KR20010004239A - A method for fabricating semiconductor memory device with decreased step between cell region and peripheral region - Google Patents

A method for fabricating semiconductor memory device with decreased step between cell region and peripheral region Download PDF

Info

Publication number
KR20010004239A
KR20010004239A KR1019990024862A KR19990024862A KR20010004239A KR 20010004239 A KR20010004239 A KR 20010004239A KR 1019990024862 A KR1019990024862 A KR 1019990024862A KR 19990024862 A KR19990024862 A KR 19990024862A KR 20010004239 A KR20010004239 A KR 20010004239A
Authority
KR
South Korea
Prior art keywords
interlayer insulating
cell region
mask
memory device
semiconductor memory
Prior art date
Application number
KR1019990024862A
Other languages
Korean (ko)
Inventor
안명규
조성윤
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019990024862A priority Critical patent/KR20010004239A/en
Publication of KR20010004239A publication Critical patent/KR20010004239A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE: A method of fabricating a semiconductor memory device is to prevent a burying fail of a metal interconnection and a short-circuit between a capacitor and a metal interconnection due to a topology between a cell region and a periphery circuit region. CONSTITUTION: A method for manufacturing a semiconductor memory device comprises the steps of: forming a capacitor(63) at a cell region of a substrate with a predetermined lower layer formed thereon; forming an interlayer dielectric(62) on an upper portion of the whole substrate; forming a cell topology reduction mask on the interlayer dielectric, the mask being formed to cover a slope start point of the cell region; and wet etching the interlayer dielectric by using the mask as a barrier. The interlayer dielectric is a BPSG(borophospho silicate glass). The wet etching is performed by using a buffered oxide etchant or a HF solution. The interlayer dielectric includes the BPSG film and a protective film of 200-500 angstroms.

Description

셀영역과 주변회로영역간의 단차를 완화시킨 반도체 메모리 소자 제조방법{A method for fabricating semiconductor memory device with decreased step between cell region and peripheral region}A method for fabricating semiconductor memory device with decreased step between cell region and peripheral region}

본 발명은 반도체 제조 기술에 관한 것으로, 특히 반도체 메모리 소자 제조시 셀영역의 캐패시터 형성으로 인한 셀영역과 주변회로영역간의 단차를 완화시킬 수 있는 반도체 메모리 소자 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor fabrication technology, and more particularly, to a method of fabricating a semiconductor memory device capable of alleviating a step between a cell region and a peripheral circuit region due to the formation of a capacitor in a cell region.

DRAM과 같은 반도체 메모리 소자를 제조함에 있어서, 통상 셀영역에는 캐패시터가 형층간나 주변회로영역에는 캐패시터가 형성되지 않기 때문에 셀영역과 주변회로영역간에 단차가 유발된다.In manufacturing a semiconductor memory device such as a DRAM, a step is caused between the cell region and the peripheral circuit region because capacitors are not formed in the cell region or capacitors in the peripheral circuit region.

이러한 셀영역과 주변회로영역간에 유발되는 단차를 완화하는 방법으로 종래에는 층간층간절연막 전면식각 공정을 사용하였으며, 최근에는 CTR(cell topology reduction) 마스크 및 습식식각을 이용하는 CRT 공정을 사용하고 있다.As a method of alleviating the step difference caused between the cell region and the peripheral circuit region, a conventional interlayer insulating film front surface etching process is used, and recently, a CRT process using a cell topology reduction (CTR) mask and wet etching is used.

첨부된 도면 도 1a 내지 도 1c는 종래의 층간절연막 전면식각 공정 및 후속 금속배선 공정시의 주사전자현미경(scanning electron microscope, SEM) 사진으로, 우선 도 1a는 셀영역에 캐패시터(2)를 형성하고, 전체구조 상부에 층간절연막(BPSG, borophpospho silicate glass)(1)이 형성된 상태를 나타낸 것으로, 셀영역과 주변회로영역간에 10000Å 정도의 단차가 유발되어 셀영역과 주변회로영역의 경계 부분에서 약 28°정도의 단차 각도를 이루고 있다.1A through 1C are scanning electron microscope (SEM) photographs of a conventional interlayer insulating film front etching process and a subsequent metallization process. First, FIG. 1A illustrates a capacitor 2 formed in a cell region. The interlayer insulating film (BPSG) is formed on the entire structure, and a step of about 10000Å is induced between the cell region and the peripheral circuit region. It is a step angle of about degrees.

다음으로, 도 1b는 층간절연막(1)을 일정 시간동안 전면식각한 상태를 나타낸 것으로, 전면식각 공정의 특성상 셀영역과 주변회로영역간의 단차 감소 효과는 거의 없는 반면 단차 각도는 소폭 감소함으로써 전체적으로 단차가 약간 완화됨을 확인할 수 있다.Next, FIG. 1B shows a state in which the interlayer insulating film 1 is etched for a predetermined time. The step difference between the cell region and the peripheral circuit region is almost insignificant due to the characteristics of the etch process. It can be seen that is slightly relaxed.

도 1c는 층간절연막(1)의 전면식각에도 불구하고 셀영역과 주변회로영역간의 높은 단차로 인해 이후의 제1 금속배선(5) 및 제2 금속배선(3)간 층간절연막(SOG, silicon-on-glass)(4)의 두께가 토폴로지가 낮은 주변회로영역에서 상대적으로 높게 나타나 비아홀 식각후 제2 금속배선(3) 매립시 층간절연막(SOG)(4)으로부터의 가스분출(out-gassing) 현상에 의해 비아 콘택 내에 보이드(void)(6)가 형성되는 문제점이 있었다.FIG. 1C illustrates the interlayer insulating film SOG (silicon-silicon) between the first metal wiring 5 and the second metal wiring 3 due to the high level of difference between the cell region and the peripheral circuit region despite the entire surface etching of the interlayer insulating film 1. The thickness of the on-glass 4 is relatively high in the peripheral circuit region having a low topology, and thus out-gassing from the interlayer insulating film SOG 4 when the second metal wiring 3 is buried after via hole etching. There is a problem in that a void 6 is formed in the via contact by the phenomenon.

이러한 문제점을 해결하기 위하여 최근에는 도 2a에 도시된 바와 같이 캐패시터(23) 및 층간절연막(BPSG)(22) 형성 후, 셀을 제외한 나머지 부위는 포토레지스트(CTR 마스크)(21)로 가리고 셀부위의 층간절연막(22)만을 습식 식각함으로써 셀영역과 주변회로영역간 단차를 현저히 낮추는 CTR 공정을 적용하고 있다.In order to solve this problem, after forming the capacitor 23 and the interlayer dielectric layer (BPSG) 22, as shown in FIG. 2A, the remaining portions except for the cell are covered with the photoresist (CTR mask) 21 and the cell region is shown in FIG. 2A. The wet etching of only the interlayer insulating film 22 is applied to the CTR process to significantly reduce the step difference between the cell region and the peripheral circuit region.

이러한 CTR 공정을 적용할 경우, 습식식각시 과도한 측면 식각으로 인해 도 2b에 도시된 바와 같이 셀영역과 주변회로영역간 최대단차는 약 7000∼8000Å, 단차 각도는 약 20°로써 전면식각 공정에 비해서는 단차 완화 효과가 크다. 미설명 도면 부호 '24'는 후속 공정을 위한 포토레지스트를 나타낸 것이다.When the CTR process is applied, the maximum step between the cell area and the peripheral circuit area is about 7000 to 8000 Å and the step angle is about 20 ° due to excessive side etching during wet etching, compared to the front etching process. The step reduction effect is great. Unexplained reference numeral 24 denotes a photoresist for subsequent processing.

그러나, 이러한 CRT 공정 후, 금속배선 공정을 진행하게 되면, 도 3a 및 도 3b에 도시된 바와 같이 토폴로지가 낮은 주변회로영역에서 제2 금속배선(31)의 매립불량으로 인한 보이드(32) 문제가 완전히 해결되지 않았으며, 또한 셀 블럭(cell block)의 가장자리 부분에서는 층간절연막(36)의 과도한 식각이 유발되어 도 3c에 도시된 바와 같이 플레이트전극(34)과 제1 금속배선(33)의 단락(35)이 발견되기도 한다.However, when the metallization process is performed after the CRT process, as shown in FIGS. 3A and 3B, the void 32 problem due to the poor embedding of the second metallization 31 in the peripheral circuit region having a low topology is generated. Although not completely solved, an excessive etching of the interlayer insulating layer 36 is caused at the edge of the cell block, thereby shorting the plate electrode 34 and the first metal wiring 33 as shown in FIG. 3C. (35) may be found.

이에 층간절연막의 불순물 농도를 변화시키거나, 도 4a에 도시된 바와 같이 층간절연막(42) 위에 수분흡수 방지를 위하여 증착하는 보호막(capping layer, 통상 질화막) 두께를 조절하여 습식식각시의 측면과도식각 현상을 최대한 억제시킴으로써 셀영역과 주변회로영역간 단차를 약 5000∼7000Å 수준으로 감소시킬 수 있었고, 또한 습식식각시의 식각 두께를 적절히 조절함으로써 비트라인(도시되지 않음)과 제1 금속배선(44)간의 최소거리를 1000∼2000Å으로 제어하여 단락을 방지할 수 있게 되었다. 미설명 도면 부호 '41'는 CRT 마스크를 나타낸 것이다.Accordingly, the side and etching of the wet etching process may be performed by changing the impurity concentration of the interlayer insulating layer or by controlling the thickness of a capping layer (usually a nitride layer) deposited on the interlayer insulating layer 42 to prevent water absorption. By suppressing the phenomenon as much as possible, the step difference between the cell region and the peripheral circuit region could be reduced to about 5000 to 7000 Å, and the bit line (not shown) and the first metal wiring 44 were adjusted by appropriately adjusting the etching thickness during wet etching. The short distance can be prevented by controlling the minimum distance of the liver to 1000 to 2000Å. Reference numeral '41' denotes a CRT mask.

그러나, 이 경우에도 도 4b에 도시된 바와 같이 주변회로 영역에서의 금속배선간 층간절연막(SOG)(45)의 두께가 약 3000Å 정도로 상당히 높게 나타남으로써 후속 제2 금속배선(도시되지 않음) 매립시 금속배선간 층간절연막(SOG)(45)으로부터 비아 콘택내로의 가스분출로 인한 금속배선 매립불량 현상이 여전히 문제가 될 가능성이 크다. 미설명 도면 부호 '43'은 캐패시터를 나타낸 것이다.However, even in this case, as shown in FIG. 4B, the thickness of the inter-metal interlayer insulating film (SOG) 45 in the peripheral circuit region is considerably high, about 3000 kW, so that the subsequent second metal wiring (not shown) is buried. Poor deposition of the metal wiring due to the gas ejection from the inter-metal interlayer insulating film (SOG) 45 into the via contact is still a problem. Reference numeral 43 denotes a capacitor.

본 발명은 셀영역과 주변회로 영역의 단차에 기인한 캐패시터와 금속배선의 단락 및 금속배선의 매립불량 현상을 방지할 수 있는 반도체 메모리 소자 제조방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a semiconductor memory device capable of preventing a short circuit between a capacitor and a metal wiring due to a step between a cell region and a peripheral circuit region, and a poor filling of the metal wiring.

도 1a 내지 도 1c는 종래의 층간절연막 전면식각 공정 및 후속 금속배선 공정시의 주사전자현미경(scanning electron microscope, SEM) 사진.1A to 1C are scanning electron microscope (SEM) photographs of a conventional interlayer insulating film front etching process and a subsequent metallization process.

도 2a 및 도 2b는 각각 종래의 CRT 공정후의 단면 SEM 사진.2A and 2B are cross-sectional SEM photographs after the conventional CRT process, respectively.

도 3a 및 도 3b는 종래의 CRT 공정 후 후속 금속배선 공정을 마친 단면의 SEM 사진.Figure 3a and Figure 3b is a SEM image of the cross-section after the subsequent metallization process after the conventional CRT process.

도 4a 및 도 4b는 각각 또다른 종래기술에 따른 CRT 공정시 및 후속 금속배선 공정을 마친 단면의 SEM 사진.4A and 4B are SEM images of a cross section of the CRT process and the subsequent metallization process according to another prior art, respectively.

도 5는 CTR 공정시 습식식각 프로파일을 나타낸 단면 SEM 사진.Figure 5 is a cross-sectional SEM photograph showing the wet etching profile during the CTR process.

도 6a 및 도 6b는 본 발명의 일 실시예에 따른 셀영역과 주변영역간 단차 완화 공정을 도시한 SEM 사진.6A and 6B are SEM photographs illustrating a step mitigation process between a cell region and a peripheral region according to an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

61 : CTR 마스크61: CTR Mask

62 : 층간절연막62: interlayer insulating film

63 : 캐패시터63: capacitor

상기의 기술적 과제를 해결하기 위한 본 발명의 특징적인 반도체 메모리 소자 제조방법은, 소정의 하부층이 형성된 기판 상의 셀 영역에 캐패시터를 형성하는 제1 단계; 상기 기판 전체구조 상부에 층간절연막을 형성하는 제2 단계; 상기 층간절연막 상에 셀 토폴로지 감소용 마스크를 형성하되, 상기 마스크가 상기 셀영역의 경사 시작점을 덮도록 형성하는 제3 단계; 및 상기 마스크를 베리어로 사용하여 상기 층간절연막을 습식식각하는 제4 단계를 포함하여 이루어진다.In accordance with another aspect of the present invention, there is provided a method of manufacturing a semiconductor memory device, the method including: forming a capacitor in a cell region on a substrate on which a predetermined lower layer is formed; A second step of forming an interlayer insulating film on the entire substrate structure; Forming a mask for reducing the cell topology on the interlayer insulating layer, wherein the mask covers the starting point of the inclination of the cell region; And a fourth step of wet etching the interlayer insulating layer using the mask as a barrier.

본 발명은 반도체 메모리 소자의 셀영역에서의 캐패시터 형성으로 인한 셀영역과 주변회로영역간의 단차를 최소화하는 습식 식각 방법에 관한 것으로, 습식식각의 측면과도식각 특성을 이용하고, CTR(cell topology reduction) 마스크 위치의 최적화를 동시에 적용함으로써 셀영역과 주변회로영역간의 단차를 최소화하고 단차각도를 최적화시키는 기술이다.The present invention relates to a wet etching method for minimizing the step difference between the cell region and the peripheral circuit region due to the formation of a capacitor in the cell region of the semiconductor memory device. By applying the optimization of the mask position at the same time, it minimizes the step between the cell area and the peripheral circuit area and optimizes the step angle.

이하, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자가 본 발명을 보다 용이하게 실시할 수 있도록 하기 위하여 본 발명의 바람직한 실시예를 소개하기로 한다.Hereinafter, preferred embodiments of the present invention will be introduced in order to enable those skilled in the art to more easily carry out the present invention.

첨부된 도면 도 5는 평판의 기판위에 층간절연막(BPSG)(52)을 증착시킨 후 CTR 마스크(51)를 형성한 다음 BOE(buffered oxide etchant)를 이용하여 습식식각을 한 후의 프로파일을 나타낸 단면 SEM 사진으로, 습식식각의 측면과도식각 특성을 잘 보여준다. 습식식각 형태는 약 15°의 기울기를 가지는 직각삼각형 형태를 나타내며 아래쪽으로 식각된 깊이에 비해 측면으로 약 4배 정도 더욱 과도하게 식각됨을 볼수 있다. 이러한 측면과도식각은 층간절연막(52)에 첨가되는 불순물의 농도 및 CRT 마스크(51)를 구성하는 포토레지스트의 종류에 따라서 그 과도식각의 정도가 다르게 나타나는데, 이로부터 측면과도식각의 정도는 층간절연막/포토레지스트 사이의 흡착력 정도에 의존함을 유추할 수 있다. 층간절연막(52)의 이러한 측면과도식각 특성은 층간절연막(52)의 셀영역과 주변회로영역간 단차 완화에 있어 가장 적합하게 적용될 수 있다.FIG. 5 is a cross-sectional SEM view of a profile after depositing an interlayer dielectric layer (BPSG) 52 on a substrate of a flat plate, forming a CTR mask 51, and performing wet etching using a buffered oxide etchant (BOE). The photograph shows the side and the etching characteristics of wet etching well. The wet etch forms a right triangle with an inclination of about 15 ° and can be seen to be etched about four times more laterally than the depth etched downward. The degree of overetching varies according to the concentration of impurities added to the interlayer insulating film 52 and the type of photoresist constituting the CRT mask 51. From this, the degree of side etching is different from the interlayer insulating film. It can be deduced that it depends on the degree of adsorption force between photoresists. This side surface and etching characteristics of the interlayer insulating film 52 may be most suitably applied to alleviate the step difference between the cell region and the peripheral circuit region of the interlayer insulating film 52.

첨부된 도면 도 6a 및 도 6b는 본 발명의 일 실시예에 따른 셀영역과 주변영역간 단차 완화 공정을 도시한 SEM 사진으로, 그 공정은 우선 도 6a에 도시된 바와 같이 습식식각의 측면과도식각 특성을 적용하기 위하여 셀영역과 주변회로영역의 경계면이 아닌 셀영역의 단차가 시작되는 지점에서부터 CTR 마스크(61)를 형성한다. 습식식각의 깊이는 셀영역의 층간절연막(62)의 두께를 기준으로 기존의 4500∼5000Å에서 1500∼2000Å으로 최대한 낮추어 셀영역과 주변회로영역간의 단차를 최소화한다. CTR 마스크(61)의 위치 선정은 셀영역의 최외곽의 캐패시터를 기준으로 하며, CTR 마스크(61)에 하드 베이크(Hard Bake) 처리 등을 적용함으로써 습식식각시의 측면과도식각의 정도를 조절할 수 있다. 또한, 층간절연막(62)와 함께 보호막(주로 질화막)(도시되지 않음) 두께를 200∼500Å로 조절하여 습식식각시의 측면과도식각의 정도를 조절할 수 있으며, 층간절연막(62)에 함유되는 불순물(B, P)의 농도를 조절하여 습식식각시의 측면과도식각의 정도를 조절할 수 있다.6A and 6B are SEM photographs showing a step relaxation process between a cell region and a peripheral region according to an embodiment of the present invention, wherein the process is first shown in FIG. 6A in terms of wet etching and side etching characteristics. In order to apply the CTR mask 61, the CTR mask 61 is formed from the point where the step of the cell region starts, not the boundary between the cell region and the peripheral circuit region. The depth of the wet etching is lowered as much as 1500 to 2000 mW from 4500 to 5000 mW based on the thickness of the interlayer insulating layer 62 of the cell area to minimize the step between the cell area and the peripheral circuit area. Positioning of the CTR mask 61 is based on the outermost capacitor of the cell region, and by applying a hard bake treatment to the CTR mask 61, the degree of side and degree of etching during wet etching can be adjusted. have. In addition, the thickness of the protective film (mainly a nitride film) (not shown) together with the interlayer insulating film 62 may be adjusted to 200 to 500 kPa to control the degree of side and drawing etching during wet etching, and the impurities contained in the interlayer insulating film 62. By adjusting the concentration of (B, P), the degree of side etching and degree of etching can be controlled.

다음으로, 도 6b는 상기 도 6a에 도시된 공정을 실시한 후의 단면을 나타낸 것으로, 도시된 바와 같이 셀영역과 주변회로영역간의 단차 높이가 약 3000Å 정도로 크게 완화되며, 이에 따라 단차 각도도 크게 줄어들었음을 확인할 수 있다.Next, Figure 6b is a cross-sectional view after performing the process shown in Figure 6a, as shown in the step height between the cell region and the peripheral circuit region is greatly relaxed to about 3000Å, thereby reducing the step angle significantly can confirm.

상기와 같은 단차 완화 공정을 진행할 경우, 전술한 바와 같이 단차 및 단차 각도를 현저하게 줄일 수 있으며, 이로 인하여 후속 금속배선 공정시 캐패시터(63)와 금속배선(도시되지 않음)의 단락을 방지할 수 있다. 미설명 도면 부호 '64'는 본 실시예에 따른 경우 종래 캐패시터(63)와 금속배선간 단락이 발생했던 부분에서 충분한 두께의 층간절연막(62)가 존재하므로 단락을 방지할 수 있음을 나타낸 것이다.When the step mitigation process as described above, the step and the step angle can be significantly reduced as described above, thereby preventing the short circuit between the capacitor 63 and the metal wiring (not shown) during the subsequent metal wiring process. have. Reference numeral 64 denotes that the interlayer insulating film 62 having a sufficient thickness exists in the portion where the short circuit between the capacitor 63 and the metal wiring has occurred in the case of the present embodiment, so that the short circuit can be prevented.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made in the art without departing from the technical spirit of the present invention. It will be apparent to those of ordinary knowledge.

전술한 본 발명은 CRT 마스크를 사용한 습식식각시의 측면과도식각 특성을 역이용하여 셀영역과 주변회로영역간의 단차를 크게 완화시키는 효과가 있으며, 이로 인하여 후속 금속배선 공정시 금속배선 매립불량 현상을 방지함으로써 소자의 신뢰성 확보 및 수율 향상을 기대할 수 있다.The present invention has the effect of greatly alleviating the step difference between the cell region and the peripheral circuit region by using the reverse side and the etching characteristics of the wet etching using the CRT mask, thereby preventing the poor embedded wiring during the subsequent metal wiring process. As a result, the reliability and yield of the device can be expected.

Claims (6)

소정의 하부층이 형성된 기판 상의 셀 영역에 캐패시터를 형성하는 제1 단계;Forming a capacitor in a cell region on a substrate on which a predetermined lower layer is formed; 상기 기판 전체구조 상부에 층간절연막을 형성하는 제2 단계;A second step of forming an interlayer insulating film on the entire substrate structure; 상기 층간절연막 상에 셀 토폴로지 감소용 마스크를 형성하되, 상기 마스크가 상기 셀영역의 경사 시작점을 덮도록 형성하는 제3 단계; 및Forming a mask for reducing the cell topology on the interlayer insulating layer, wherein the mask covers the starting point of the inclination of the cell region; And 상기 마스크를 베리어로 사용하여 상기 층간절연막을 습식식각하는 제4 단계A fourth step of wet etching the interlayer insulating layer using the mask as a barrier 를 포함하여 이루어진 반도체 메모리 소자 제조방법.Method of manufacturing a semiconductor memory device comprising a. 제1항에 있어서,The method of claim 1, 상기 층간절연막이,The interlayer insulating film, BPSG(borophpospho silicate glass)막인 것을 특징으로 하는 반도체 메모리 소자 제조방법.Method of manufacturing a semiconductor memory device, characterized in that the BPSG (borophpospho silicate glass) film. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 습식식각이,The wet etching, 완충 산화막 식각제(BOE) 또는 HF 용액을 사용하여 수행되는 것을 특징으로 하는 반도체 메모리 소자 제조방법.A method of manufacturing a semiconductor memory device, characterized in that performed using a buffer oxide etch (BOE) or HF solution. 제3항에 있어서,The method of claim 3, 상기 습식식각시 상기 층간절연막의 식각 타겟이 1500∼2000Å인 것을 특징으로 하는 반도체 메모리 소자 제조방법.And the etching target of the interlayer insulating layer is 1500 to 2000 microseconds during the wet etching. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 제3 단계 수행후, 상기 마스크를 하드 베이크 처리하는 제5 단계를 더 포함하여 이루어진 것을 특징으로 하는 반도체 메모리 소자 제조방법.And performing a hard bake treatment on the mask after performing the third step. 제1항에 있어서,The method of claim 1, 상기 층간절연막이,The interlayer insulating film, BPSG(borophpospho silicate glass)막과 200∼500Å의 보호막을 포함하여 이루어진 것을 특징으로 하는 반도체 메모리 소자 제조방법.A method of fabricating a semiconductor memory device, comprising a BPSG (borophpospho silicate glass) film and a protective film of 200 to 500 microns.
KR1019990024862A 1999-06-28 1999-06-28 A method for fabricating semiconductor memory device with decreased step between cell region and peripheral region KR20010004239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990024862A KR20010004239A (en) 1999-06-28 1999-06-28 A method for fabricating semiconductor memory device with decreased step between cell region and peripheral region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990024862A KR20010004239A (en) 1999-06-28 1999-06-28 A method for fabricating semiconductor memory device with decreased step between cell region and peripheral region

Publications (1)

Publication Number Publication Date
KR20010004239A true KR20010004239A (en) 2001-01-15

Family

ID=19596238

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990024862A KR20010004239A (en) 1999-06-28 1999-06-28 A method for fabricating semiconductor memory device with decreased step between cell region and peripheral region

Country Status (1)

Country Link
KR (1) KR20010004239A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208367A (en) * 2010-03-30 2011-10-05 三美电机株式会社 Semiconductor device manufacturing method
KR20200145948A (en) * 2019-06-21 2020-12-31 삼성전자주식회사 Semiconductor device and fabrication method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208367A (en) * 2010-03-30 2011-10-05 三美电机株式会社 Semiconductor device manufacturing method
US20110244638A1 (en) * 2010-03-30 2011-10-06 Mitsumi Electric Co., Ltd. Semiconductor device manufacturing method
US8236639B2 (en) * 2010-03-30 2012-08-07 Mitsumi Electric Co., Ltd. Semiconductor device manufacturing method
KR20200145948A (en) * 2019-06-21 2020-12-31 삼성전자주식회사 Semiconductor device and fabrication method thereof
US11222897B2 (en) 2019-06-21 2022-01-11 Samsung Electronics Co., Ltd. Semiconductor device and a fabrication method thereof

Similar Documents

Publication Publication Date Title
KR100382729B1 (en) Metal contact structure in semiconductor device and forming method thereof
JP2720796B2 (en) Method for manufacturing semiconductor device
KR100301370B1 (en) Method for manufacturing dram cell capacitor
KR100585007B1 (en) Method for fabrication of semiconductor device capable of forming fine pattern
US5604659A (en) Microelectronic device with centered storage capacitor cavity sized less than feature size
KR100207462B1 (en) Capacitor fabrication method of semiconductor device
KR20010004239A (en) A method for fabricating semiconductor memory device with decreased step between cell region and peripheral region
KR20010059982A (en) A method for forming a capacitor of a semiconductor device
JPH10116904A (en) Manufacture of semiconductor device
US6165895A (en) Fabrication method of an interconnect
KR100571652B1 (en) Method for fabrication of semiconductor device capable of forming fine pattern
JPH09120990A (en) Formation of connecting hole
KR100812298B1 (en) A method for forming a metal-insulator-metal capacitor
KR100373344B1 (en) Method for manufacturing capacitor in semiconductor device
US7119014B2 (en) Method for fabricating a semiconductor device having a tapered-mesa side-wall film
KR100338115B1 (en) Method for forming metal film in semiconductor device
KR100745058B1 (en) Method for forming self align contact hole of semiconductor device
KR100310823B1 (en) Contact hole formation method of semiconductor device
KR100235960B1 (en) Method of forming conducting line in semiconductor device
KR100519515B1 (en) Method for forming bit-line of a semiconductor device
KR100271660B1 (en) Method of fabricating inter isolation film of semiconductor device
KR100695417B1 (en) Method for fabrication of semiconductor device capable of forming fine pattern
KR100342828B1 (en) Method of forming a storage node in a semiconductor device
KR100875658B1 (en) Semiconductor device manufacturing method
KR100327581B1 (en) Method for metal line of a semiconductor device

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid