sequence in which one or more bases are deleted, substituted, inserted or added, and having spermidine synthase activity. Base sequence.
[25] 該ポリアミン代謝関連酵素遺伝子が、以下の (a)または (b)または (c)の塩基を有す る S—アデノシルメチォニン脱炭酸酵素遺伝子である、請求項 21記載の方法。 [25] The method according to claim 21, wherein the polyamine metabolism-related enzyme gene is an S-adenosylmethionine decarboxylase gene having the following base (a) or (b) or (c): .
(a)配列番号 3に示される塩基配列中塩基番号 456〜 1547で示される塩基配列、(a) a base sequence represented by base numbers 456 to 1547 in the base sequence represented by SEQ ID NO: 3,
(b)上記 (a)の塩基配列とストリンジェントな条件下でハイブリダィズし、且つ S—アデ ノシルメチォニン脱炭酸酵素活性を有するタンパク質をコードする塩基配列、(b) a nucleotide sequence that hybridizes with the nucleotide sequence of (a) above under stringent conditions and encodes a protein having S-adenosylmethionine decarboxylase activity;
(c) (a)または (b)の塩基配列において、 1又は複数の塩基が欠失、置換、挿入若し くは付加された塩基配列からなり、且つ S—アデノシルメチォニン脱炭酸酵素活性を 有するタンパク質をコードする塩基配列。 (c) S-adenosylmethionine decarboxylase consisting of a base sequence in which one or more bases are deleted, substituted, inserted or added in the base sequence of (a) or (b) A nucleotide sequence encoding a protein having activity.
[26] 該ポリアミン代謝関連酵素遺伝子が、以下の (a)または (b)または (c)の塩基を有す るアルギニン脱炭酸酵素遺伝子である、請求項 21記載の方法。  26. The method according to claim 21, wherein the polyamine metabolism-related enzyme gene is an arginine decarboxylase gene having the following base (a) or (b) or (c):
(a)配列番号 5に示される塩基配列中塩基番号 541〜2661で示される塩基配列、 (a) a base sequence represented by base numbers 541 to 2661 in the base sequence represented by SEQ ID NO: 5,
(b)上記(a)の塩基配列とストリンジェントな条件下でハイブリダィズし、且つアルギ- ン脱炭酸酵素活性を有するタンパク質をコードする塩基配列、 (b) a nucleotide sequence that hybridizes with the nucleotide sequence of (a) above under stringent conditions and encodes a protein having an arginine decarboxylase activity;
(c) (a)または (b)の塩基配列において、 1又は複数の塩基が欠失、置換、挿入若し くは付加された塩基配列からなり、且つアルギニン脱炭酸酵素活性を有するタンパク 質をコードする塩基配列。  (c) A protein having a base sequence in which one or more bases are deleted, substituted, inserted or added in the base sequence of (a) or (b) and having arginine decarboxylase activity. The base sequence to encode.
[27] 器官が、穂、稈、分げつ、種子、籾、米、穎果および小穂力 なる群力 選ばれる少 なくとも 1種である請求項 20に記載の方法。 [27] The organs are selected from the group power of ears, pods, tillers, seeds, pods, rice, fruits and spikelets. 21. The method of claim 20, wherein there is at least one.
[28] 改良されたストレス耐性を有するイネ科植物力 塩ストレス耐性が改良されたイネ科 植物である、請求項 20に記載の方法。 [28] The method according to claim 20, wherein the plant is a gramineous plant having improved stress tolerance.
[29] 改良されたストレス耐性を有するイネ科植物力 低温ストレス耐性が改良されたイネ 科植物である、請求項 20に記載の方法。 [29] The method according to claim 20, wherein the plant is a gramineous plant having improved stress tolerance.
[30] 改良された病原菌ストレス耐性及び Z又は害虫ストレス耐性を有するイネ科植物が、 塩ストレス耐性が改良されたイネ科植物である、請求項 20に記載の方法。 30. The method according to claim 20, wherein the Gramineae plant having improved pathogenic stress resistance and Z or pest stress tolerance is a Gramineae plant having improved salt stress tolerance.
[31] イネ科植物がイネである請求項 20に記載の方法。 31. The method according to claim 20, wherein the gramineous plant is rice.
[32] 生産性ないし形質が分げつ期、穂ばらみ期、幼穂形成期において顕著に改良される 請求項 20に記載の方法。  [32] The method according to claim 20, wherein the productivity or character is markedly improved in the tillering stage, the booting stage, and the juvenile stage.
[33] 以下の工程: [33] The following steps:
( 1)植物中で機能し得るプロモーターの制御下にあるポリアミン量を調節する核酸配 列を含む発現ベクターで、該核酸配列を有して ヽな ヽ植物の細胞を形質転換し、 (1) An expression vector comprising a nucleic acid sequence that regulates the amount of polyamine under the control of a promoter capable of functioning in a plant, transforming a cell of a culm plant having the nucleic acid sequence,
(2)該形質転換細胞から、該核酸配列を有して!/、な 、植物に比べて改良された生産 性な!ヽし形質を有する植物体を再生し、 (2) From the transformed cell, regenerate a plant body having the nucleic acid sequence!
(3)該植物体力 受粉により種子を採取し、および  (3) Collecting seeds by pollination of the plant, and
(4)該種子を栽培して得られる植物体力 受粉により得られる種子における該核酸 配列を検定して該核酸配列のホモ接合体を選抜すること  (4) Plant physical strength obtained by cultivating the seed Examining the nucleic acid sequence in the seed obtained by pollination and selecting a homozygote of the nucleic acid sequence
を含む、該核酸配列についてホモ接合体である、該核酸配列を有していない比較対 照植物に比べて栽培環境と無関係に生産性ないし形質が改良された、及び Z又は 、少なくとも 1種のストレス耐性が改良されたイネ科植物を作出する方法。  Which is homozygous for the nucleic acid sequence, has improved productivity or traits independent of the cultivation environment compared to a comparative control plant not having the nucleic acid sequence, and Z or at least one of A method to create a grass family with improved stress tolerance.
PCT/JP2005/021594 2004-11-24 2005-11-24 Poaceous plant with enhanced stress tolerance and/or productivity and method of creating the same WO2006057306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006547832A JPWO2006057306A1 (en) 2004-11-24 2005-11-24 Gramineae plant with improved stress tolerance and / or productivity, and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004338473 2004-11-24
JP2004338469 2004-11-24
JP2004-338469 2004-11-24
JP2004-338473 2004-11-24

Publications (1)

Publication Number Publication Date
WO2006057306A1 true WO2006057306A1 (en) 2006-06-01

Family

ID=36498042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021594 WO2006057306A1 (en) 2004-11-24 2005-11-24 Poaceous plant with enhanced stress tolerance and/or productivity and method of creating the same

Country Status (2)

Country Link
JP (1) JPWO2006057306A1 (en)
WO (1) WO2006057306A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239547A (en) * 2007-03-27 2008-10-09 Toyobo Co Ltd Plant-derived activator and extracellular matrix production promoter
EP2100962A1 (en) 2008-03-12 2009-09-16 Biogemma Plants having improved resistance to pathogens
US7888554B2 (en) 2000-09-20 2011-02-15 Toyo Boseki Kabushiki Kaisha Plants having improved tolerance to various types of environmental stress, their production, and polyamine metabolism-related enzyme genes
US8053629B2 (en) 2002-04-08 2011-11-08 Toyo Boseki Kabushiki Kaisha Plants with improved morphogenesis and method of constructing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023974A1 (en) * 2000-09-20 2002-03-28 Toyobo Research Center Co., Ltd. Plant having improved tolerance to various environmental stresses, method of constructing the same and polyamine metabolism-relating enzyme gene
WO2003084314A1 (en) * 2002-04-08 2003-10-16 Toyobo Research Center Co., Ltd. Plant with improved organogenesis and method of constructing the same
JP2004242510A (en) * 2003-02-10 2004-09-02 Toyobo Research Center Co Ltd Plant having improved productivity and method for creating the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649816B2 (en) * 2002-12-03 2011-03-16 東洋紡績株式会社 Plants with improved environmental stress resistance and methods for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023974A1 (en) * 2000-09-20 2002-03-28 Toyobo Research Center Co., Ltd. Plant having improved tolerance to various environmental stresses, method of constructing the same and polyamine metabolism-relating enzyme gene
WO2003084314A1 (en) * 2002-04-08 2003-10-16 Toyobo Research Center Co., Ltd. Plant with improved organogenesis and method of constructing the same
JP2004242510A (en) * 2003-02-10 2004-09-02 Toyobo Research Center Co Ltd Plant having improved productivity and method for creating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROY M ET AL: "Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice.", PLANT SCI., vol. 160, no. 5, 2001, pages 869 - 875, XP002907948 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888554B2 (en) 2000-09-20 2011-02-15 Toyo Boseki Kabushiki Kaisha Plants having improved tolerance to various types of environmental stress, their production, and polyamine metabolism-related enzyme genes
US8053629B2 (en) 2002-04-08 2011-11-08 Toyo Boseki Kabushiki Kaisha Plants with improved morphogenesis and method of constructing the same
US8455713B2 (en) 2002-04-08 2013-06-04 Toyo Boseki Kabushiki Kaisha Plants with improved morphogenesis and method of constructing the same
JP2008239547A (en) * 2007-03-27 2008-10-09 Toyobo Co Ltd Plant-derived activator and extracellular matrix production promoter
EP2100962A1 (en) 2008-03-12 2009-09-16 Biogemma Plants having improved resistance to pathogens

Also Published As

Publication number Publication date
JPWO2006057306A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
US8455713B2 (en) Plants with improved morphogenesis and method of constructing the same
US20060225154A1 (en) Method for increasing expression of stress defense genes
US20200120890A1 (en) Method of enhancing the seed yield and promoting the growth of plants
JP3924748B2 (en) Plants with improved resistance to various environmental stresses, methods for producing them, and polyamine metabolism-related enzyme genes
JPWO2005006847A1 (en) Method for producing plants with improved growth under nitrogen limitation
JP2002532114A (en) Transgenic plants and methods for producing them
WO2006057306A1 (en) Poaceous plant with enhanced stress tolerance and/or productivity and method of creating the same
JP2006325554A (en) Method for imparting stress-preventing effect by inducing gene expression
JP2012507263A (en) Glutamate decarboxylase (GAD) transgenic plants exhibiting altered plant structure
US9139841B2 (en) Plant having resistance to low-temperature stress and method of production thereof
WO2012039159A1 (en) Method for production of stolon-forming plant having improved tuber production ability or stolon production ability compared with wild type, and stolon-forming plant produced by the method
JP4654561B2 (en) Plant with improved productivity and production method thereof
JP2001046079A (en) Gene cluster relating to polyamine metabolism enzyme originating from plant
JP4649816B2 (en) Plants with improved environmental stress resistance and methods for producing the same
JP4304511B2 (en) Plant with improved organ formation and method for producing the same
JP2006020601A (en) Sweet potato with improved stress tolerance, and method for producing the same
JP2004329210A (en) Gene imparting resistance to salt stress
AU2007237226B2 (en) Plants with improved morphogenesis and method of constructing the same
JP4573691B2 (en) Plants with improved resistance to various environmental stresses, methods for producing them, and polyamine metabolism-related enzyme genes
CN108795975A (en) Application of the wild soybean GAP-associated protein GAP in improving plant resistance to insect
JP2012187014A (en) Highly effective producing method of protein by transformed plant
AU2007202309A1 (en) Plants having improved tolerance to various types of environmental stress, their production, and polyamine metabolism-related enzyme genes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006547832

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809406

Country of ref document: EP

Kind code of ref document: A1