KR20010008511A - Mehtod of forming IPO layer of MML device - Google Patents

Mehtod of forming IPO layer of MML device Download PDF

Info

Publication number
KR20010008511A
KR20010008511A KR1019990026387A KR19990026387A KR20010008511A KR 20010008511 A KR20010008511 A KR 20010008511A KR 1019990026387 A KR1019990026387 A KR 1019990026387A KR 19990026387 A KR19990026387 A KR 19990026387A KR 20010008511 A KR20010008511 A KR 20010008511A
Authority
KR
South Korea
Prior art keywords
film
forming
memory cell
peripheral circuit
interlayer insulating
Prior art date
Application number
KR1019990026387A
Other languages
Korean (ko)
Other versions
KR100307967B1 (en
Inventor
김동환
신승우
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019990026387A priority Critical patent/KR100307967B1/en
Publication of KR20010008511A publication Critical patent/KR20010008511A/en
Application granted granted Critical
Publication of KR100307967B1 publication Critical patent/KR100307967B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76837Filling up the space between adjacent conductive structures; Gap-filling properties of dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/09Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells

Abstract

PURPOSE: A method for forming an interfacial insulating layer of a merged memory logic is provided to selectively enlarge a space between gate electrodes of a memory cell area, by deteriorating a step coverage wherein a deposition ratio between an upper part of a topology and a lateral part of a topology is adjusted below 1/2 when forming a blocking layer using IPO. CONSTITUTION: In a method for forming an interfacial insulating layer of a merged memory logic including a memory cell array and a peripheral circuit, a cell transistor and an analog transistor are respectively formed on a memory cell area(100) and a peripheral circuit area(200). The cell transistor and the analog transistor include a gate electrode(16) and a source/drain area(20). Oxide material is selectively deposited on an upper part of a gate electrode of the memory cell array area. At this time, a pressure is lowered and a gas quantity is regulated so that an oxide material is deposited on a substrate of a peripheral circuit area. A blocking layer(24a, 24b) is formed to have 1/2 thickness ratio. An interfacial insulating layer is formed on the substrate including both the memory cell area and the peripheral circuit area.

Description

복합 반도체장치의 층간절연막 형성방법{Mehtod of forming IPO layer of MML device}Method of forming interlayer insulating film of composite semiconductor device {Mehtod of forming IPO layer of MML device}

본 발명은 복합 반도체 장치(Merged Memory Logic)의 제조 방법에 관한 것으로서, 특히 소자의 배치 간격이 다른 복합 반도체장치에서 갭필링이 우수한 복합 반도체장치의 층간절연막 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a composite memory device, and more particularly, to a method for forming an interlayer insulating film of a composite semiconductor device having excellent gap filling in a composite semiconductor device having different arrangement intervals of elements.

최근에 등장하고 있는 복합 반도체 장치는 한 칩(chip) 내에 메모리 셀 어레이, 예컨대 DRAM(Dynamic Random Access Memory) 셀 어레이와 그 주변회로가 함께 집적화됨에 따라 각각의 회로 성능과 제조 원가를 희생하지 않고 소자의 고집적화 및 고속화를 효과적으로 달성할 수 있게 되었다.In recent years, as a semiconductor device has been integrated with a memory cell array such as a DRAM (Dynamic Random Access Memory) array and its peripheral circuits together in one chip, a device without sacrificing individual circuit performance and manufacturing cost is required. It is possible to achieve high integration and high speed effectively.

그러나, 복합 반도체 장치는 고집적화에 따라 메모리 셀 어레이 영역에 밀집되는 워드라인, 고용량의 커패시터와 다층의 배선 구조에 의해 메모리 셀 어레이와 주변회로의 영역사이에서 단차가 크게 발생하게 된다. 이러한 메모리 셀과 주변회로 영역의 단차는 다층 금속 배선의 제조 공정을 어렵게 하는 원인으로 작용하여 전기적인 절연 역할을 하는 층간절연막의 평탄화 공정이 중요한 공정으로 부각되었다.However, in the semiconductor device having high integration, a step difference is largely generated between the memory cell array and the area of the peripheral circuit due to the high density of word lines, high capacity capacitors, and multilayer wiring structures. The step between the memory cell and the peripheral circuit area is a cause for making the manufacturing process of the multi-layered metal wiring difficult, and the planarization of the interlayer insulating film, which serves as electrical insulation, has emerged as an important process.

도 1은 종래 기술에 의한 복합 반도체 장치에서 콘택 전극을 형성하기 전의 층간절연막이 형성된 반도체 장치의 수직 단면도이다.1 is a vertical cross-sectional view of a semiconductor device in which an interlayer insulating film is formed before forming a contact electrode in a conventional composite semiconductor device.

도 1을 참조하여 종래 기술의 복합 반도체장치의 제조 공정을 설명하면 다음과 같다.Referring to FIG. 1, a manufacturing process of a conventional semiconductor device is as follows.

우선, 반도체기판으로서 실리콘기판(10)에 소자분리막을(12)을 형성하고, 기판 전면에 게이트산화막(14), 도프트폴리실리콘막(16) 및 하드 마스크로서 산화막(18)을 적층하고 메모리 셀 어레이 및 주변회로의 게이트 마스크를 이용한 사진 및 식각 공정을 진행하여 이들 막들(18,16,14)을 패터닝함으로써 메모리 셀 어레이 영역(100)의 기판에 셀 트랜지스터(50)의 게이트전극을 형성하고 주변회로 영역(200)의 기판에 아날로그 트랜지스터(150)의 게이트전극을 각각 형성한다. 이로 인해, 기판(10)의 메모리 셀 어레이 영역(100)과 주변회로 영역(200)에 각각 배치된 게이트전극의 피치(pitch)가 다르게 된다.First, a device isolation film 12 is formed on a silicon substrate 10 as a semiconductor substrate, a gate oxide film 14, a doped polysilicon film 16, and an oxide film 18 as a hard mask are stacked on the entire surface of the substrate, and a memory is formed. The gate electrodes of the cell transistors 50 are formed on the substrate of the memory cell array region 100 by patterning the layers 18, 16, and 14 by using a photomask and an etching process using a gate mask of a cell array and a peripheral circuit. Gate electrodes of the analog transistors 150 are formed on the substrate of the peripheral circuit region 200. As a result, the pitches of the gate electrodes disposed in the memory cell array region 100 and the peripheral circuit region 200 of the substrate 10 are different.

이어서, 메모리 셀 어레이 영역(100)만 개방한 기판에 도전형 불순물을 이온주입하여 셀 트랜지스터의 소스/드레인 영역(20)을 형성한다.Subsequently, a conductive impurity is implanted into the substrate in which only the memory cell array region 100 is opened to form the source / drain region 20 of the cell transistor.

그 다음, 기판 전면에 절연물질로서 질화막(22)을 증착하고, 주변회로 영역(200)만 개방한 후에 상기 질화막(22)을 건식식각하여 아날로그 트랜지스터(150)의 게이트전극 측벽에 사이드월 스페이서(22')를 형성한다. 그리고, 주변회로 영역(200)의 기판에만 도전형 불순물을 이온주입하여 아날로그 트랜지스터(150)의 소스/드레인 영역(20')을 형성한다.Next, the nitride film 22 is deposited on the entire surface of the substrate, and only the peripheral circuit region 200 is opened, followed by dry etching the nitride film 22 to form sidewall spacers on sidewalls of the gate electrode of the analog transistor 150. 22 '). The source / drain region 20 ′ of the analog transistor 150 is formed by ion implanting conductive impurities only into the substrate of the peripheral circuit region 200.

그 다음, 기판 전면에 하부와 상부 구조물을 절연하면서 상부 막의 불순물이 하부층으로 확산되는 것을 방지하는 블록킹막(24)으로서 IPO(Inter Poly Oxide)를 200∼500Å정도 증착하고, 기판 전면에 갭필 특성이 우수한 BPSG(Boro Phospho Silicate Glass)를 두껍게 증착하여 층간절연막(26)을 형성한 후에 이를 화학기계적 연마공정으로 평탄화한다.Next, an interpoly oxide (IPO) of about 200 to 500 kV is deposited as a blocking layer 24 which insulates the lower and upper structures on the entire surface of the substrate and prevents impurities from the upper layer from diffusing into the lower layer. An excellent BPSG (Boro Phospho Silicate Glass) is deposited thickly to form an interlayer insulating film 26 and then planarized by a chemical mechanical polishing process.

이후, 도면에 도시하지는 않았지만 상기와 같이 복합 반도체장치의 층간절연막 공정이 완료된 후에 하부 트랜지스터와 상부 배선을 수직으로 연결하기 위한 배선 공정을 진행한다.Subsequently, although not shown in the drawings, a wiring process for vertically connecting the lower transistor and the upper wiring is performed after the interlayer insulating film process of the composite semiconductor device is completed as described above.

한편, 고집적 반도체메모리소자에서 적용하는 비트라인 또는 커패시터 하부 전극과 셀과 연결시켜주는 수직 배선인 플러그(plug) 제조공정은 메모리 셀 어레이 영역(100)의 게이트전극 사이의 공간이 절대적으로 부족하기 때문에 마스크 단계에서 발생하는 미소한 미스얼라인을 극복하기 위하여 SAC(Self Aligne Contact) 방식을 이용한다.On the other hand, the plug manufacturing process, which is a vertical wiring connecting a bit line or a capacitor lower electrode and a cell applied in a highly integrated semiconductor memory device, has absolutely insufficient space between the gate electrode of the memory cell array region 100. In order to overcome the slight misalignment generated in the mask step, a Self Aligne Contact (SAC) method is used.

즉, 플러그 전극이 형성되는 셀 영역(100)에서는 산화막과 식각 선택비가 큰 질화막(22)을 셀 게이트 전극의 표면을 전체 감싸도록 하여 플러그 영역 확보를 위한 층간절연막(26)의 콘택홀 식각시에 게이트전극을 보호하는 역할을 하도록 한다. 주변회로 영역의 질화막(22)은 후속 열공정에서 크랙(crack)을 발생할 우려가 있고 콘택홀 식각시에 식각 정지막으로 작용할 수 있기 때문에 게이트전극 상부면에 있는 부분만 제거한다.That is, in the cell region 100 in which the plug electrode is formed, the nitride film 22 having a large etch selectivity and an etch selectivity may be completely enclosed on the surface of the cell gate electrode to etch the contact hole of the interlayer insulating layer 26 to secure the plug region. It serves to protect the gate electrode. Since the nitride film 22 in the peripheral circuit region may generate a crack in a subsequent thermal process and may act as an etch stop layer during the contact hole etching, only the portion on the upper surface of the gate electrode is removed.

그러면, 메모리 셀 영역(100)에 그대로 남겨진 질화막(22)과 블록킹막(24)에 의해 게이트전극 사이의 공간이 매우 좁고 깊어지는 반면에 주변회로 영역(200)의 게이트 전극 사이는 어느 정도의 공간을 가지고 있으므로, 결국 층간절연막(26) 형성시 BPSG 증착율이 영역에 따라 달라져 메모리 셀 영역(100)의 게이트 전극 사이에 보이드(void)를 발생하게 된다.Then, the space between the gate electrodes is very narrow and deep due to the nitride film 22 and the blocking film 24 that are left in the memory cell region 100, while the space between the gate electrodes of the peripheral circuit region 200 is increased. As a result, when forming the interlayer dielectric layer 26, the deposition rate of BPSG varies depending on the region, thereby generating voids between the gate electrodes of the memory cell region 100.

이러한 보이드는 플러그 전극 공정시 플러그 폴리사이의 브릿지를 유발하여 반도체 메모리장치의 수율을 낮추는 원인이 된다.Such voids cause a bridge between the plug polys in the plug electrode process, thereby lowering the yield of the semiconductor memory device.

층간절연막의 증착 물질인 BPSG의 매립 특성을 좋게 하기 위해서는 몇 가지 방법이 있는데, 첫 번째 방법은 게이트전극 사이의 공간을 넓게 하는 것이며, 두 번째 방법은 게이트전극의 단차를 낮추어 BPSG 증착 깊이를 줄이는 것이며, 세 번째 방법은 블록킹막의 두께를 낮추어 게이트전극 사이의 공간을 넓히는 것이다.There are several ways to improve the buried characteristics of BPSG, the deposition material of the interlayer insulating film. The first method is to widen the space between the gate electrodes, and the second method is to reduce the BPSG deposition depth by lowering the step difference between the gate electrodes. The third method is to reduce the thickness of the blocking film to widen the space between the gate electrodes.

그러나, 첫 번째 방법은 반도체장치의 설계상 게이트전극의 크기를 줄이는데 한계가 있으며, 두 번째 방법 역시 하드 마스크의 두께를 줄일 경우 SAC 식각 공정시 게이트전극이 손상을 받기 때문에 최소한의 게이트전극 두께를 유지해야만 한다.However, the first method has a limitation in reducing the size of the gate electrode due to the design of the semiconductor device, and the second method maintains the minimum gate electrode thickness because the gate electrode is damaged during the SAC etching process if the thickness of the hard mask is reduced. must do it.

마지막으로 세번째 방법은 주변회로 영역의 소스/드레인 영역에 층간절연막내에 포함되어 있는 보론(B) 및 인(P)이 열처리 공정에 확산되는 것을 방지하기 위해서 최소한의 필요 두께가 있으므로 블록킹막을 낮추는데 한계가 있었다.Finally, the third method is limited in reducing the blocking film because there is a minimum thickness necessary to prevent diffusion of boron (B) and phosphorus (P) contained in the interlayer insulating film in the source / drain region of the peripheral circuit region during the heat treatment process. there was.

본 발명의 목적은 BPSG 의 층간절연막 하부에 IPO를 이용한 블록킹막 형성시 토포로지의 윗부분과 측면부분의 증착 비율을 1/2 이하로 조정하여 스텝 커버러지(step coverage)를 나쁘게 함으로써 메모리 셀 영역의 게이트전극 사이의 공간만을 선택적으로 넓일 수 있어 층간절연막의 매립 특성을 우수한 복합 반도체장치의 층간절연막 형성방법을 제공하는데 있다.An object of the present invention is to adjust the deposition rate of the top and side portions of the topologies to 1/2 or less when the blocking film is formed using the IPO under the interlayer insulating film of the BPSG to reduce the step coverage of the memory cell region. The present invention provides a method for forming an interlayer insulating film of a composite semiconductor device, in which only the space between the gate electrodes can be selectively widened, and thus the buried property of the interlayer insulating film is excellent.

도 1은 종래 기술에 의한 복합 반도체 장치에서 콘택 전극을 형성하기 전의 층간절연막이 형성된 반도체 장치의 수직 단면도,1 is a vertical cross-sectional view of a semiconductor device in which an interlayer insulating film is formed before forming a contact electrode in a conventional composite semiconductor device;

도 2a 내지 도 2d는 본 발명에 따른 복합 반도체 장치의 층간절연막 제조 과정을 설명하기 위한 공정 순서도.2A to 2D are flowcharts illustrating a process of manufacturing an interlayer dielectric film of a composite semiconductor device according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10 : 실리콘기판 12 : 소자분리막10 silicon substrate 12 device isolation film

14 : 게이트절연막 16 : 게이트전극14 gate insulating film 16 gate electrode

18 : 하드 마스크 20 : 소스/드레인 영역18: Hard Mask 20: Source / Drain Area

22 : 절연막 22' : 사이드월 스페이서22: insulating film 22 ': sidewall spacer

24a, 24b : 블록킹막 26 : 제 2층간절연막24a, 24b: blocking film 26: second interlayer insulating film

100 : 메모리 셀 어레이 영역 200 : 주변회로 영역100: memory cell array area 200: peripheral circuit area

상기 목적을 달성하기 위하여 본 발명은 반도체기판에 메모리 셀 어레이 영역과 주변회로 영역에 각각 게이트 전극 및 소스/드레인 영역을 갖는 셀 트랜지스터와 아날로그 트랜지스터를 형성하는 단계와, 메모리 셀 어레이 영역의 게이트 전극 상부면에 산화물질이 선택적으로 증착되고 이와 동시에 주변회로 영역의 기판 전면에 산화물질이 증착되도록 압력을 낮게 하고 가스량을 조절하여 두께비가 1/2인 블록킹막을 형성하는 단계와, 메모리 셀 어레이 영역과 주변 회로 영역에 해당하는 기판 전면에 하부 구조물의 층간절연을 위하여 층간절연막을 형성하는 단계를 포함하여 이루어진 것을 특징으로 한다.In order to achieve the above object, the present invention provides a method of forming a cell transistor and an analog transistor having a gate electrode and a source / drain region in a memory cell array region and a peripheral circuit region in a semiconductor substrate, and forming an upper portion of the gate electrode in the memory cell array region. Forming a blocking film having a thickness ratio of 1/2 by lowering the pressure and adjusting the amount of gas so that the oxide material is selectively deposited on the surface and the oxide material is deposited on the entire surface of the substrate in the peripheral circuit area. And forming an interlayer insulating film for interlayer insulation of the lower structure on the front surface of the substrate corresponding to the circuit region.

본 발명의 제조 방법에 있어서, 상기 블록킹막의 증착 공정은 750℃이상의 증착 온도와 0.1∼0.3Torr의 반응 챔버 압력하에서 저압 화학기상증착법으로 SiH4와 N2O 가스를 반응시켜 고온 열산화막을 형성하거나, 650℃이상의 증착 온도와 0.1∼0.3Torr의 반응 챔버 압력하에서 저압의 화학기상증착법으로 TEOS 가스를 분해시켜 LP-TEOS막을 증착하거나, 또는 500℃이하의 증착 온도에서 플라즈마 인헨스트 방법으로 TEOS 가스를 분해시켜 PE-TEOS막을 증착하는 것을 특징으로 한다.In the manufacturing method of the present invention, the deposition process of the blocking film is formed by reacting SiH 4 and N 2 O gas by a low pressure chemical vapor deposition method at a deposition temperature of 750 ℃ or more and a reaction chamber pressure of 0.1 to 0.3 Torr to form a high temperature thermal oxide film or Decomposition of TEOS gas by low pressure chemical vapor deposition under a deposition temperature of 650 ° C. or above and a reaction chamber pressure of 0.1 to 0.3 Torr, to deposit an LP-TEOS film, or to deposit TEOS gas by a plasma enhancement method at a deposition temperature of 500 ° C. or less. It is characterized by depositing a PE-TEOS film by decomposition.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세하게 설명하도록 하며, 본 발명의 실시예는 종래 기술과 동일한 부분에 대해서 참조 번호를 동일하게 사용한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, and embodiments of the present invention use the same reference numerals for the same parts as in the prior art.

도 2a 내지 도 2d는 본 발명에 따른 복합 반도체 장치의 층간절연막 제조 과정을 설명하기 위한 공정 순서도로써, 이를 참조하면 본 발명의 제조 공정은 다음과 같다.2A to 2D are flowcharts illustrating a process of manufacturing an interlayer insulating film of a composite semiconductor device according to the present invention. Referring to this, the manufacturing process of the present invention is as follows.

우선, 도 2a 도시된 바와 같이 실리콘기판(10)에 소자분리막을(12)을 형성하고, 기판 전면에 게이트산화막(14), 도프트폴리실리콘막(16) 및 하드 마스크로서 산화막(18)을 적층하고 메모리 셀 어레이 및 주변회로의 게이트 마스크를 이용한 사진 및 식각 공정을 진행하여 이들 막들(18,16,14)을 패터닝한다. 이로 인해, 메모리 셀 어레이 영역(100)의 기판에는 셀 트랜지스터(50)의 게이트전극가 형성되고, 주변회로 영역(200)의 기판에는 아날로그 트랜지스터(150)의 게이트전극이 형성된다.First, as shown in FIG. 2A, the device isolation film 12 is formed on the silicon substrate 10, and the gate oxide film 14, the doped polysilicon film 16, and the oxide film 18 as a hard mask are formed on the entire surface of the substrate. These layers 18, 16 and 14 are patterned by stacking and performing a photolithography and etching process using a gate mask of a memory cell array and a peripheral circuit. As a result, the gate electrode of the cell transistor 50 is formed on the substrate of the memory cell array region 100, and the gate electrode of the analog transistor 150 is formed on the substrate of the peripheral circuit region 200.

본 발명의 실시예에서는 상기와 같은 게이트전극에 있어서, 전기전도도를 높이기 위하여 비저항이 낮은 실리사이드를 폴리실리콘막(16)위에 추가 증착할 수 있으며 상기 하드 마스크용 산화막(18) 상부에 포토레지스트 패터닝 공정의 효율을 높이기 위한 비반사막을 추가로 증착할 수도 있다.In the embodiment of the present invention, in the gate electrode as described above, silicide having a low specific resistance may be further deposited on the polysilicon film 16 to increase the electrical conductivity, and a photoresist patterning process may be performed on the hard mask oxide film 18. An antireflection film may be further deposited to increase the efficiency of the film.

이어서, 메모리 셀 어레이 영역(100)만 개방된 기판에 도전형 불순물을 이온주입하여 셀 트랜지스터의 소스/드레인 영역(20)을 형성한다.Subsequently, the source / drain region 20 of the cell transistor is formed by ion implanting conductive impurities into the substrate in which only the memory cell array region 100 is opened.

그 다음, 도 2b에 도시된 바와 같이 기판 전면에 절연물질로서 질화막(22)을 증착하고, 주변회로 영역(200)만 개방한 후에 상기 질화막(22)을 건식식각하여 아날로그 트랜지스터(150)의 게이트전극 측벽에 사이드월 스페이서(22')를 형성한다. 그리고, 주변회로 영역(200)의 기판에만 도전형 불순물을 이온주입하여 아날로그 트랜지스터(150)의 소스/드레인 영역(20')을 형성한다.Next, as illustrated in FIG. 2B, the nitride film 22 is deposited on the entire surface of the substrate, and only the peripheral circuit region 200 is opened, followed by dry etching the nitride film 22 to gate the analog transistor 150. Sidewall spacers 22 'are formed on the electrode sidewalls. The source / drain region 20 ′ of the analog transistor 150 is formed by ion implanting conductive impurities only into the substrate of the peripheral circuit region 200.

그 다음, 도 2c에 도시된 바와 같이 기판 전면에 하부와 상부 구조물을 절연하면서 상부 막의 불순물이 하부층으로 확산되는 것을 방지하는 본 발명의 블록킹막인 IPO 증착 공정을 실시한다. 통상적으로 IPO는 웨이퍼 표면에 토포로지가 있더라도 전체적으로 균일한 두께를 유지하도록 증착되지만 본 발명에서는 다음과 같이 IPO의 증착 조건을 토포로지의 윗부분과 측면부분의 증착 비율을 1/2 이하로 조정한다.Next, as illustrated in FIG. 2C, an IPO deposition process, which is a blocking film of the present invention, is performed to insulate the lower and upper structures on the entire surface of the substrate and to prevent impurities from the upper layer from diffusing into the lower layer. Typically, the IPO is deposited to maintain a uniform thickness even if there is a topography on the wafer surface, but in the present invention, the deposition conditions of the top and side portions of the topologies are adjusted to 1/2 or less as follows.

본 발명의 블록킹막 증착 공정은 750℃이상의 증착 온도와 0.1∼0.3Torr의 반응 챔버 압력하에서 저압 화학기상증착법으로 SiH4와 N2O 가스를 반응시켜서 고온의 열산화막인 HTO(high temperature oxide)를 형성하거나, 650℃이상의 증착 온도와 0.1∼0.3Torr의 반응 챔버 압력하에서 저압의 화학기상증착법으로 TEOS (tetra-ethly-ortho-silicate) 가스를 분해시켜서 LP-TEOS를 형성한다. 또는, 500℃의 증착 온도에서 플라즈마 인헨스트(plasma enhanced)방법으로 TEOS 가스를 분해켜서 PE-TEOS를 형성시킬 수 있다.The blocking film deposition process of the present invention reacts SiH 4 with N 2 O gas by a low pressure chemical vapor deposition method at a deposition temperature of 750 ° C. or higher and a reaction chamber pressure of 0.1 to 0.3 Torr to obtain HTO (high temperature oxide), which is a high temperature thermal oxide film. LP-TEOS is formed by decomposing the tetra-ethly-ortho-silicate (TEOS) gas by low pressure chemical vapor deposition at a deposition temperature of 650 ° C. or higher and a reaction chamber pressure of 0.1 to 0.3 Torr. Alternatively, the TEOS gas may be decomposed by a plasma enhanced method at a deposition temperature of 500 ° C. to form PE-TEOS.

여기서, 블록킹막의 증착 두께는 주변회로 영역의 실리콘기판에 이온주입된 불순물의 농도 구배가 BPSG의 층간절연막내에 포함되어 있는 보론, 인 등의 확산에 의해서 흐트러지지 않도록 약 100∼500Å로 하는 것이 바람직하다.Here, the deposition thickness of the blocking film is preferably about 100 to 500 mW so that the concentration gradient of impurities implanted in the silicon substrate in the peripheral circuit region is not disturbed by diffusion of boron, phosphorus, etc. contained in the interlayer insulating film of the BPSG. .

본 발명에 따른 IPO 증착 공정에 의해서, 상기 메모리 셀 어레이 영역(100)에서는 게이트 전극을 감싸는 질화막(22) 상부면에만 선택적으로 블록킹막(24a)이 형성되어 있으며 주변회로 영역(200)에서는 전체 구조물에 블록킹막(24b)이 형성된다.By the IPO deposition process according to the present invention, the blocking film 24a is selectively formed only on the upper surface of the nitride film 22 surrounding the gate electrode in the memory cell array region 100, and the entire structure in the peripheral circuit region 200. The blocking film 24b is formed in the film.

계속해서 도 2d에 도시된 바와 같이, 상기 구조물에 갭필 특성이 우수한 BPSG(Boro Phospho Silicate Glass)를 두껍게 증착하여 층간절연막(26)을 형성한 후에 이를 화학기계적 연마공정으로 평탄화한다.Subsequently, as illustrated in FIG. 2D, a thick BPSG (Boro Phospho Silicate Glass) having excellent gap fill characteristics is deposited on the structure to form an interlayer insulating layer 26, and then planarized by a chemical mechanical polishing process.

상술한 바와 같이, 본 발명은 블록킹막인 IPO 증착시 스텝 커버리지를 나쁘게 하여 메모리 셀 어레이 영역에서 게이트전극의 측면으로는 블록킹막이 형성되지 않고 주변회로 영역에서 기판 전면에 블록킹막이 균일하게 증착되도록 한다.As described above, according to the present invention, the step coverage is poor during the deposition of the blocking film, such that the blocking film is not formed on the side of the gate electrode in the memory cell array region, and the blocking film is uniformly deposited on the entire surface of the substrate in the peripheral circuit region.

그러므로, 본 발명은 메모리 셀 어레이 영역에서의 게이트전극 사이의 공간을 크게 확보할 수 있어 층간절연막 증착시 보이드의 생성없이 절연물의 매립이 양호해진다. 또한, 주변회로 영역에서의 블록킹 역할을 하는 IPO의 두께를 낮출 수 있다.Therefore, the present invention can secure a large space between the gate electrodes in the memory cell array region, so that the embedding of the insulator becomes good without generation of voids during the deposition of the interlayer insulating film. In addition, it is possible to lower the thickness of the IPO, which serves as a blocking function in the peripheral circuit area.

Claims (6)

메모리 셀 어레이와 그 주변회로가 집적화된 복합 반도체 장치의 층간절연막 형성방법에 있어서,A method of forming an interlayer insulating film of a composite semiconductor device in which a memory cell array and its peripheral circuits are integrated, 반도체기판에 메모리 셀 어레이 영역과 주변회로 영역에 각각 게이트 전극 및 소스/드레인 영역을 갖는 셀 트랜지스터와 아날로그 트랜지스터를 형성하는 단계;Forming cell transistors and analog transistors each having a gate electrode and a source / drain region in a memory cell array region and a peripheral circuit region in a semiconductor substrate; 상기 메모리 셀 어레이 영역의 게이트 전극 상부면에 산화물질이 선택적으로 증착되고 이와 동시에 주변회로 영역의 기판 전면에 산화물질이 증착되도록 압력을 낮게 하고 가스량을 조절하여 두께비가 1/2인 블록킹막을 형성하는 단계;An oxide material is selectively deposited on an upper surface of the gate electrode of the memory cell array region, and at the same time, a blocking film having a thickness ratio of 1/2 is formed by lowering the pressure and adjusting the amount of gas so that the oxide material is deposited on the entire surface of the substrate in the peripheral circuit region. step; 상기 메모리 셀 어레이 영역과 주변 회로 영역에 해당하는 기판 전면에 하부 구조물의 층간절연을 위하여 층간절연막을 형성하는 단계를 포함하여 이루어진 것을 특징으로 하는 복합 반도체 장치의 층간절연막 형성방법.Forming an interlayer insulating film on the front surface of the substrate corresponding to the memory cell array region and the peripheral circuit region for interlayer insulation of the lower structure. 제 1항에 있어서, 상기 블록킹막의 증착 공정은 750℃이상의 증착 온도와 0.1∼0.3Torr의 반응 챔버 압력하에서 저압 화학기상증착법으로 SiH4와 N2O 가스를 반응시켜 고온 열산화막을 형성하는 것을 특징으로 하는 복합 반도체장치의 층간절연막 형성방법.The method of claim 1, wherein the deposition process of the blocking film is performed by reacting SiH 4 with N 2 O gas by a low pressure chemical vapor deposition method under a deposition temperature of at least 750 ° C. and a reaction chamber pressure of 0.1 to 0.3 Torr to form a high temperature thermal oxide film. An interlayer insulating film forming method of a composite semiconductor device. 제 1항에 있어서, 상기 블록킹막의 증착 공정은 650℃이상의 증착 온도와 0.1∼0.3Torr의 반응 챔버 압력하에서 저압의 화학기상증착법으로 TEOS 가스를 분해시켜 LP-TEOS막을 증착하는 것을 특징으로 하는 복합 반도체장치의 층간절연막 형성방법.The composite semiconductor according to claim 1, wherein the blocking film is deposited using a low pressure chemical vapor deposition method at a deposition temperature of 650 ° C. or higher and a reaction chamber pressure of 0.1 to 0.3 Torr to deposit an LP-TEOS film. A method of forming an interlayer insulating film of a device. 제 1항에 있어서, 상기 블록킹박막의 증착 공정은 500℃이하의 증착 온도에서 플라즈마 인헨스트 방법으로 TEOS 가스를 분해시켜 PE-TEOS막을 증착하는 것을 특징으로 하는 복합 반도체장치의 층간절연막 형성방법.The method of claim 1, wherein the blocking thin film is deposited by decomposing TEOS gas at a deposition temperature of 500 ° C. or lower by a plasma enhanced method. 제 1항에 있어서, 상기 블록킹박막의 두께는 100∼500Å으로 하는 것을 특징으로 하는 복합 반도체장치의 층간절연막 형성방법.The method for forming an interlayer insulating film of a composite semiconductor device according to claim 1, wherein the blocking thin film has a thickness of 100 to 500 GPa. 제 1항에 있어서, 상기 층간절연막은 BPSG인 것을 특징으로 하는 복합 반도체장치의 층간절연막 형성방법.The method of claim 1, wherein the interlayer insulating film is BPSG.
KR1019990026387A 1999-07-01 1999-07-01 Mehtod of forming IPO layer of MML device KR100307967B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990026387A KR100307967B1 (en) 1999-07-01 1999-07-01 Mehtod of forming IPO layer of MML device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990026387A KR100307967B1 (en) 1999-07-01 1999-07-01 Mehtod of forming IPO layer of MML device

Publications (2)

Publication Number Publication Date
KR20010008511A true KR20010008511A (en) 2001-02-05
KR100307967B1 KR100307967B1 (en) 2001-11-01

Family

ID=19598653

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990026387A KR100307967B1 (en) 1999-07-01 1999-07-01 Mehtod of forming IPO layer of MML device

Country Status (1)

Country Link
KR (1) KR100307967B1 (en)

Also Published As

Publication number Publication date
KR100307967B1 (en) 2001-11-01

Similar Documents

Publication Publication Date Title
US5780338A (en) Method for manufacturing crown-shaped capacitors for dynamic random access memory integrated circuits
KR100320332B1 (en) Semiconductor device and manufacturing method thereof
US5631179A (en) Method of manufacturing metallic source line, self-aligned contact for flash memory devices
US6010933A (en) Method for making a planarized capacitor-over-bit-line structure for dynamic random access memory (DRAM) devices
US20080073708A1 (en) Semiconductor device and method of forming the same
KR20020083773A (en) Method for fabricating capacitor of semiconductor device
US20090122461A1 (en) Capacitor for a semiconductor device and manufacturing method thereof
US20020024093A1 (en) Semiconductor device with self-aligned contact structure employing dual spacers and method of manufacturing the same
US6268243B1 (en) Method for fabricating dynamic random access memory cells
US5429979A (en) Method of forming a dram cell having a ring-type stacked capacitor
KR100310824B1 (en) A capacitor and a fabricating method thereof in semiconductor device
CN111180506A (en) Semiconductor device with a plurality of transistors
KR100273987B1 (en) Dynamic random access memory device and manufacturing method thereof
US20110263099A1 (en) Manufacturing method of semiconductor device having vertical transistor
US6784068B2 (en) Capacitor fabrication method
KR20010059285A (en) Manufacturing method for capacitor of semiconductor device
US5976977A (en) Process for DRAM capacitor formation
US7332391B2 (en) Method for forming storage node contacts in semiconductor device
KR100307967B1 (en) Mehtod of forming IPO layer of MML device
KR20000057809A (en) Ferroelectric capacitor formed under the bit line
KR20000027444A (en) Method for forming contact hole of semiconductor device
TW490801B (en) Method for forming isolation gap between bit line and capacitor
JP2014053361A (en) Method of manufacturing semiconductor device
KR20010092703A (en) Semiconductor device and method of manufacturing the same
JPH09219500A (en) High-density memory structure and manufacture thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100726

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee