KR20010019662A - A method for increasing scrap melting rate in electric furnace - Google Patents

A method for increasing scrap melting rate in electric furnace Download PDF

Info

Publication number
KR20010019662A
KR20010019662A KR1019990036199A KR19990036199A KR20010019662A KR 20010019662 A KR20010019662 A KR 20010019662A KR 1019990036199 A KR1019990036199 A KR 1019990036199A KR 19990036199 A KR19990036199 A KR 19990036199A KR 20010019662 A KR20010019662 A KR 20010019662A
Authority
KR
South Korea
Prior art keywords
scrap
aluminum dross
electric furnace
oxygen
liquid oxygen
Prior art date
Application number
KR1019990036199A
Other languages
Korean (ko)
Other versions
KR100402003B1 (en
Inventor
이계영
금창훈
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1999-0036199A priority Critical patent/KR100402003B1/en
Publication of KR20010019662A publication Critical patent/KR20010019662A/en
Application granted granted Critical
Publication of KR100402003B1 publication Critical patent/KR100402003B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: A method for promoting smelting of scrap iron during operation of an electric furnace is provided to promote smelting of scrap iron, thereby decreasing a basic unit of electric power by increasing heating value of aluminum dross higher using peroxidation free liquid oxygen together with aluminum dross. CONSTITUTION: In an operation method for an electric furnace comprising smelting and refining by conducting charged scrap ore, a method for promoting smelting of scrap iron during operation of an electric furnace comprises the processes of feeding 12 to 48 kg of aluminum dross briquette per ton of charged scrap ore before charging the scrap ore, charging and conducting the scrap ore, and supplying 45 to 75 wt.% of liquid oxygen per aluminum dross briquette until the scrap ore is completely smelted. Therefore, a smelting time of scrap ore and a basic unit of electric power can be reduced during operation of an electric furnace.

Description

전기로 조업시 고철의 용해 촉진방법{A METHOD FOR INCREASING SCRAP MELTING RATE IN ELECTRIC FURNACE}A METHOD FOR INCREASING SCRAP MELTING RATE IN ELECTRIC FURNACE}

본 발명은 전기로내 고철의 용해를 촉진하는 방법에 관한 것으로, 보다 상세하게는 알루미늄드로스와 액체산소를 이용한 고철의 용해 촉진방법에 관한 것이다.The present invention relates to a method for promoting the dissolution of scrap metal in an electric furnace, and more particularly, to a method for promoting dissolution of scrap iron using aluminum dross and liquid oxygen.

일반적으로, 전기로 조업에서는 고철을 전체 장입량의 약 75정도로 우선 로내에 장입하여 1차 용해한 다음, 나머지 약 25의 고철을 다시 장입한 후 2차 용해하고, 전량이 용해되었을 때 정련과정을 거친다. 이와 같은 용해 및 정련과정에서는, 조업시간을 단축하기 위해 각 단계별로 적절한 전력패턴을 설정하여 통전(通電)을 행하면서, 용강면 상부에 기체산소와 탄소를 공급하여 용해를 촉진시키고 있다.In general, in the furnace operation, scrap iron is first charged into the furnace at about 75 of the total loading amount, and then melted first, and then the remaining about 25 scraps are charged again and then melted. In this dissolution and refining process, gas oxygen and carbon are supplied to the upper part of the molten steel to accelerate dissolution while conducting electricity by setting an appropriate power pattern for each step in order to shorten the operation time.

전기로내에 탄소와 산소를 공급하면 하기와 같은 발열반응에 의해 용해시간을 단축할 수 있게 된다.When carbon and oxygen are supplied to the electric furnace, the dissolution time can be shortened by the exothermic reaction as follows.

C +½O2= CO ΔH°298= -26.42㎉/mole- CC + ½O 2 = CO ΔH ° 298 = -26.42 μs / mole- C

즉, 용강에 공급된 고체상의 탄소와 기체상의 산소가 일으키는 상기 반응에서 발열량은 탄소 1㎏당 25℃의 경우 2200㎉, 1500℃의 경우 2340㎉로 이를 전기에너지로 환산(1KWH/860㎉)할 경우 각각 2.6KWH와 2.7KWH에 해당된다.That is, the calorific value in the reaction caused by the solid carbon and the gaseous oxygen supplied to the molten steel is 2200 kW at 25 ° C. and 2340 kW at 1500 ° C. per kg of carbon, which is converted into electrical energy (1KWH / 860 kW). In this case, it corresponds to 2.6KWH and 2.7KWH, respectively.

따라서, 종래기술에서는, 장입 고철 톤당 유량 25~60N㎥/hr의 기체산소 및 탄소분말을 통전중에 용강면 상부에 분사함으로써 반응식(1)의 반응을 통해 용해시간을 단축하여 소비전력을 절감하고 있다. 이러한 기술과 관련하여 탄소와 기체산소의 반응을 촉진하기 위한 여러가지 랜스 및 노즐이 제안되어 있다. 그러나, 종래 방법에 따라 탄소 및 산소를 공급하기 위해서는 별도의 랜스 및 디스펜서 등의 고가 장비가 필요할 뿐 아니라, 분사된 기체산소가 로내에 장입된 고철 등의 장애물을 만나서 C성분의 산화에 사용되는 비율을 저하시키고 오히려 고철을 산화시키기 때문에, 과산화로 인한 여러 문제를 일으킨다. 예를 들어, 출강 실수율 저하, 또는 슬래그량의 증가 및 후속 탈산시 탈산제 및 합금재 소비량 증대 등이 있다. 이것은 공급된 산소가 용해촉진제 뿐 아니라, 철 고철과의 반응으로 산화철을 형성하기 때문이다.Therefore, in the related art, by discharging gaseous oxygen and carbon powder having a flow rate of 25 to 60 Nm3 / hr per ton of scrap metal on the molten steel during energization, the melting time is shortened through the reaction of the reaction formula (1) to reduce power consumption. . In connection with this technique, various lances and nozzles have been proposed to promote the reaction of carbon and gaseous oxygen. However, in order to supply carbon and oxygen according to the conventional method, not only expensive equipment such as a separate lance and dispenser is required, but also the ratio of the injected gas oxygen used to oxidize C components by encountering obstacles such as scrap iron charged into the furnace. As a result of lowering and oxidizing scrap metal, it causes various problems due to peroxidation. For example, there is a decrease in tapping error rate, or an increase in the amount of slag and an increase in the amount of deoxidizer and alloying material consumed in subsequent deoxidation. This is because the supplied oxygen forms iron oxide by reaction with the iron scrap as well as the dissolution accelerator.

한편, 일본 공개특허공보 소55-125219에는 다른 형태의 탄소성분을 함유한 물질을 용해촉진제로 사용하는 기술이 제안된 바 있다. 기 제안된 용해촉진제는, 반성(半成) 코크스 , 무연탄, 철분, 및 리그린산을 점결재로 이용하고, 대부분 탄소분을 용해촉진제로 이용하여, 반응식(1)과 같은 발열반응 유도에 의해 전력원단위를 저감시키고 용해시간을 단축하고 있다. 이 용해촉진제에는 철분이 함유되어 있으나 그 작용에 대한 언급이 없기 때문에, 자세한 내용은 알 수 없다. 다만, 이 철분이 용해촉진제로 작용하는 C의 연소를 돕는다고 가정하면, 철분이 일단 산화되어 Fe2O3가 된 다음 반응식(2)와 같은 반응을 한다고 생각할 수 있다. 그러나, 반응식(2)의 반응은 흡열반응이므로 C의 연소가 증가하더라도 전체적으로는 용해가 저해된다.On the other hand, Japanese Laid-Open Patent Publication No. 55-125219 has proposed a technique of using a substance containing another type of carbon component as a dissolution accelerator. The proposed dissolution accelerator uses semi-coke, anthracite, iron, and lignic acid as caking agents, and mostly carbon powder as a dissolution accelerator, thereby inducing exothermic reactions as shown in the reaction formula (1). The raw unit is reduced and the dissolution time is shortened. The dissolution accelerator contains iron, but there is no mention of its action, so details are not known. However, if it is assumed that the iron helps the combustion of C, which acts as a dissolution accelerator, it can be considered that iron is once oxidized to Fe 2 O 3 and then reacted as in Scheme (2). However, since the reaction of reaction formula (2) is an endothermic reaction, dissolution is inhibited as a whole even if the combustion of C increases.

C + ⅓Fe2O3= ⅔Fe+ CO ΔH298= 39.35㎉/mole- CC + ⅓Fe 2 O 3 = ⅔Fe + CO ΔH 298 = 39.35㎉ / mole- C

더욱이, 용해촉진제에 포함된 C성분의 연소를 위해 분사된 산소가, 로내에 장입된 고철 등의 장애물로 인해 고철을 산화시키므로, 과산화로 인한 여러 문제는 여전히 해결하지 못하고 있다.Furthermore, since the oxygen injected for the combustion of the C component included in the dissolution accelerator oxidizes the scrap iron due to obstacles such as scrap iron charged into the furnace, various problems due to peroxidation are still not solved.

이에, 본 발명자들은 이러한 문제를 해결하기 위하여 알루미늄과 고체산소(산화철)를 함유하는 용해촉진제를 제안한 바 있다(대한민국 출원번호 제 1998-57623호). 이 선행기술은 금속 알루미늄이 발열량이 많다는 점을 이용하면서, 고체산소를 이용하여 과산화로 인해 발생되는 문제를 해결함은 물론, 상부에서 분사된 산소공급이 원활하지 못한 로 저부에서도 발열반응이 일어날 수 있도록 한다는데 그 기술적 의미가 있다 할 것이다.In order to solve this problem, the present inventors have proposed a dissolution accelerator containing aluminum and solid oxygen (iron oxide) (Korean Application No. 1998-57623). This prior art solves the problem caused by peroxidation by using solid oxygen, while the metal aluminum has a high calorific value, as well as exothermic reaction may occur even at the bottom of the furnace where the oxygen injection from the top is not smooth. It has a technical meaning.

2Al + Fe2O3= Al2O3+ 2Fe ΔH1500= -105.0㎉/mole2Al + Fe 2 O 3 = Al 2 O 3 + 2Fe ΔH 1500 = -105.0 ㎉ / mole

2Al + FeO = Al2O3+ 3Fe ΔH1500= -113.9㎉/mole2Al + FeO = Al 2 O 3 + 3Fe ΔH 1500 = -113.9㎉ / mole

반응식(1)과 반응식(3) 또는 (4)에서 알 수 있듯이, 금속 알루미늄은 종래의 탄소에 비해 발열량이 4배 이상 큰 것 임을 알 수 있다.As can be seen from the reaction formula (1) and the reaction formula (3) or (4), it can be seen that the metal aluminum is four times larger than the conventional carbon.

본 발명자들은 선행기술이 갖는 잇점을 최대한 이용하면서 보다 전력원단위를 감소시킬 수 있는 방법을 개발하기 위한 일련의 연구과제를 통해 본 발명을 완성하여 제안하기에 이르렀다.The present inventors have completed and proposed the present invention through a series of research projects for developing a method that can reduce the power source unit while maximizing the advantages of the prior art.

이러한 본 발명은 과산화의 염려가 없는 액체산소를 알루미늄드로스와 함께 이용하여 알루미늄드로스의 발열량을 보다 높임으로써 고철의 용해를 촉진하여 전력원단위를 감소시킬 수 있는 용해촉진방법을 제공하는데 그 목적이 있다.The present invention is to provide a dissolution promoting method that can reduce the power unit by promoting the dissolution of scrap iron by using a liquid oxygen without the risk of peroxidation with aluminum dross to increase the calorific value of aluminum dross. .

상기 목적을 달성하기 위한 본 발명의 용해촉진방법은, 장입된 고철을 통전하여 용해하고 정련하는 것을 포함하는 전기로 조업방법에 있어서, 상기 고철장입 전에 알루미늄드로스 단광을 장입고철 톤당 12~48㎏ 투입한 다음, 고철을 장입하여 통전하면서 고철의 용해가 완료될 때까지 상기 알루미늄드로스 단광에 대해 45~75중량부의 액체산소를 공급하는 것으로 구성된다.Dissolution promotion method of the present invention for achieving the above object, in the electric furnace operation method comprising the electricity to melt and refining the charged scrap metal, 12 to 48 kg per tonne of aluminum dross briquettes before loading the scrap metal After charging, the steel is charged and energized to supply 45 to 75 parts by weight of liquid oxygen to the aluminum dross briquettes until the melting of the scrap is completed.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 발명자들은, 알루미늄과 기체산소를 반응시키면(반응식(5)), 알루미늄을 고체산소(Fe2O3또는 FeO)와 반응시켜 얻은 발열량, 즉, 105, 114㎉에 비해((3),(4)반응식 참조) 약 4배 정도 높은 발열량을 얻을 수 있다는 점을 주목하게 되었다.The inventors of the present invention, when reacting aluminum with gaseous oxygen (Scheme (5)), compared with the calorific value obtained by reacting aluminum with solid oxygen (Fe 2 O 3 or FeO), that is, 105, 114 kPa ((3) It is noted that a calorific value of about four times higher can be obtained.

2Al+ 2/3O2= Al2O3ΔH1500= -400㎉/mole2Al + 2 / 3O 2 = Al 2 O 3 ΔH 1500 = -400 μs / mole

그런데, 기체산소는 오히려 장입고철을 산화시키기 때문에, 그 적용이 바람직하지 않다. 따라서, 본 발명자들은 알루미늄드로스의 연소제로서 액체산소를 새롭게 적용하면 장입고철의 과산화의 염려없이 알루미늄드로스의 발열량을 최적화할 수 있다는 것을 실험을 통해 확인하고, 본 발명을 완성하게 되었다.However, since gaseous oxygen oxidizes the charged scrap metal, its application is not preferable. Therefore, the present inventors have confirmed through experiments that the newly applied liquid oxygen as a combustor of aluminum dross can optimize the calorific value of aluminum dross without fear of peroxidation of charged scrap metal, thereby completing the present invention.

본 발명에서 용해촉진제로 사용되는 알루미늄드로스는, 알루미늄 제조시 발생되는 부산물로서, 금속 알루미늄이 통상 50~80함유되어 있어서 반응식(5)와 같은 발열원으로 작용한다. 또한, 알루미늄드로스는 연성을 가지며 각 형태가 괴상형이고 모서리가 날카로운 형태이므로, 별도의 결합제를 첨가하지 않아도 단광 (briquette)으로 성형이 가능하여 호퍼를 통한 자동투입이 가능한 장점을 가진다. 본 발명에 적용되는 알루미늄드로스는 크기가 2.67mm 이하인 것이 바람직하다. 크기가 2.67mm를 초과하는 괴상 알루미늄드로스는 단광의 제조후 성형성(압축강도)을 떨어뜨릴 뿐 아니라, 별도의 용도가 있어서 값이 비싸기 때문에 부산물로써의 가치가 떨어진다. 본 발명에서는 알루미늄드로스 단광을 전기로 내에 고철장입 전에 투입하는데, 이 때 투입량은 전력원단위 및 산화철량을 고려하여 장입고철 톤당 12~48kg으로 한다.The aluminum dross used as a dissolution accelerator in the present invention is a by-product generated during the production of aluminum, and usually contains 50 to 80 metallic aluminum, which acts as a heat generating source as in Scheme (5). In addition, aluminum dross is ductile, and each shape is a block shape and a sharp edge shape, it is possible to be molded into briquettes without adding a separate binder has the advantage that the automatic injection through the hopper. The aluminum dross applied to the present invention preferably has a size of 2.67 mm or less. The bulk aluminum dross having a size exceeding 2.67 mm not only reduces the formability (compressive strength) after the production of briquettes, but also has a low value as a by-product because it is expensive because of its separate use. In the present invention, aluminum dross briquettes are injected into the electric furnace before charging the scrap metal, wherein the input amount is 12 to 48 kg per ton of scrap metal in consideration of the power source unit and the amount of iron oxide.

한편, 본 발명에서는 상기와 같이 알루미늄드로스 단광을 투입하고 고철을 장입하여 통전하면서 고철의 용해가 완료될 때까지 액체산소를 공급하여 용해촉진제를 연소시키는 것을 특징으로 한다. 상기 액체산소는 로내에 장입된 고철 틈사이를 통해 로 저부까지 쉽게 이동할 수 있기 때문에, 용해촉진제로 투입된 알루미늄드로스와 전체 로내에서 반응하게 된다. 일반적으로, 산소는 활성이 커서 용해를 촉진시킬 뿐 아니라 고철을 산화시켜 산화철을 형성하는 경향이 있지만, 본 발명의 알루미늄드로스는 종래의 탄소계 용해촉진제에 비해 산소와의 결합력이 월등이 크기 때문에, 고철의 산화에 사용되는 산소의 양이 줄어든다. 따라서, 종래와 같이 기체산소의 사용에 따른 과산화의 염려는 없다.On the other hand, the present invention is characterized in that by injecting the aluminum dross briquettes and charging the scrap iron as described above to supply liquid oxygen until the dissolution of scrap iron is completed to burn the dissolution promoter. Since the liquid oxygen can easily move to the bottom of the furnace through the gap between the scrap metal charged in the furnace, the liquid oxygen reacts with the aluminum dross introduced as a dissolution accelerator in the entire furnace. In general, oxygen has a high activity and promotes dissolution as well as tends to oxidize scrap metal to form iron oxide, but the aluminum dross of the present invention has a greater binding force with oxygen than conventional carbon-based dissolution accelerators. The amount of oxygen used to oxidize scrap is reduced. Therefore, there is no concern about the peroxide caused by the use of gaseous oxygen as in the prior art.

본 발명에서는 액체산소를 일괄공급하는 것 보다는 용해가 완료될 때까지 임의의 속도로 공급하는 것이 바람직하다. 보다 바람직하게는 균일한 속도로 공급하는 것이다. 이는 액체산소와의 반응으로 생기는 알루미늄드로스의 발열량을 고철의 용해가 완료될 때까지 균일하게 이용하기 위해서이다.In the present invention, it is preferable to supply the liquid oxygen at an arbitrary speed until dissolution is completed rather than supplying the liquid oxygen collectively. More preferably, it is supplied at a uniform speed. This is to uniformly use the calorific value of aluminum dross generated by the reaction with liquid oxygen until the dissolution of scrap iron is completed.

본 발명에서 액체산소는 알루미늄드로스의 투입량에 따라 결정한다. 즉, 전력원단위 및 산화철량을 고려하여 알루미늄드로스 단광 투입량의 40~75 중량부에 해당하는 양만큼 공급한다. 본 발명에 따라 고철의 용해가 완료된 후에는, 기존의 용해촉진방법에 따라 탄소분말 및 기체산소를 랜스를 통해 공급할 수 있다.Liquid oxygen in the present invention is determined according to the amount of aluminum dross. That is, considering the power source unit and the amount of iron oxide is supplied in an amount corresponding to 40 to 75 parts by weight of aluminum dross briquette input. After the melting of the scrap iron according to the present invention is completed, carbon powder and gaseous oxygen can be supplied through a lance according to the existing dissolution promotion method.

이하, 본 발명의 실시예를 통해 보다 상세히 설명한다.Hereinafter, the embodiment of the present invention will be described in more detail.

(실시예)(Example)

고철중량에 대하여 용해촉진제인 알루미늄드로스 단광을 소정 비율로 고철과 함께 로내에 장입하고 통전하면서 액체산소를 알루미늄드로스 중량에 대해 일정비율로 공급하여 용해작업을 실시하여, 용강이 용해되어 1600℃까지 도달하는데 소비되는 전력원단위 및 이 과정에서 형성된 산화철의 양을 조사하였다. 이 때, 산화철의 양은 산화철 형성에 기인한 슬래그의 양과 슬래그 중 산화철 함량을 분석하여 계산한 값이다.The aluminum dross briquette, which is a dissolution promoter, is charged into the furnace at a predetermined ratio with the scrap iron and supplied with liquid oxygen at a constant ratio to the aluminum dross weight while conducting melting to melt the molten steel. The amount of power source consumed to reach and the amount of iron oxide formed in this process were investigated. At this time, the amount of iron oxide is a value calculated by analyzing the amount of slag and the iron oxide content in the slag due to the iron oxide formation.

표1은 알루미늄드로스와 액체산소의 중량비를 2:1로 한 발명예, 액체산소대신 기체산소를 알루미늄드로스와 함께 장입한 비교예, 고체산소로서 산화철을 사용하여 알루미늄드로스와 함께 장입한 종래예에 대해 알루미늄드로스 투입량에 따른 전력원단위 및 산화철 형성량을 나타낸 것이다.Table 1 shows an invention example in which the weight ratio of aluminum dross to liquid oxygen is 2: 1, a comparative example in which gaseous oxygen is charged with aluminum dross instead of liquid oxygen, and a conventional example in which iron dross is used with iron oxide as solid oxygen. It shows the power source unit and the iron oxide formation amount according to the aluminum dross input.

시편번호Psalm Number 알루미늄드로스투입량(㎏/톤)Aluminum drop dose (㎏ / ton) 산소Oxygen 산소투입비(중량부)Oxygen input ratio (part by weight) 전력원단위()Power source unit 산화철량()Iron Oxide () 투입량(㎏/톤)Input quantity (㎏ / ton) 종류Kinds 비교예1Comparative Example 1 00 00 액체산소Liquid oxygen 100100 100100 비교예2Comparative Example 2 44 22 5050 9898 120120 비교예3Comparative Example 3 88 44 5050 9898 122122 발명예1Inventive Example 1 1212 66 5050 9595 125125 발명예2Inventive Example 2 2424 1212 5050 9292 127127 발명예3Inventive Example 3 3636 1818 5050 8888 125125 발명예4Inventive Example 4 4848 2525 5050 8585 131131 비교예4Comparative Example 4 6060 3030 5050 8282 162162 비교예5Comparative Example 5 7070 3535 5050 8080 178178 비교예6Comparative Example 6 1212 66 기체산소Gaseous oxygen 5050 9797 165165 비교예7Comparative Example 7 2424 1212 5050 9494 171171 비교예8Comparative Example 8 3636 1818 5050 9191 187187 비교예9Comparative Example 9 4848 2525 5050 8888 195195 종래예1Conventional Example 1 1212 66 고체산소(산화철)Solid oxygen (iron oxide) 5050 9999 132132 종래예2Conventional Example 2 2424 1212 5050 9797 141141 종래예3Conventional Example 3 3636 1818 5050 9595 163163 종래예4Conventional Example 4 4848 2525 5050 9292 171171

표1에 나타난 바와 같이, 알루미늄드로스 투입량이 증가하면 전력원단위가 줄어든다. 상기 알루미늄드로스 투입량이 12㎏/톤 미만인 비교예(1),(2),(3)의 경우 전력원단위 절감량이 미미하기 때문에, 알루미늄드로스 투입량은 그 이상으로 제어하는 것이 바람직하다. 한편, 액체산소 사용비율이 일정할 경우 슬래그 중 산화철 농도는 유사한 수준으로 되지만, 알루미늄드로스 투입량이 48㎏/톤을 초과하는 비교예(4),(5)의 경우 알루미늄드로스 사용량이 증가할수록 형성되는 슬래그량이 증가하여 산화철의 총량, 즉, 유가금속인 철분의 손실은 증가하기 때문에, 알루미늄드로스의 사용량은 고철 톤당 48㎏ 이하로 제한하는 것이 바람직하다.As shown in Table 1, increasing the aluminum dross input reduces the power source unit. In the case of Comparative Examples (1), (2), and (3) in which the aluminum dross dose is less than 12 kg / ton, the amount of power source savings is insignificant. Therefore, it is preferable to control the aluminum dross dose more than that. On the other hand, if the liquid oxygen use ratio is constant, the iron oxide concentration in the slag will be at a similar level, but in the case of Comparative Examples (4) and (5) where the aluminum dross dose exceeds 48 kg / ton, the aluminum dross usage increases. Since the amount of slag formed is increased to increase the total amount of iron oxide, that is, the loss of iron as a valuable metal, the amount of aluminum dross is preferably limited to 48 kg or less per tonne of scrap iron.

표1에서 기체산소를 사용한 비교예(6)~(9)의 경우, 액체산소를 사용한 발명예에 비해 전력원단위 절감효과는 작았고, 산화철 발생량은 오히려 늘어났다.In Comparative Examples (6) to (9) using gaseous oxygen in Table 1, the effect of reducing power source unit was smaller than that of the invention example using liquid oxygen, and the amount of iron oxide generated was rather increased.

또한, 고체산소로 산화철을 알루미늄드로스와 함께 장입한 종래예(1)~(4)도 발명예에 비해 전력원단위 절감효과는 작고 산화철 발생량은 늘어났다.In addition, the conventional examples (1) to (4) in which iron oxide was charged with aluminum dross as solid oxygen also had smaller power source-saving effect and increased iron oxide generation amount compared to the invention example.

이와 같이, 본 발명의 액체산소를 사용하면, 종래의 기체 및 고체산소를 사용한 것에 비해 고철 용해에 사용되는 전력원단위 절감 및 산화철 발생으로 인한 철분의 손실량이 줄어드는 것을 알 수 있다.As such, when the liquid oxygen of the present invention is used, it can be seen that the amount of iron loss due to the reduction of the power source unit used for the scrap iron and the generation of iron oxide is reduced as compared with the conventional gas and solid oxygen.

다음, 하기 표2는 알루미늄드로스 투입량을 고철 톤당 24㎏로 하고 액체산소의 투입 비율을 변화시켜 용해한 실험결과를 나타낸 것이다.Next, Table 2 below shows the experimental results of dissolving the aluminum dross dose at 24 kg per ton of scrap iron and changing the input ratio of liquid oxygen.

시편번호Psalm Number 알루미늄드로스투입량(㎏/톤)Aluminum drop dose (㎏ / ton) 액체산소투입량(㎏/톤)Liquid Oxygen Input (㎏ / ton) 산소투입비(중량부)Oxygen input ratio (part by weight) 전력원단위()Power source unit 산화철량()Iron Oxide () 비교예aComparative Example a 00 00 100100 100100 비교예bComparative Example b 2424 4.84.8 2020 9898 110110 비교예cComparative Example c 2424 7.27.2 3030 9898 112112 발명예aInventive Example a 2424 9.69.6 4040 9595 116116 발명예bInventive Example b 2424 1212 5050 9292 127127 발명예cInventive Example c 2424 15.615.6 6565 9090 141141 발명예dInventive Example d 2424 1818 7575 8888 149149 비교예dComparative Example d 2424 19.619.6 8080 8585 193193 비교예eComparative example 2424 21.621.6 9090 8282 225225

상기 표2로부터, 본 발명의 알루미늄드로스에 대한 액체산소의 적정 투입비율을 결정할 수 있다. 표2에 나타난 바와 같이, 알루미늄드로스 투입량이 24㎏/톤으로 일정한 경우, 액체산소 투입량이 증가할수록 전력원단위는 줄어들었지만, 액체산소가 알루미늄드로스 단광의 40중량부 미만인 비교예(a),(b),(c)에서는 전력원단위 절감량이 미미하기 때문에, 액체산소 투입량은 그 이상으로 제어하는 것이 바람직하다. 한편, 액체산소 투입량이 증가하면 산화철 형성량이 증가하는데, 특히, 액체산소 사용비율이 알루미늄드로스 단광의 75중량부를 초과하는 비교예(d),(e)의 경우, 산화철의 총량, 즉, 유가금속인 철분의 손실이 증가되기 때문에, 액체산소는알루미늄드로스 단광의 75중량부 이하로 제어하는 것이 바람직하다.From Table 2, it is possible to determine the proper ratio of the liquid oxygen to the aluminum dross of the present invention. As shown in Table 2, when the aluminum dross input was constant at 24 kg / ton, the power source unit decreased as the liquid oxygen input increased, but the liquid oxygen was less than 40 parts by weight of the aluminum dross briquettes (a), In (b) and (c), the amount of power source unit savings is insignificant, and therefore, it is preferable to control the liquid oxygen input amount more than that. On the other hand, as the amount of liquid oxygen input increases, the amount of iron oxide formed increases. In particular, in the case of Comparative Examples (d) and (e) where the liquid oxygen use ratio exceeds 75 parts by weight of aluminum dross briquettes, the total amount of iron oxide, that is, oil Since the loss of iron, which is a metal, is increased, it is preferable to control the liquid oxygen to 75 parts by weight or less of aluminum dross briquettes.

상술한 바와 같은 본 발명에 의하면, 전기로내 고철 용해를 촉진하여 전기로 조업시 고철의 용해시간 및 전력원단위를 절감할 수 있다.According to the present invention as described above, it is possible to promote the melting of scrap metal in the electric furnace to reduce the melting time and power source unit of scrap during operation of the electric furnace.

Claims (1)

장입된 고철을 통전하여 용해하고 정련하는 것을 포함하는 전기로 조업방법에 있어서, 상기 고철장입 전에 알루미늄드로스 단광을 장입고철 톤당 12~48㎏ 투입한 다음, 고철을 장입하여 통전하면서 고철의 용해가 완료될 때까지 상기 알루미늄드로스 단광에 대해 45~75중량부의 액체산소를 공급하는 것을 특징으로 하는 전기로 조업시 고철의 용해 촉진방법.In an electric furnace operation method comprising energizing, melting and refining charged scrap, in which 12 to 48 kg of aluminum dross briquettes are charged per ton of scrap metal before charging the scrap metal, the scrap metal is charged and energized. How to accelerate the dissolution of scrap iron in the operation of an electric furnace, characterized in that for supplying 45 to 75 parts by weight of liquid oxygen to the aluminum dross briquette until completion.
KR10-1999-0036199A 1999-08-30 1999-08-30 A method for increasing scrap melting rate in electric furnace KR100402003B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0036199A KR100402003B1 (en) 1999-08-30 1999-08-30 A method for increasing scrap melting rate in electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0036199A KR100402003B1 (en) 1999-08-30 1999-08-30 A method for increasing scrap melting rate in electric furnace

Publications (2)

Publication Number Publication Date
KR20010019662A true KR20010019662A (en) 2001-03-15
KR100402003B1 KR100402003B1 (en) 2003-10-17

Family

ID=19609157

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0036199A KR100402003B1 (en) 1999-08-30 1999-08-30 A method for increasing scrap melting rate in electric furnace

Country Status (1)

Country Link
KR (1) KR100402003B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030054328A (en) * 2001-12-24 2003-07-02 주식회사 포스코 Molten steel manufacturing method using aluminium dross
KR20220086252A (en) 2020-12-16 2022-06-23 주식회사 에스에이텍 Manufacturing method of heating agent briquette for electric arc furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA894959B (en) * 1988-07-22 1990-04-25 Voest Alpine Stahl Donawitz Process for heating steel melts as well as device for performing this process
KR910006501A (en) * 1989-09-23 1991-04-29 남정우 Steel Refinery And Steel Refining Method
KR100226897B1 (en) * 1994-12-26 1999-10-15 이구택 Agglomerate method of pre-reduction fine ore for molten pig iron
KR100224638B1 (en) * 1995-11-30 1999-10-15 이구택 Deoxidation material of low carbon steel for high purity steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030054328A (en) * 2001-12-24 2003-07-02 주식회사 포스코 Molten steel manufacturing method using aluminium dross
KR20220086252A (en) 2020-12-16 2022-06-23 주식회사 에스에이텍 Manufacturing method of heating agent briquette for electric arc furnace

Also Published As

Publication number Publication date
KR100402003B1 (en) 2003-10-17

Similar Documents

Publication Publication Date Title
US4362556A (en) Arc furnace steelmaking involving oxygen blowing
US6635096B1 (en) Method for optimizing the operating conditions of a submerged arc furnace
JP5132155B2 (en) Steel and steel making
KR100402003B1 (en) A method for increasing scrap melting rate in electric furnace
KR930009972B1 (en) Method for manufacturing steel through something reduction
US4010026A (en) Arc furnace steelmaking
JP2004137572A (en) Method for refining molten metal containing chromium
WO2001086006A2 (en) Improved process for the production of stainless steels and high chromium steels and stainless steelproduced thereby
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
US20230287528A1 (en) Hot Metal Production from DRI with Electric Arc Heating
RU2213788C2 (en) Method of steel-making in electric-arc furnace
SU1638176A1 (en) Process for steel making from metallized pellets in arc furnace
GB2575866A (en) Producing steel in an electric-arc furnace
KR100946128B1 (en) Method for Refining Molten Steel Using Converter
RU2786105C1 (en) Method for steel smelting in a converter on liquid iron
Meraikib Effects of sponge iron on the electric arc furnace operation
KR100340570B1 (en) Manufacturing method of molten steel using twin shell electric furnace
JPH09165613A (en) Scrap melting method
SU1008250A1 (en) Method for smelting steel in electric arc furnaces
RU2516248C1 (en) Method to melt steel in steel-making vessel (versions)
SU1611943A1 (en) Method of melting steel in high-power arc furnaces
JP3294466B2 (en) Operation method of high blown Mn in converter
RU2201970C2 (en) Method of making steel in high-power electric arc furnaces
JP3765092B2 (en) Ladle stirring method for electric arc furnace hot metal
RU2220210C2 (en) Method of steel production in electric arc furnace

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120927

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131001

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee