KR20010005040A - Method of fabricating storage node of capacitor in semiconductor device - Google Patents

Method of fabricating storage node of capacitor in semiconductor device Download PDF

Info

Publication number
KR20010005040A
KR20010005040A KR1019990025827A KR19990025827A KR20010005040A KR 20010005040 A KR20010005040 A KR 20010005040A KR 1019990025827 A KR1019990025827 A KR 1019990025827A KR 19990025827 A KR19990025827 A KR 19990025827A KR 20010005040 A KR20010005040 A KR 20010005040A
Authority
KR
South Korea
Prior art keywords
layer
polysilicon
charge storage
storage electrode
forming
Prior art date
Application number
KR1019990025827A
Other languages
Korean (ko)
Inventor
윤종원
박계순
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019990025827A priority Critical patent/KR20010005040A/en
Publication of KR20010005040A publication Critical patent/KR20010005040A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B31/00Arrangements for the associated working of recording or reproducing apparatus with related apparatus
    • G11B31/02Arrangements for the associated working of recording or reproducing apparatus with related apparatus with automatic musical instruments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10527Audio or video recording; Data buffering arrangements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B31/00Arrangements for the associated working of recording or reproducing apparatus with related apparatus
    • G11B31/006Arrangements for the associated working of recording or reproducing apparatus with related apparatus with video camera or receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/488Data services, e.g. news ticker
    • H04N21/4884Data services, e.g. news ticker for displaying subtitles

Abstract

PURPOSE: A capacitor charge storage electrode formation method is provided to be capable of increasing the static capacitance and prohibiting generation of bridge, by forming polysilicon as a double layer and using MPS(metastable polysilicon) growth, after formation of an internal cylinder. CONSTITUTION: An etch prevention film(7) on a semiconductor substrate is formed. An oxide film is then formed on the etch prevention film. Next, the oxide film is selectively etched and accordingly the exposed etch prevention film is etched, thus forming a given capacitor contact region. A dual polysilicon layer is formed by continuously depositing polysilicon having a different doping concentration on the entire surface of the oxide film including the capacitor contact region. Then, the dual polysilicon layer is divided depending on a capacitor charge storage electrode. The oxide film is removed, Next, MPS is grown on the entire surface of the dual polysilicon layer, thus forming a cylinder-shape charge storage electrode made of polysilicon and MPS.

Description

반도체 메모리소자의 커패시터 전하저장전극 형성방법{Method of fabricating storage node of capacitor in semiconductor device}Method of forming a capacitor charge storage electrode of a semiconductor memory device {Method of fabricating storage node of capacitor in semiconductor device}

본 발명은 반도체 메모리소자의 커패시터 전하저장전극 형성방법에 관한 것으로, 특히 이중 폴리실리콘층과 선택적 MPS(metastable polysilicon) 성장을 이용하여 대용량의 커패시터 전하저장전극을 형성하는 방법에 관한 것이다.The present invention relates to a method of forming a capacitor charge storage electrode of a semiconductor memory device, and more particularly, to a method of forming a capacitor charge storage electrode of a large capacity using a double polysilicon layer and selective MPS (metastable polysilicon) growth.

반도체 메모리소자의 고집적화에 따라 커패시터 전하저장전극의 형태는 대부분 내부 실린더형으로 변화하고 있는 추세이지만, 미세한 면적내에서 안정적으로 정전용량을 확보하는 것을 소자 개발에 있어 또 다른 문제점으로 대두되고 있다.Although the shape of the capacitor charge storage electrode is changing to an inner cylinder type with high integration of semiconductor memory devices, securing a stable capacitance within a small area is another problem in device development.

내부 실린더형 전하저장전극 형성은 대부분 산화막 식각을 통한 실린더의 형성, 폴리실리콘의 증착과 MPS의 성장 및 커패시터간 분리공정으로 이루어지고 있다. 최근에는 폴리실리콘 및 MPS를 대체할 수 있는 물질의 개발이 연구되고 있으나, 아직까지 현실화되지는 못하고 있다.Most of the internal cylindrical charge storage electrodes are formed by forming a cylinder by etching an oxide layer, depositing polysilicon, growing MPS, and separating capacitors. Recently, the development of materials that can replace polysilicon and MPS has been studied, but it has not been realized yet.

폴리실리콘과 MPS를 이용하여 내부 실린더형 전하저장전극을 형성하는 종래의 공정을 도 1a 내지 1d를 참조하여 설명하면 다음과 같다.A conventional process of forming an internal cylindrical charge storage electrode using polysilicon and MPS will be described with reference to FIGS. 1A to 1D.

먼저, 도 1a에 나타낸 바와 같이 반도체기판(도시하지 않음)상에 형성된 층간절연막(1)을 선택적으로 식각하여 콘택홀을 형성한 후, 이 콘택홀내에 폴리실리콘을 매립하여 커패시터 콘택플러그(2)를 형성한다. 이어서 콘택플러그(2)가 형성된 층간절연막(1)상에 산화막(3)을 형성한 후, 이를 선택적으로 식각하여 상기 콘택플러그(2)를 포함하는 소정부분을 노출시키는 콘택영역(4)을 형성한다.First, as shown in FIG. 1A, a contact hole is formed by selectively etching an interlayer insulating film 1 formed on a semiconductor substrate (not shown), and then polysilicon is buried in the contact hole to form a capacitor contact plug 2. To form. Subsequently, an oxide film 3 is formed on the interlayer insulating film 1 on which the contact plug 2 is formed, and then selectively etched to form a contact region 4 exposing a predetermined portion including the contact plug 2. do.

다음에 도 1b에 나타낸 바와 같이 상기 콘택영역(4)을 포함한 산화막(3) 전면에 폴리실리콘(5)을 증착하고 이위에 MPS(6)를 성장시킨다.Next, as shown in FIG. 1B, polysilicon 5 is deposited on the entire surface of the oxide film 3 including the contact region 4, and the MPS 6 is grown thereon.

이어서 도 1c에 나타낸 바와 같이 CMP등의 방법을 이용하여 콘택영역(4)이외의 영역에 증착된 폴리실리콘 및 MPS층을 제거하여 전하저장전극을 분리한다.Subsequently, as shown in FIG. 1C, polysilicon and MPS layers deposited in regions other than the contact region 4 are removed using a method such as CMP to separate the charge storage electrode.

도 1d는 폴리실리콘을 증착한 후, 이를 CMP하여 전하저장전극을 분리한 다음 폴리실리콘의 전표면에 MPS를 성장시킨 경우를 나타낸 것이다.FIG. 1D illustrates a case in which MPS is grown on the entire surface of polysilicon after depositing polysilicon, separating the charge storage electrode by CMP.

상기의 공정에 의해 반도체 메모리소자의 커패시터 전하저장전극을 형성할 경우, 256M DRAM 이상급에서는 커패시터 콘택영역(4) 형성을 위해서 13000Å이상의 산화막 식각이 필요하게 되는데, 이는 셀영역과 주변회로영역간의 필연적인 단차를 유발하게 되고, CMP공정을 적용한다고 하더라도 전체적인 깊이의 증가를 가져오게 되므로 후속공정에서 문제를 유발하게 된다. 그러므로 가능하면 낮은 두께의 산화막을 적용하고 안정적인 정전용량 확보방법을 구현하는 것이 필요하다.In the case of forming the capacitor charge storage electrode of the semiconductor memory device by the above process, oxide etching of 13000Å or more is required for forming the capacitor contact region 4 in 256M DRAM or higher class, which is inevitable between the cell region and the peripheral circuit region. The step is caused, and even if the CMP process is applied, the overall depth is increased, which causes problems in subsequent processes. Therefore, if possible, it is necessary to apply a low thickness oxide film and implement a stable capacitance securing method.

상기 공정을 비롯하여 일반적으로 CMP등의 방법을 이용하여 전하저장전극을 분리하고 있다. 이때, MPS를 성장시키는 공정이 폴리실리콘을 증착하고 CMP하는 공정 이후에 진행되는 경우(도 1d)도 있으나, 두 경우 모두 다음과 같은 문제를 가진다. 폴리실리콘 증착후 연속적으로 MPS를 성장시키는 경우, 실린더 외벽에는 MPS가 성장하지 않으므로 전하저장전극간 브릿지가 형성될 가능성은 작아지게 되지만, 실린더 측벽 모두에 MPS를 성장시킨 경우(도 1c)보다 전체적인 정전용량이 감소하게 되므로 보다 높은 커패시터가 요구된다. 이는 상기에서 설명한 바와 같이 후속공정의 부담으로 남게 된다. 또한, 분리를 위한 CMP공정에서 MPS 알갱이의 이탈에 의한 브릿지 가능성도 존재하게 된다.In addition to the above process, charge storage electrodes are generally separated by using a method such as CMP. At this time, although the process of growing the MPS is carried out after the process of depositing polysilicon and CMP (Fig. 1d), both cases have the following problems. In the case of continuously growing MPS after polysilicon deposition, since the MPS does not grow on the outer wall of the cylinder, the possibility of forming bridges between the charge storage electrodes becomes smaller, but the overall electrostatic discharge is higher than in the case where the MPS is grown on both sides of the cylinder (FIG. 1C). Higher capacitors are required as the capacity is reduced. This leaves a burden on the subsequent process as described above. In addition, there is a possibility of bridging by separation of MPS grains in the CMP process for separation.

반면에 폴리실리콘 증착후 CMP를 우선적으로 진행한 후 MPS를 성장시키는 경우에는 외벽에서의 브릿지 가능성이 있는데, 소자의 고집적화에 따라 인접 커패시터와 격리되어 있는 간격이 대단히 좁기 때문에 브릿지 발생 가능성이 매우 크다.On the other hand, in the case of growing MPS after preferentially advancing CMP after polysilicon deposition, there is a possibility of bridging at the outer wall, and the possibility of bridging is very high because the gap between the adjacent capacitors is very narrow due to the high integration of the device.

본 발명은 상술한 문제점을 해결하기 위한 것으로, 이중으로 된 폴리실리콘층을 형성한 후, CMP공정과 MPS성장 공정을 진행하여 기존의 실린더형 커패시터보다 낮은 높이에서 안정적인 정전용량을 확보하고 브릿지 발생을 억제할 수 있도록 하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법을 제공하는 것을 그 목적으로 한다.The present invention is to solve the above-described problems, after forming a double polysilicon layer, CMP process and MPS growth process proceeds to secure a stable capacitance at a lower height than the conventional cylindrical capacitor and to generate the bridge It is an object of the present invention to provide a method for forming a capacitor charge storage electrode of a semiconductor memory device which can be suppressed.

상기 목적을 달성하기 위한 본 발명의 반도체소자의 커패시터 전하저장전극 형성방법은 반도체기판상에 식각방지막을 형성하는 단계와, 상기 식각방지막상에 산화막을 형성하는 단계, 산화막을 선택적으로 식각하고 이에 따라 노출되는 식각방지막을 식각하여 소정의 커패시터 콘택영역을 형성하는 단계, 상기 커패시터 콘택영역을 포함한 산화막의 전면에 도핑농도가 다른 폴리실리콘을 연속으로 증착하여 이중 폴리실리콘층을 형성하는 단계, 상기 이중 폴리실리콘층을 커패시터 전하저장전극별로 분리시키는 단계, 상기 산화막을 제거하는 단계, 및 상기 이중 폴리실리콘층의 전표면에 MPS를 성장시켜 폴리실리콘과 MPS로 이루어진 실린더형 전하저장전극을 형성하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method of forming a capacitor charge storage electrode of a semiconductor device, the method comprising: forming an etch stop layer on a semiconductor substrate, forming an oxide layer on the etch stop layer, selectively etching the oxide layer and Etching the exposed etch stop layer to form a predetermined capacitor contact region, continuously depositing polysilicon having a different doping concentration on the entire surface of the oxide film including the capacitor contact region to form a double polysilicon layer, the double poly Separating the silicon layer for each capacitor charge storage electrode, removing the oxide film, and growing MPS on the entire surface of the double polysilicon layer to form a cylindrical charge storage electrode made of polysilicon and MPS. do.

도 1a 내지 1d는 종래기술에 의한 내부 실린더형 커패시터 전하저장전극 형성방법을 도시한 공정순서도,1A to 1D are process flowcharts showing a method of forming an internal cylindrical capacitor charge storage electrode according to the prior art;

도 2a 내지 2e는 본 발명에 의한 내부 실린더형 커패시터 전하저장전극 형성방법을 도시한 공정순서도.2A to 2E are process flowcharts showing a method of forming an internal cylindrical capacitor charge storage electrode according to the present invention;

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1.층간절연막 2.콘택플러그1.Insulation film 2.Contact plug

7.식각방지막 8.산화막7.Anti-etching film 8.Oxide film

10A.도핑되지 않거나 저농도로 도핑된 폴리실리콘층10 A. Undoped or lightly doped polysilicon layer

10B.고농도로 도핑된 폴리실리콘층10B. Highly Doped Polysilicon Layer

11.MPS11.MPS

이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

도 2a 내지 2e에 본 발명에 의한 반도체 메모리소자의 커패시터 전하저장전극 형성방법을 공정순서에 따라 도시하였다.2A to 2E illustrate a method of forming a capacitor charge storage electrode of a semiconductor memory device according to the present invention in accordance with a process sequence.

먼저, 도 2a를 참조하면, 반도체기판(도시하지 않음)상에 형성된 층간절연막(1)을 선택적으로 식각하여 콘택홀을 형성한 후, 이 콘택홀내에 폴리실리콘을 매립하여 콘택플러그(2)를 형성한다. 이어서 콘택플러그(2)가 형성된 층간절연막(1)상에 질화막(SiN) 또는 SiON등을 200-300Å 증착하여 식각방지막(7)을 형성한다. 이어서 상기 식각방지막(7)상에 PE-TEOS와 PSG와 같이 HF에서 습식식각비의 차이를 갖는 산화막(8A,8B)을 연속적으로 증착하거나 단일층의 산화막(8)을 소정 두께로 형성한다.First, referring to FIG. 2A, a contact hole is formed by selectively etching an interlayer insulating film 1 formed on a semiconductor substrate (not shown). Then, the contact plug 2 is formed by embedding polysilicon in the contact hole. Form. Subsequently, a nitride film (SiN) or SiON or the like is deposited on the interlayer insulating film 1 having the contact plug 2 formed thereon to form an etch stop film 7. Subsequently, oxide films 8A and 8B having a difference in wet etching ratio in HF, such as PE-TEOS and PSG, are sequentially deposited on the etch stop film 7 or a single layer oxide film 8 is formed to a predetermined thickness.

다음에 도 2b에 나타낸 바와 같이 커패시터 콘택영역을 정의하는 마스크패턴(9)을 이용하여 상기 산화막(8)을 선택적으로 식각하고, 이에 따라 노출되는 식각방지막(7)을 건식식각으로 연속적으로 제거하여 커패시터 콘택영역을 형성한다.Next, as shown in FIG. 2B, the oxide layer 8 is selectively etched using the mask pattern 9 defining the capacitor contact region, and thus the exposed etch stop layer 7 is continuously removed by dry etching. A capacitor contact region is formed.

이어서 도 2c에 나타낸 바와 같이 상기 커패시터 콘택영역을 포함한 산화막(8)의 전면에 폴리실리콘을 2단계에 걸쳐 증착한다. 즉, 제1폴리실리콘층(10A)으로서 도핑되지 않은 폴리실리콘이나 저농도로 도핑된 폴리실리콘을 우선 증착한 후, 제2폴리실리콘층(10B)으로서 고농도로 도핑된 폴리실리콘을 증착하여 전체 두께가 기존의 두께를 넘지 않는 이중 폴리실리콘층(10)을 형성한다.Next, as shown in FIG. 2C, polysilicon is deposited in two steps on the entire surface of the oxide film 8 including the capacitor contact region. That is, firstly doped polysilicon or lightly doped polysilicon is deposited as the first polysilicon layer 10A, and then a high concentration of doped polysilicon is deposited as the second polysilicon layer 10B. To form a double polysilicon layer 10 does not exceed the existing thickness.

다음에 도 2d에 나타낸 바와 같이 기판 전면에 산화막 또는 포토레지스트등과 같은 매립물질(도시하지 않음)을 증착하고 CMP를 적용하여 상기 폴리실리콘층(10)을 각각의 전하저장전극별로 분리시킨다.Next, as shown in FIG. 2D, a buried material (not shown) such as an oxide film or a photoresist is deposited on the entire surface of the substrate and CMP is applied to separate the polysilicon layer 10 for each charge storage electrode.

이어서 도 2e에 나타낸 바와 같이 상기 매립물질층을 제거하고, 상기 산화막(8)을 딥아웃(dip out)해낸 후, 폴리실리콘층(10)의 전표면에 MPS(11)를 성장시켜 폴리실리콘과 MPS로 이루어진 실린더형 전하저장전극을 완성한다. 상기 산화막(8)의 딥아웃시 산화막을 단일층으로 형성한 경우에는 식각방지막이 배리어 역할을 하며, 산화막을 이중으로 형성한 경우에는 하부산화막(8A)이 배리어 역할을 하게 된다.Subsequently, as shown in FIG. 2E, the buried material layer is removed, the oxide film 8 is diped out, and then MPS 11 is grown on the entire surface of the polysilicon layer 10 to form polysilicon and A cylindrical charge storage electrode made of MPS is completed. When the oxide layer 8 is formed as a single layer during the dip out of the oxide layer 8, the etch stop layer serves as a barrier, and when the oxide layer is formed as a double layer, the lower oxide layer 8A serves as a barrier.

상기 MPS성장에 있어서, 제1폴리실리콘층(10A)으로 도핑되지 않은 폴리실리콘을 적용한 경우에는 이 도핑되지 않은 폴리실리콘 영역에 MPS가 성장하지 않게 되므로 실린더 외벽에 MPS성장에 의한 브릿지가 발생하지 않으며, 기존의 공정에서 MPS를 CMP이전에 형성한 경우와 비교하여 CMP시 MPS의 이탈 가능성도 없으므로 브릿지 측면에서 안정적인 공정확보가 가능하게 된다. 한편, 제1폴리실리콘층(10A)으로 저농도로 도핑된 폴리실리콘을 적용할 경우에는 고농도로 도핑된 폴리실리콘층(10B) 지역에 비해 MPS의 성장속도가 느리므로 도 2e에 도시한 바와 같이 도핑농도가 다른 두 폴리실리콘층(10A,10B)에 크기가 다른 MPS(11A,11B)가 성장된다. 따라서 이를 조절할 경우 동일한 높이에서 브릿지를 발생시키는 일없이 증가된 정전용량의 확보가 가능하게 된다.In the MPS growth, when undoped polysilicon is applied to the first polysilicon layer 10A, MPS does not grow in the undoped polysilicon region, and thus, bridges due to MPS growth do not occur on the outer wall of the cylinder. As compared with the case where MPS is formed before CMP in the existing process, there is no possibility of deviation of MPS during CMP, thus ensuring stable process in terms of bridge. On the other hand, when the low concentration doped polysilicon is applied to the first polysilicon layer (10A) compared to the polysilicon layer (10B) doped with a high concentration, the growth rate of the MPS is slow as shown in Figure 2e MPSs 11A and 11B having different sizes are grown on two polysilicon layers 10A and 10B having different concentrations. Therefore, if this adjustment is made, it is possible to secure an increased capacitance without generating a bridge at the same height.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made in the art without departing from the technical spirit of the present invention. It will be apparent to those of ordinary knowledge.

본 발명에서는 내부 실린더 형성후, 폴리실리콘을 이중층으로 형성하고 선택적인 MPS성장을 적용하여 정전용량의 증가(보다 낮은 커패시터 높이에서 요구되는 정전용량의 확보가 가능) 및 브릿지 발생 억제가 가능하며, 이를 통하여 소자의 특성 개선 및 수율 증가 효과를 얻을 수 있다.In the present invention, after forming the inner cylinder, polysilicon is formed into a double layer and selective MPS growth is applied to increase the capacitance (capable of securing the required capacitance at a lower capacitor height) and to suppress the occurrence of bridges. Through this can improve the characteristics of the device and increase the yield.

Claims (14)

반도체기판상에 식각방지막을 형성하는 단계와,Forming an etch stop layer on the semiconductor substrate; 상기 식각방지막상에 산화막을 형성하는 단계,Forming an oxide film on the etch stop layer; 산화막을 선택적으로 식각하고 이에 따라 노출되는 식각방지막을 식각하여 소정의 커패시터 콘택영역을 형성하는 단계,Selectively etching the oxide film and etching the exposed anti-etching film to form a predetermined capacitor contact region, 상기 커패시터 콘택영역을 포함한 산화막의 전면에 도핑농도가 다른 폴리실리콘을 연속으로 증착하여 이중 폴리실리콘층을 형성하는 단계,Forming a double polysilicon layer by continuously depositing polysilicon having different doping concentrations on the entire surface of the oxide film including the capacitor contact region; 상기 이중 폴리실리콘층을 커패시터 전하저장전극별로 분리시키는 단계,Separating the double polysilicon layer for each capacitor charge storage electrode; 상기 산화막을 제거하는 단계, 및Removing the oxide film, and 상기 이중 폴리실리콘층의 전표면에 MPS를 성장시켜 폴리실리콘과 MPS로 이루어진 실린더형 전하저장전극을 형성하는 단계를 포함하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법.Growing a MPS on the entire surface of the double polysilicon layer to form a cylindrical charge storage electrode made of polysilicon and MPS. 제1항에 있어서,The method of claim 1, 상기 식각방지막을 질화막(SiN) 또는 SiON로 형성하는 것을 특징으로 하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법.The method of forming a capacitor charge storage electrode of a semiconductor memory device, characterized in that the etch stop layer is formed of a nitride film (SiN) or SiON. 제1항에 있어서,The method of claim 1, 상기 식각방지막을 200-300Å 두께로 형성하는 것을 특징으로 하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법.The method of claim 1, wherein the anti-etching layer is formed to a thickness of 200-300 Å. 제1항에 있어서,The method of claim 1, 상기 산화막은 HF에 대한 습식식각비가 서로 다른 산화막들을 연속적으로 증착하여 2층구조로 형성하는 것을 특징으로 하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법.The oxide film is a method of forming a capacitor charge storage electrode of a semiconductor memory device, characterized in that to form a two-layer structure by successively depositing oxide films with different wet etching ratio to HF. 제4항에 있어서,The method of claim 4, wherein 상기 2층구조의 산화막에 있어서 하부산화막이 상부산화막에 비해 습식식각비가 낮은 것을 특징으로 하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법.The method of forming a capacitor charge storage electrode of a semiconductor memory device, wherein the lower oxide layer has a lower wet etching ratio than the upper oxide layer in the two layer oxide layer. 제4항에 있어서,The method of claim 4, wherein 상기 2층구조의 산화막을 PE-TEOS와 PSG로 형성하는 것을 특징으로 하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법.And forming a two-layer oxide film of PE-TEOS and PSG. 제1항에 있어서,The method of claim 1, 상기 산화막이 단일층으로 이루어진 것을 특징으로 하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법.The method for forming a capacitor charge storage electrode of a semiconductor memory device, characterized in that the oxide film is formed of a single layer. 제1항에 있어서,The method of claim 1, 상기 이중 폴리실리콘층은 도핑되지 않은 폴리실리콘이나 저농도로 도핑된 폴리실리콘을 증착하여 형성한 제1폴리실리콘층과 고농도로 도핑된 폴리실리콘을 증착하여 형성한 제2폴리실리콘층으로 이루어진 것을 특징으로 하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법.The double polysilicon layer comprises a first polysilicon layer formed by depositing undoped polysilicon or a lightly doped polysilicon and a second polysilicon layer formed by depositing a highly doped polysilicon. A capacitor charge storage electrode forming method of a semiconductor memory device. 제1항에 있어서,The method of claim 1, 상기 산화막 제거시 상기 식각방지막이 배리어 역할을 하는 것을 특징으로 하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법.The method of claim 1, wherein the etch stop layer serves as a barrier when the oxide layer is removed. 제1항 및 제4항에 있어서,The method according to claim 1 and 4, 상기 산화막이 2층구조로 된 경우, 상기 산화막의 제거시 2층구조의 산화막중의 하부산화막이 배리어 역할을 하는 것을 특징으로 하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법.When the oxide film has a two-layer structure, a method of forming a capacitor charge storage electrode of a semiconductor memory device, wherein the lower oxide film in the two-layer oxide film serves as a barrier when the oxide film is removed. 제1항 및 제8항에 있어서,The method according to claim 1 and 8, 상기 이중 폴리실리콘층의 제1폴리실리콘층이 도핑되지 않은 폴리실리콘으로 이루어진 경우, 고농도로 도핑된 제2폴리실리콘층에만 MPS가 성장되는 것을 특징으로 하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법.When the first polysilicon layer of the double polysilicon layer is made of undoped polysilicon, MPS is grown only on the second polysilicon layer heavily doped. 제1항 및 제8항에 있어서,The method according to claim 1 and 8, 상기 이중 폴리실리콘층의 제1폴리실리콘층이 저농도로 도핑된 폴리실리콘으로 이루어진 경우, 고농도로 도핑된 제2폴리실리콘층에 비해 저농도로 도핑된 제1폴리실리콘층에서 MPS가 낮은 속도로 성장되는 것을 특징으로 하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법.When the first polysilicon layer of the double polysilicon layer is made of low-doped polysilicon, the MPS is grown at a low rate in the low-doped first polysilicon layer compared to the high-doped second polysilicon layer. A method for forming a capacitor charge storage electrode of a semiconductor memory device, characterized in that. 제1항에 있어서,The method of claim 1, 상기 실린더형 전하저장전극의 내벽에 비해 외벽에 성장된 MPS의 크기가 더 작은 것을 특징으로 하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법.The method of forming a capacitor charge storage electrode of a semiconductor memory device, characterized in that the size of the MPS grown on the outer wall is smaller than the inner wall of the cylindrical charge storage electrode. 제1항에 있어서,The method of claim 1, 상기 실린더형 전하저장전극의 내벽에는 MPS가 성장되고 외벽에는 MPS가 성장되지 않는 것을 특징으로 하는 반도체 메모리소자의 커패시터 전하저장전극 형성방법.MPS is grown on an inner wall of the cylindrical charge storage electrode, and MPS is not grown on an outer wall of the cylindrical charge storage electrode.
KR1019990025827A 1999-06-30 1999-06-30 Method of fabricating storage node of capacitor in semiconductor device KR20010005040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990025827A KR20010005040A (en) 1999-06-30 1999-06-30 Method of fabricating storage node of capacitor in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990025827A KR20010005040A (en) 1999-06-30 1999-06-30 Method of fabricating storage node of capacitor in semiconductor device

Publications (1)

Publication Number Publication Date
KR20010005040A true KR20010005040A (en) 2001-01-15

Family

ID=19597789

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990025827A KR20010005040A (en) 1999-06-30 1999-06-30 Method of fabricating storage node of capacitor in semiconductor device

Country Status (1)

Country Link
KR (1) KR20010005040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816686B1 (en) * 2001-06-30 2008-03-27 주식회사 하이닉스반도체 Method for fabricating cylinder capacitor in semiconductor memory device
KR100940112B1 (en) * 2002-12-03 2010-02-02 매그나칩 반도체 유한회사 Method for forming the analogue capacitor of stack structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340765A (en) * 1993-08-13 1994-08-23 Micron Semiconductor, Inc. Method for forming enhanced capacitance stacked capacitor structures using hemi-spherical grain polysilicon
JPH09298278A (en) * 1996-05-08 1997-11-18 Nec Corp Capacitive element and manufacture thereof
KR19990045180A (en) * 1997-11-11 1999-06-25 가네꼬 히사시 Manufacturing method of capacitor with hemispherical grain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340765A (en) * 1993-08-13 1994-08-23 Micron Semiconductor, Inc. Method for forming enhanced capacitance stacked capacitor structures using hemi-spherical grain polysilicon
JPH09298278A (en) * 1996-05-08 1997-11-18 Nec Corp Capacitive element and manufacture thereof
KR19990045180A (en) * 1997-11-11 1999-06-25 가네꼬 히사시 Manufacturing method of capacitor with hemispherical grain

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816686B1 (en) * 2001-06-30 2008-03-27 주식회사 하이닉스반도체 Method for fabricating cylinder capacitor in semiconductor memory device
KR100940112B1 (en) * 2002-12-03 2010-02-02 매그나칩 반도체 유한회사 Method for forming the analogue capacitor of stack structure

Similar Documents

Publication Publication Date Title
US5302540A (en) Method of making capacitor
US6214688B1 (en) Methods of forming integrated circuit capacitors having U-shaped electrodes
US6767806B2 (en) Method of forming a patterned substantially crystalline ta2o5 comprising material, and method of forming a capacitor having a capacitor dielectric region comprising substantially crystalline ta2o5 comprising material
US5508223A (en) Method for manufacturing DRAM cell with fork-shaped capacitor
US6403431B1 (en) Method of forming in an insulating layer a trench that exceeds the photolithographic resolution limits
KR19990078288A (en) Manufacturing method of cylindrical stacked electrode
JPH10242430A (en) Manufacture of capacitor for semiconductor device
KR20020002898A (en) Method for forming storage node electrode in MML device
US5849617A (en) Method for fabricating a nested capacitor
KR20010005040A (en) Method of fabricating storage node of capacitor in semiconductor device
JPH10242417A (en) Semiconductor device and its manufacturing method
US6838719B2 (en) Dram cell capacitors having U-shaped electrodes with rough inner and outer surfaces
JPH0575060A (en) Manufacture of semiconductor storage device
US6238970B1 (en) Method for fabricating a DRAM cell capacitor including etching upper conductive layer with etching byproduct forming an etch barrier on the conductive pattern
KR100351455B1 (en) Method of forming storge node in semiconductor device
KR20010016805A (en) Fabrication Method of Double Cylinder Capacitor
KR20010083402A (en) A methode for fabricating a capacitor of a semiconductor device
US6133085A (en) Method for making a DRAM capacitor using a rotated photolithography mask
KR100198656B1 (en) Manufacture of semiconductor device
KR20040001221A (en) method for fabricating capacitor
KR0172252B1 (en) Capacitor fabrication method of semiconductor device
KR100226754B1 (en) Capacitor fabricating method
KR940009637B1 (en) Manufacturing method of capacitor cell with trench type bit line
KR100997777B1 (en) Method for forming capacitor of semiconductor device
KR100384793B1 (en) Method for manufacturing capacitor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application