KR20010002820A - Method for Manufacturing Succinic Acid Using Glycerol - Google Patents

Method for Manufacturing Succinic Acid Using Glycerol Download PDF

Info

Publication number
KR20010002820A
KR20010002820A KR1019990022830A KR19990022830A KR20010002820A KR 20010002820 A KR20010002820 A KR 20010002820A KR 1019990022830 A KR1019990022830 A KR 1019990022830A KR 19990022830 A KR19990022830 A KR 19990022830A KR 20010002820 A KR20010002820 A KR 20010002820A
Authority
KR
South Korea
Prior art keywords
succinic acid
glycerol
culture
culture medium
production
Prior art date
Application number
KR1019990022830A
Other languages
Korean (ko)
Other versions
KR100313134B1 (en
Inventor
이상엽
장호남
이평천
이우기
Original Assignee
윤덕용
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤덕용, 한국과학기술원 filed Critical 윤덕용
Priority to KR19990022830A priority Critical patent/KR100313134B1/en
Publication of KR20010002820A publication Critical patent/KR20010002820A/en
Application granted granted Critical
Publication of KR100313134B1 publication Critical patent/KR100313134B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/35Polyols, e.g. glycerin, inositol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/70Undefined extracts
    • C12N2500/74Undefined extracts from fungi, e.g. yeasts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: A method for producing succinic acid using glycerol is provided, thereby acetic acid, which is generally produced as a byproduct in production processes of succinic acid using glucose, can be remarkably inhibited, so that the production costs can be lowered. CONSTITUTION: The succinic acid is produced by batch culturing microorganism selected from Anaerobiospirillum succiniciproducens, Succinivibrio dextrinosolvens, Fibrobacter succinogenes, or Ruminococcus flavefaciens, preferably Anaerobiospirillum succiniciproducens in a medium. The medium comprises 5-30g of glycerol and 1-15g of yeast extract per 1L thereof, and is suitable for culturing anaerobic microorganisms. The culture is carried out at the temperature of 35 to 42 deg.C, preferably 37 to 40 deg.C, and most preferably 39 deg.C, and at pH 6.0 to 7.5, with supplying carbonic acid gas at a flow rate of 0.25 to 0.5 vvm.

Description

글리세롤을 이용한 숙신산의 생산방법{Method for Manufacturing Succinic Acid Using Glycerol}Method for manufacturing succinic acid using glycerol {Method for Manufacturing Succinic Acid Using Glycerol}

본 발명은 글리세롤을 이용한 숙신산의 생산방법에 관한 것이다. 좀 더 구체적으로, 본 발명은 유류산업(oil industry)에서 나오는 폐기물인 글리세롤(glycerol)을 배양원료로 포함하는 배양배지에 숙신산 발효미생물을 접종하고, 회분식 배양과정을 통해 배양시킴으로써, 숙신산을 고수율 및 고생산성으로 생산할 수 있는 글리세롤을 이용한 숙신산의 생산방법에 관한 것이다.The present invention relates to a method for producing succinic acid using glycerol. More specifically, the present invention is inoculated succinic acid fermentation microorganisms in a culture medium containing glycerol (glycerol) which is a waste from the oil industry as a culture material, and cultured through a batch culture process, high yield of succinic acid And it relates to a production method of succinic acid using glycerol that can be produced with high productivity.

최근 환경규제의 강화로 인해 석유화학 제품의 생산단가, 이용 및 처리비용 등이 급격히 상승한 반면, 환경적 규제 강화뿐만 아니라 미생물 배양기술과 유전공학적 기술의 획기적인 발달에 힘입어, 생물학적 방법에 의한 생화학물질(biochemical)의 생산이 점차 관심을 끌고 있다. 이러한 방법은 사용원료가 값싼 재생자원(renewable resource)이라는 측면에서 화학합성법보다 경제적인 우월성을 인정받고 있으며(참조: Landucci, et al., Appl. Biochem. Biotechnol., l45:678-696 (1994)), 환경친화적 공정이기 때문에 대량생산에 의한 원가절감을 위해 점차 연구가 확대되고 있는 추세이다. 또한, 최근 들어 생화학물질의 가격이 많이 하락하여 이러한 생화학물질에 대한 시장성이 매우 높아지고 있는 바, 이러한 이유로 인하여 미생물을 이용하여 생물자원(biomass)으로부터 젖산(lactic acid), 초산(acetic acid) 또는 숙신산(succinic acid) 등의 유기산을 생성하고자 하는 노력이 활발히 이루어지고 있다(참조: 임억규, 생물산업, 5:60-75(1992)).Recently, due to the strengthening of environmental regulations, the production cost, utilization and processing cost of petrochemical products have risen sharply, but biochemicals by biological methods are supported not only by strengthening environmental regulations but also by the breakthrough development of microbial culture technology and genetic engineering technology. The production of biochemicals is of increasing interest. This method is recognized for its economic superiority over chemical synthesis in the sense that the raw materials are cheap renewable resources (Landucci, et al., Appl. Biochem. Biotechnol., L45: 678-696 (1994)). As it is an environmentally friendly process, research is gradually expanding to reduce costs by mass production. In addition, the price of biochemicals has recently decreased a lot, and thus the marketability of such biochemicals has been very high. For this reason, lactic acid, acetic acid or succinic acid from biomass using microorganisms is used. Efforts to produce organic acids, such as succinic acid, have been actively made (Lim Euk-kyu, Bioindustry, 5: 60-75 (1992)).

숙신산의 생물학적 생산에 대한 연구는 1938년 록우드(Lockwood) 등이 미생물인 푸사리움 마티(Fusarium martii)를 이용하여 당으로부터 18%의 수율로 숙신산을 생산한 것을 발표하면서 시작되었다. 그 후, 숙시니비브리오 덱스트리노솔벤스 (Succinivibrio dextrinosolvens), 피브로박터 숙시노겐스(Fibrobacter succinogenes) 또는 루미노코커스 플라비파시엔스(Ruminococcus flavefaciens) 등을 포함한 다양한 종류의 혐기성 미생물(참조: Zeikus, Annu. Rev. Microbiol., 34:423-464(1980))이 포도당대사를 통하여 숙신산을 최종산물로 생성하는 것으로 보고되었지만, 산업적으로 유용한 경제성이 있는 높은 수율의 숙신산을 생성하는 균주는 보고되지 않았으며, 다만 최근에 다른 숙신산 생산 혐기성 미생물과는 다르게, 과량의 탄산 존재 시에 포도당으로부터 높은 농도와 수율로 숙신산을 생산하는 언에어로바이오스피리움 숙시니시프로두센스(Anaerobiospirillum succinici producens)가 숙신산을 직접 생산하는 가장 유망한 균주 중의 하나로 밝혀졌다.The study of the biological production of succinic acid began in 1938 when Lockwood et al. Announced the production of succinic acid from sugar by 18% yield using the microorganism Fusarium martii. Thereafter, various types of anaerobic microorganisms (Succinivibrio dextrinosolvens), Fibrobacter succinogenes or Ruminococcus flavefaciens, etc. (see Zeikus, Annu. Rev. Microbiol., 34: 423-464 (1980)) has been reported to produce succinic acid as a final product through glucose metabolism, but no industrially useful strains producing high yields of succinic acid have been reported. However, unlike recent succinic acid-producing anaerobic microorganisms, Anaerobiospirillum succinici producens, which produces succinic acid in high concentrations and yields from glucose in the presence of excess carbonic acid, directly produces succinic acid. It turns out to be one of the most promising strains to produce.

한편, 글리세롤은 유류산업(oil industry)으로부터 나오는 부산물로서, 가공과정을 통하여 유용하게 다시 사용할 수 있는 재생자원이며, 이를 이용하여 미생물에 의해 유용한 생화학물질을 생산할 수가 있다. 글리세롤은 현재 비누 제조업, 지방산 제조업, 왁스 및 계면활성제 생산 제조업 등에서 과량으로 생산되고 있는 바, 현재까지 글리세롤을 이용하여 연구되고 있거나 생산되는 화합물은 로이터린(reuterin, 참조: Talarico, et al., Antimicrob. Agents Chemother., 32:1854-1858 (1988)), 2,3-부탄디올(2,3-butanediol, 참조: Biebl, et al., Appl. Microbiol. Biotechnol., 50:24-29 (1998)), 1,3-프로판디올(1,3-propanediol, 참조: Menzel, et al., Enzyme Microb. Technol., 20:82-86 (1997)) 등이 보고되었다. 그러나, 이처럼 글리세롤을 출발물질로 하여 유용한 생화학물질을 생산하려는 노력에도 불구하고, 글리세롤을 이용한 숙신산 생산법에 대한 연구는 현재까지 국내외적으로 전무한 실정이었다.On the other hand, glycerol is a by-product from the oil industry, and is a renewable resource that can be usefully reused through processing, and can use this to produce useful biochemicals by microorganisms. Glycerol is currently produced in excess in soap manufacturing, fatty acid manufacturing, wax and surfactant production manufacturing, etc. To date, compounds studied or produced using glycerol are reuterin (Talarico, et al., Antimicrob). Agents Chemother., 32: 1854-1858 (1988)), 2,3-butanediol (2,3-butanediol, see Biebl, et al., Appl. Microbiol.Biotechnol., 50: 24-29 (1998) ), 1,3-propanediol (1,3-propanediol, see Menzel, et al., Enzyme Microb. Technol., 20: 82-86 (1997)). However, despite efforts to produce useful biochemicals using glycerol as a starting material, studies on succinic acid production method using glycerol have not been conducted at home and abroad.

한편, 유류산업의 꾸준한 발달로 인하여 과잉 생산되는 글리세롤의 처리문제가 지속적으로 대두되고 있으며, 환경문제 등을 고려하여 글리세롤을 출발물질로 이용한 생화학물질, 특히 숙신산에 대한 연구가 진행되고 있다. 또한, 숙신산이 현재 화학공정과 비교하여 가격 경쟁력을 가진 몇 가지 안되는 대체 생화학물질이라는 이유로 앞으로도 많은 연구가 진행될 것으로 예측되나, 아직 생산공정에 대한 연구는 많이 수행되지 않은 실정이다. 따라서, 생물학적 방법에 의한 숙신산의 생산이 경제성을 가지기 위해서 뿐만 아니라, 환경적인 측면을 고려하여 글리세롤을 효율적으로 이용할 수 있는 배양공정개발, 특히 글리세롤을 이용하여 숙신산을 생산할 수 있는 배양공정 및 조건을 확립하여, 글리세롤을 효율적으로 활용할 수 있는 기술을 개발하여야 할 필요성이 끊임없이 대두되었다.On the other hand, due to the steady development of the oil industry, the problem of overproduction of glycerol has been continuously raised, and in consideration of environmental issues, research on biochemicals, especially succinic acid, using glycerol as a starting material is being conducted. In addition, since succinic acid is one of the few alternative biochemicals that are competitive in price compared to the current chemical process, many studies are expected to be conducted in the future, but the research on the production process has not been carried out yet. Therefore, not only the production of succinic acid by biological method is economical, but also in consideration of environmental aspects, the development of a culture process that can efficiently use glycerol, in particular, the establishment of culture processes and conditions that can produce succinic acid using glycerol Therefore, there is a constant need to develop a technology that can effectively utilize glycerol.

이에, 본 발명자들은 글리세롤을 효율적으로 이용한 배양공정에 의하여 숙신산을 효과적으로 생산할 수 있는 기술을 확립하고자 예의 노력한 결과, 기존의 배양공정에서 이용한 포도당 대신에, 유류산업의 부산물이며 폐기물인 글리세롤을 이용하여 숙신산을 생산할 수 있는 회분식 배양공정을 개발하고, 미생물 배양기술을 통하여 글리세롤을 포함하는 배양배지로부터 숙신산을 생산한 결과, 종래에 보고된 숙신산 수율보다 높은 수율로 숙신산을 생산할 수 있었으며, 특히 숙신산 생산시에 생성되는 부산물인 초산의 생성이 획기적으로 억제될 수 있음을 확인하고, 본 발명을 완성하게 되었다.Therefore, the present inventors have made efforts to establish a technology that can effectively produce succinic acid by the culturing process using glycerol efficiently, instead of glucose used in the existing culturing process, succinic acid using glycerol as a by-product and waste of the oil industry As a result of the development of a batch culture process capable of producing succinic acid from a culture medium containing glycerol through the microbial culture technology, it was possible to produce succinic acid with a higher yield than previously reported succinic acid yield. It was confirmed that the production of acetic acid, which is a by-product produced, can be significantly suppressed, thereby completing the present invention.

결국, 본 발명의 주된 목적은 글리세롤을 배양원료로 이용하여 회분식 배양공정에 의하여 효과적으로 숙신산을 생산하는 글리세롤을 이용한 숙신산의 생산방법을 제공하는 것이다.After all, the main object of the present invention is to provide a method for producing succinic acid using glycerol to effectively produce succinic acid by a batch culture process using glycerol as a culture raw material.

도 1은 글리세롤을 이용한 회분식 배양에서 숙신산의 발효특성을 나타낸 그래프이다.1 is a graph showing the fermentation characteristics of succinic acid in a batch culture using glycerol.

도 2는 효모추출물의 첨가에 따른 글리세롤을 이용한 회분식 배양에서 숙신산의 발효특성을 나타낸 그래프이다.2 is a graph showing the fermentation characteristics of succinic acid in the batch culture using glycerol according to the addition of yeast extract.

본 발명의 글리세롤을 이용한 숙신산의 생산방법은 글리세롤을 배양원료로 포함하는 배양배지에 숙신산 발효미생물을 접종하여 회분식으로 배양하고, 전기 배양물로부터 숙신산을 수득하는 공정을 포함한다.The production method of succinic acid using glycerol of the present invention comprises the step of inoculating succinic acid fermentation microorganisms in a culture medium containing glycerol as a culture raw material and culturing in batch, and obtaining succinic acid from the electric culture.

이때, 글리세롤은 배양배지 리터 당 5 내지 30g 포함하며, 포도당과 글리세롤을 적절한 비율로 혼합하여 사용할 수도 있지만, 본 발명의 생산방법을 이용할 경우, 글리세롤이 배양배지의 탄소원인 포도당을 완전히 대체하여 사용될 수 있으므로, 별도의 포도당 또는 글리세롤을 제외한 기타의 탄소원을 배양배지에 포함시키지 않아도 된다. 또한, 숙신산 발효미생물의 배양을 위한 배양배지는 혐기성 미생물을 배양할 수 있는 배지라면 어느 것이나 사용할 수 있으나, 숙신산 발효미생물의 세포성장 및 숙신산 생산의 최적화를 위해서는 효모추출물의 양이 중요한 바, 효모추출물 성분이 배양배지 리터당 5 내지 15g 포함되도록 하는 것이 바람직하다. 아울러, 숙신산 발효미생물은 혐기성 숙신산 발효미생물인 언에어로바이오스피리움 숙시니시프로두센스(Anaerobiospirillum succiniciproducens), 숙시니비브리오 덱스트리노솔벤스(Succinivibrio dextrinosolvens), 피브로박터 숙시노겐스 (Fibrobacter succinogenes) 또는 루미노코커스 플라비파시엔스(Ruminococcus flavefaciens) 등을 사용할 수 있으나, 가장 바람직하게는 언에어로바이오스피리움 숙시니시프로두센스(Anaerobiospirillum succiniciproducens)(참조: David, et al., Int. J. Syst. Bacteriol., 26:498-504(1976))를 사용한다. 그리고, 배양은 회분식 배양을 이용하는 바, 배양시 35 내지 42℃, 바람직하게는 37 내지 40℃, 가장 바람직하게는 39℃의 온도 및 pH 6.0 내지 7.5 범위에서, 탄산가스를 0.25 내지 0.5vvm의 유속으로 공급하면서 배양을 수행하여야 고농도 및 고생산성으로 숙신산을 생산할 수 있다.In this case, the glycerol may include 5 to 30 g per liter of culture medium, and may be used by mixing glucose and glycerol in an appropriate ratio, but when using the production method of the present invention, glycerol may be used to completely replace glucose which is a carbon source of the culture medium. Therefore, other carbon sources other than glucose or glycerol need not be included in the culture medium. In addition, the culture medium for the culture of succinic acid fermentation microorganisms can be used as long as the medium for culturing anaerobic microorganisms, but the amount of yeast extract is important for the optimization of cell growth and succinic acid production of succinic acid fermentation microorganisms, yeast extract It is desirable to include 5 to 15 g of the ingredient per liter of culture medium. In addition, the succinic acid fermentation microorganisms are Anaerobiospirillum succiniciproducens, Succinivibrio dextrinosolvens, Fibrobacter succinogens Luminox or Fibrobacter uccino Ruminococcus flavefaciens and the like can be used, but most preferably Anaerobiospirillum succiniciproducens (David, et al., Int. J. Syst. Bacteriol) , 26: 498-504 (1976). In addition, the cultivation is a batch cultivation, it is a 35 to 42 ℃, preferably 37 to 40 ℃, most preferably at a temperature of 39 ℃ and pH range of 6.0 to 7.5, carbon dioxide gas flow rate of 0.25 to 0.5vvm The succinic acid can be produced with high concentration and high productivity only when the culture is performed while feeding.

본 발명의 글리세롤을 이용한 숙신산의 생산방법은 글리세롤을 탄소원으로 사용하고, 숙신산 발효미생물에 의하여 글리세롤이 효율적으로 소비되면서 숙신산이 생산된다. 이때, 글리세롤을 배양원료로서 이용하는 것은 종래의 포도당을 이용한 배양공정에서 얻을 수 있는 숙신산 생산성을 상회하는 숙신산 생산을 가능하게 함은 물론, 특히, 미생물의 성장에 저해를 유발시키는 초산의 과잉생성을 획기적으로 억제하는 효과를 함께 수반하므로, 고효율 및 고경제성의 숙신산 생산을 가능하게 한다.In the method for producing succinic acid using glycerol of the present invention, succinic acid is produced while glycerol is efficiently consumed by succinic acid fermentation microorganisms. At this time, the use of glycerol as a raw material for the production of succinic acid that exceeds the succinic acid productivity obtained in the conventional glucose cultivation process, as well as, in particular, overproduction of acetic acid that causes inhibition of the growth of microorganisms is remarkable It is accompanied by the effect of suppressing the succinic acid, which enables high efficiency and high economic efficiency.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .

실시예 1: 글리세롤을 이용한 회분식 배양Example 1: Batch Culture with Glycerol

배양원료로서 글리세롤을 이용하여 회분식 배양을 수행하였다: 균주는 혐기적 미생물인 언에어로바이오스피리움 숙시니시프로두센스(Anaerobiospirillum succiniciproducens, ATCC 29305)를 사용하고, 배양기에서 본배양을 하기 전, 5g/L의 포도당, 10g/L의 폴리펩톤, 5g/L의 효모추출물, 3g/L의 K2HPO4, 1g/L의 NaCl, 1g/L의 (NH4)2SO4, 0.2g/L의 CaCl2·2H2O, 0.2g/L의 MgCl2·6H2O 및 1g/L의 Na2CO3로 구성된 전배양 배지를 만든 다음, 혐기적 배양을 위하여 탄소가스를 주입한 100㎖ 배지에 균을 접종하고, 39℃에서 14시간동안 전배양을 하였다. 다음으로, 6.5g/L의 글리세롤, 10g/L의 폴리펩톤, 5g/L의 효모추출물, 3g/L의 K2HPO4, 1g/L의 NaCl, 5g/L의 (NH4)2SO4, 0.2g/L의 CaCl2·2H2O, 0.2g/L의 MgCl2·6H2O, 5mg/L의 FeSO4·7H2O 및 5g/L의 Na2CO3로 구성된 본배양 배지를 조제하고 2.5L의 배양조에 0.9L의 배지를 주입한 다음, 온도 및 pH를 각각 39℃와 6.5로 맞춰주고, 100㎖의 전배양된 숙신산 발효미생물을 접종하였으며, 혐기상태를 유지하기 위하여 탄산가스를 0.25vvm의 유속으로 공급하면서 미생물을 배양하였다. 총 37시간동안 배양을 진행시키면서, 시간별로 배양기로부터 배지를 채취하여 배양액 내의 숙신산, 글리세롤 및 초산의 양을 유기산 및 당류를 분석할 수 있는 Aminex HPX-87H 컬럼(Bio-Rad, 미국)을 이용하여 측정하였다(참조: 도 1). 도 1에서, (●)는 세포농도; (○)는 숙신산; (■)는 글리세롤; 및 (◇)는 초산의 배양시간에 따른 농도를 나타낸다. 도 1에서 보듯이, 37시간의 배양 후에 소모된 글리세롤 및 생성된 숙신산의 농도는 각각 3.7 과 4.9g/L이고, 숙신산의 수율(생성된 숙신산의 양/소모된 글리세롤의 양)은 135%이었다. 특히, 부산물인 초산의 생성이 획기적으로 억제되어, 숙신산대비 초산의 비율(생성된 숙신산의 양/ 생성된 초산의 양)은 25.8:1로 포도당 이용시 얻은 4:1의 비율보다 약 6.5배나 증가한 것을 확인할 수 있었다.Batch cultivation was carried out using glycerol as a culture raw material: the strain was used for anaerobic microorganisms, Anaerobiospirillum succiniciproducens (ATCC 29305), and 5 g / L glucose, 10 g / L polypeptone, 5 g / L yeast extract, 3 g / L K 2 HPO 4 , 1 g / L NaCl, 1 g / L (NH 4 ) 2 SO 4 , 0.2 g / L Pre-culture medium consisting of CaCl 2 · 2H 2 O, 0.2g / L MgCl 2 · 6H 2 O and 1g / L Na 2 CO 3 was prepared, and then in a 100 ml medium injected with carbon gas for anaerobic culture. The bacteria were inoculated and precultured at 39 ° C. for 14 hours. Next, 6.5 g / L glycerol, 10 g / L polypeptone, 5 g / L yeast extract, 3 g / L K 2 HPO 4 , 1 g / L NaCl, 5 g / L (NH 4 ) 2 SO 4 , Culture medium consisting of 0.2 g / L CaCl 2 · 2H 2 O, 0.2 g / L MgCl 2 · 6H 2 O, 5 mg / L FeSO 4 · 7H 2 O, and 5 g / L Na 2 CO 3 The mixture was inoculated with 0.9 L of medium into a 2.5 L culture tank, and then the temperature and pH were adjusted to 39 ° C. and 6.5, respectively, inoculated with 100 ml of pre-cultured succinic acid fermentation microorganism, and carbon dioxide gas was maintained to maintain anaerobic condition. The microorganisms were cultured while feeding at a flow rate of 0.25 vvm. While the culture was performed for a total of 37 hours, the medium was taken from the incubator hourly, and the amount of succinic acid, glycerol and acetic acid in the culture medium was analyzed using an Aminex HPX-87H column (Bio-Rad, USA). It was measured (see FIG. 1). In Figure 1, (●) is the cell concentration; (○) is succinic acid; (■) is glycerol; And (◇) represents the concentration according to the incubation time of acetic acid. As shown in FIG. 1, the concentrations of glycerol and succinic acid consumed after 37 hours of incubation were 3.7 and 4.9 g / L, respectively, and the yield of succinic acid (amount of succinic acid produced / amount of glycerol consumed) was 135%. . In particular, the production of by-product acetic acid was significantly suppressed, and the ratio of acetic acid to succinic acid (amount of succinic acid produced / amount of acetic acid produced) was 25.8: 1, which is about 6.5 times higher than the ratio of 4: 1 obtained using glucose. I could confirm it.

실시예 2: 글리세롤 및 포도당의 비에 따른 배양특성Example 2 Culture Characteristics According to the Ratio of Glycerol and Glucose

회분식 배양에 있어서, 숙신산을 효율적으로 생산할 수 있는 배지조성을 최적화하기 위하여, 글리세롤과 포도당의 비를 변화시키면서 실시예 1에서 제시한 배양조건하에서 회분식 배양을 수행하였다: 총 36시간동안 배양을 진행시키면서, 시간별로 배양기로부터 배지를 채취하여 배양액 내의 숙신산, 글리세롤, 초산 및 포도당의 양을 Aminex HPX-87H 컬럼을 이용하여 측정하였으며, 이러한 방법으로 배지내의 최대세포농도, 최대 비성장속도, 숙신산 농도, 숙신산 수율, 숙신산 대비 초산의 비율 및 전체적인 생산성을 비교하였다(참조: 표 1).In batch cultivation, in order to optimize the medium composition capable of producing succinic acid efficiently, the batch cultivation was carried out under the culture conditions shown in Example 1 while varying the ratio of glycerol and glucose: while incubating for a total of 36 hours, The amount of succinic acid, glycerol, acetic acid and glucose in the culture medium was measured using an Aminex HPX-87H column, and the maximum cell concentration, maximum specific growth rate, succinic acid concentration, and succinic acid yield in this medium. , The ratio of acetic acid to succinic acid and the overall productivity was compared (see Table 1).

하기 표 1에서 보듯이, 포도당만을 탄소원으로 포함시켰을 경우보다 글리세롤만을 탄소원으로 포함시켰을 때, 숙신산 발효미생물의 세포농도 및 숙신산 농도가 낮았지만, 반면에 높은 숙신산 수율 및 숙신산 대비 초산의 비율을 보임으로써, 글리세롤이 효과적으로 포도당을 대체할 수 있음을 확인할 수 있었으며, 숙신산의 수율 및 숙신산 대비 초산의 비율이 글리세롤에 의하여 증가함을 알 수 있었다. 또한, 생산성도 포도당의 비율이 증가할수록 증가하지만, 그에 따른 숙신산 대비 초산의 비율도 감소하는 경향을 보여, 불필요한 부산물인 초산의 생성을 막기 위해서는 오히려 포도당 대신, 글리세롤을 배양배지에 많이 포함시키는 것이 바람직한 것으로 평가되었다.As shown in Table 1 below, when only glycerol was included as the carbon source than when only glucose was included as the carbon source, the cell concentration and the succinic acid concentration of the succinic acid fermentation microorganisms were lower, whereas by showing a high succinic acid yield and the ratio of acetic acid to succinic acid, Glycerol could be effectively substituted for glucose, it was found that the yield of succinic acid and the ratio of acetic acid to succinic acid increased by glycerol. In addition, productivity also increases as the ratio of glucose increases, but the ratio of acetic acid to succinic acid tends to decrease. Therefore, in order to prevent production of unnecessary acetic acid, it is preferable to include more glycerol in the culture medium instead of glucose. Was evaluated.

실시예 3: 복합질소원에 따른 배양특성Example 3: Culture characteristics according to complex nitrogen source

일반적으로, 복합질소원에 포함된 영양원이 세포성장에 중요한 영향을 끼친다고 보고되어 있으므로, 본 실시예에서는 글리세롤 생산시 복합질소원의 영향을 관찰하기 위하여, 숙신산 생성 및 세포성장에 중요한 요소로 알려진 복합질소원인 폴리펩톤 및 효모추출물(참조: Lee, P.C. et al., Process Biochem., in press (1999))의 농도를 변화시키면서, 실시예 1에서 제시한 배양조건하에서 회분식 배양을 수행하였다. 총 36시간동안 배양을 진행시키면서 시간별로 플라스크로부터 배지를 채취하여 배양액 내의 숙신산, 글리세롤, 및 초산의 양을 Aminex HPX-87H 컬럼을 이용하여 측정하였으며, 각 조건에 따른 최대세포농도, 숙신산 농도, 숙신산 수율 및 숙신산 대비 초산의 비율을 비교하였다(참조: 표 2).In general, since it is reported that nutrients contained in the complex nitrogen source have an important effect on cell growth, in this embodiment, in order to observe the effect of the complex nitrogen source during glycerol production, complex nitrogen known as an important factor for succinic acid production and cell growth Batch culture was carried out under the culture conditions shown in Example 1 with varying concentrations of causative polypeptone and yeast extract (Lee, PC et al., Process Biochem., In press (1999)). The culture was carried out for 36 hours and the medium was collected from the flask for each hour. The amount of succinic acid, glycerol, and acetic acid in the culture was measured using an Aminex HPX-87H column, and the maximum cell concentration, succinic acid concentration, and succinic acid according to each condition were measured. The yield and the ratio of acetic acid to succinic acid were compared (see Table 2).

하기 표 2에서 보듯이, 세포성장 및 숙신산 생산이 효모추출물을 많이 첨가하면 할수록 증가함을 확인할 수 있었으며, 폴리펩톤의 경우는 효모추출물과 함께 첨가해야만 세포성장 및 숙신산 생성이 증가하고, 단독으로 첨가 시에는 세포성장이나 숙신산 생성에 별다른 영향이 없음을 알 수 있었다.As shown in Table 2, it was confirmed that cell growth and succinic acid production increased as the yeast extract was added more, and in the case of polypeptone, cell growth and succinic acid production increased only when the yeast extract was added together and added alone. It was found that there was no effect on cell growth or succinic acid production.

실시예 4: 효모추출물에 따른 배양특성Example 4: Culture Characteristics according to Yeast Extract

실시예 3에서 관찰된 효모추출물의 효과를 확인하기 위하여, 숙신산 발효미생물 배양시에 일정양의 효모추출물을 간헐적으로 첨가하고, 세포성장 및 숙신산 생성의 배양특성을 살펴보았다: 초기조건으로 8g/L의 글리세롤과 5g/L의 효모추출물을 첨가하고, 기타 배양조건은 실시예 1에서 제시한 방법으로 배양을 수행하였으며, 총 120시간동안 배양을 진행시키면서, 시간별로 배양조로부터 배지를 채취하여 배양액 내의 숙신산, 글리세롤 및 초산의 양을 Aminex HPX-87H 컬럼을 이용하여 측정하였다(참조: 도 2). 도 2에서, (●)는 세포농도; (○)는 숙신산; (■)는 글리세롤; 및 (◇)는 초산의 배양시간에 따른 농도를 나타낸다. 도 2에서 보듯이, 48 시간이 지난 뒤에 글리세롤이 3.3g/L 소비되었고, 세포성장은 OD660=0.85 까지 증가하였다. 또한, 더 이상 글리세롤이 소비되지 않을 때 효모추출물을 첨가하자, 다시 글리세롤이 소비되고 세포성장도 증가하였다. 글리세롤의 효모추출물에 대한 의존성을 좀 더 확인하기 위하여, 글리세롤과 효모추출물을 동시에 첨가시킨 결과, 첨가된 글리세롤도 소비됨을 확인하였으며, 이때 생성된 숙신산의 농도 및 수율은 각각 19g/L와 160%이고, 숙신산 대비 초산의 비율은 31.7:1(g/g)까지 증가함을 확인하였다. 지금까지 보고된 숙신산과 초산의 비는 포도당을 이용할 경우, 약 4:1(g/g)이었는데, 본 발명의 글리세롤을 이용한 숙신산의 생산방법에 의하면, 생성비가 약 8배나 증가함을 알 수 있었다.In order to confirm the effect of the yeast extract observed in Example 3, a certain amount of yeast extract was intermittently added to the culture of succinic acid fermentation, and the culture characteristics of cell growth and succinic acid production were examined: 8 g / L as the initial condition. Glycerol and yeast extract of 5g / L was added, and the other culture conditions were carried out by the method described in Example 1, while the culture was carried out for a total of 120 hours, the medium was taken from the culture tank by the hour and in the culture medium The amount of succinic acid, glycerol and acetic acid was measured using an Aminex HPX-87H column (see Figure 2). In Figure 2, (●) is the cell concentration; (○) is succinic acid; (■) is glycerol; And (◇) represents the concentration according to the incubation time of acetic acid. As shown in Figure 2, after 48 hours glycerol was consumed 3.3g / L, cell growth increased to OD 660 = 0.85. In addition, when yeast extract was added when no more glycerol was consumed, glycerol was consumed again and cell growth was increased. In order to further confirm the dependence of glycerol on yeast extract, the addition of glycerol and yeast extract was confirmed that the added glycerol was also consumed, and the concentration and yield of the produced succinic acid were 19 g / L and 160%, respectively. It was confirmed that the ratio of acetic acid to succinic acid increased to 31.7: 1 (g / g). The ratio of succinic acid and acetic acid reported so far was about 4: 1 (g / g) when using glucose. According to the production method of succinic acid using the glycerol of the present invention, it was found that the production ratio was increased by about 8 times. .

이러한 결과는 글리세롤을 배지원료로 포함하는 배양배지에서 숙신산을 생산할 경우, 미생물의 성장에 저해를 끼치는 과량의 초산생성을 억제할 수 있음을 의미하는 것으로서, 이 결과를 고농도 배양에 이용하면 효율적으로 숙신산을 생산하는데 큰 도움이 될 수 있다. 또한, 이와 같은 결과들은 현재까지의 숙신산 생성에 사용된 포도당을 유류산업에서 생성되는 부산물인 글리세롤로 대체할 수 있는 획기적인 공정으로, 환경적인 측면에서도 긍정적인 평가를 받을 수 있을 것이다.These results indicate that the production of succinic acid in a culture medium containing glycerol as a raw material can inhibit excess acetic acid production which inhibits the growth of microorganisms. It can be a great help in producing this. In addition, these results are a groundbreaking process that can replace the glucose used to produce succinic acid with glycerol, a by-product produced in the oil industry, and can be positively evaluated in terms of environment.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

이상에서 상세히 설명하고 입증하였듯이, 본 발명은 유류산업의 부산물인 글리세롤을 이용하여 혐기적 조건하에서 높은 수율로 숙신산을 생산하는 동시에, 부산물인 초산의 생성을 획기적으로 억제하는 회분식 배양의 숙신산 생산방법을 제공한다. 본 발명의 글리세롤을 이용한 숙신산의 생산방법에 의하면, 높은 수율로 숙신산을 글리세롤로부터 생산할 수 있으며, 통상 포도당을 이용하여 숙신산을 생산시에 생성되는 부산물인 초산의 생성을 획기적으로 억제할 수 있음은 물론, 숙신산 정제시에 원가절감 등의 기여를 할 수 있다. 또한, 글리세롤은 현재 유류산업 등에서 과잉으로 생산되는 부산물로서 이에 대한 재사용의 필요성이 대두되고 있는 바, 본 발명은 이러한 글리세롤을 이용하여 현재 화학공정으로 생산되고 있는 숙신산을 생산할 수 있기 때문에, 더욱 그 가치가 높다고 할 수 있다.As described and demonstrated in detail above, the present invention uses a glycerol which is a by-product of the oil industry to produce succinic acid in high yield under anaerobic conditions, and at the same time, a method for producing succinic acid in batch culture that significantly suppresses the production of by-product acetic acid. to provide. According to the production method of succinic acid using the glycerol of the present invention, it is possible to produce succinic acid from glycerol in high yield, it is possible to significantly suppress the production of acetic acid, which is a by-product produced during the production of succinic acid using glucose, of course. In the case of succinic acid purification, cost reduction can be made. In addition, glycerol is a by-product produced in excess in the oil industry, and the necessity of reuse thereof is increasing. The present invention is more valuable because it can produce succinic acid currently produced by a chemical process using such glycerol. Can be said to be high.

Claims (6)

글리세롤을 배양원료로 포함하는 배양배지에 숙신산 발효미생물을 접종하여 회분식으로 배양하고, 전기 배양물로부터 숙신산을 수득하는 공정을 포함하는 글리세롤을 이용한 숙신산의 생산방법.A method of producing succinic acid using glycerol comprising the step of inoculating succinic acid fermentation microorganisms in a culture medium containing glycerol as a culture raw material and culturing in batchwise to obtain succinic acid from the electric culture. 제 1항에 있어서,The method of claim 1, 글리세롤은 배양배지 리터 당 5 내지 30g 포함시키는 것을 특징으로 하는Glycerol is characterized in that it contains 5 to 30g per liter of culture medium 글리세롤을 이용한 숙신산의 생산방법.Method for producing succinic acid using glycerol. 제 1항에 있어서,The method of claim 1, 배양배지는 혐기성 미생물을 배양할 수 있는 배지인 것을 특징으로 하는The culture medium is a medium capable of culturing anaerobic microorganisms, characterized in that 글리세롤을 이용한 숙신산의 생산방법.Method for producing succinic acid using glycerol. 제 1항에 있어서,The method of claim 1, 배양배지에 효모추출물이 배양배지 리터당 5 내지 15g 포함되는 것을 특징으로 하는Yeast extract in the culture medium is characterized in that it contains 5 to 15g per liter culture medium 글리세롤을 이용한 숙신산의 생산방법.Method for producing succinic acid using glycerol. 제 1항에 있어서,The method of claim 1, 숙신산 발효미생물은 언에어로바이오스피리움 숙시니시프로두센스(Anaerobiospirillum succiniciproducens), 숙시니비브리오 덱스트리노솔벤스(Succinivibrio dextrinosolvens), 피브로박터 숙시노겐스 (Fibrobacter succinogenes) 또는 루미노코커스 플라비파시엔스(Ruminococcus flavefaciens)인 것을 특징으로 하는Succinic fermentation microorganisms include Anaerobiospirillum succiniciproducens, Succinivibrio dextrinosolvens, Fibrobacter succinogenes or Luminococcus flaviencus flavicoccus Ruminococcus flavefaciens) characterized in that 글리세롤을 이용한 숙신산의 생산방법.Method for producing succinic acid using glycerol. 제 1항에 있어서,The method of claim 1, 배양은 35 내지 42℃의 온도 및 pH 6.0 내지 7.5 범위에서, 탄산가스를 0.25 내지 0.5vvm의 유속으로 공급하면서 수행하는 것을 특징으로 하는Cultivation is carried out while supplying carbon dioxide gas at a flow rate of 0.25 to 0.5vvm at a temperature of 35 to 42 ℃ and pH 6.0 to 7.5 range 글리세롤을 이용한 숙신산의 생산방법.Method for producing succinic acid using glycerol.
KR19990022830A 1999-06-18 1999-06-18 Method for Manufacturing Succinic Acid Using Glycerol KR100313134B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR19990022830A KR100313134B1 (en) 1999-06-18 1999-06-18 Method for Manufacturing Succinic Acid Using Glycerol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR19990022830A KR100313134B1 (en) 1999-06-18 1999-06-18 Method for Manufacturing Succinic Acid Using Glycerol

Publications (2)

Publication Number Publication Date
KR20010002820A true KR20010002820A (en) 2001-01-15
KR100313134B1 KR100313134B1 (en) 2001-11-05

Family

ID=19593208

Family Applications (1)

Application Number Title Priority Date Filing Date
KR19990022830A KR100313134B1 (en) 1999-06-18 1999-06-18 Method for Manufacturing Succinic Acid Using Glycerol

Country Status (1)

Country Link
KR (1) KR100313134B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048202A1 (en) * 2007-10-09 2009-04-16 Korea Advanced Institute Of Science And Technology Method for preparing succinic acid using glycerol as carbon source

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830826B1 (en) 2007-01-24 2008-05-19 씨제이제일제당 (주) Process for producing fermentation product from carbon sources containing glycerol using corynebacteria
KR100924904B1 (en) 2007-11-20 2009-11-02 씨제이제일제당 (주) Corynebacteria using carbon sources containing glycerol and process for producing fermentation product using them
KR101126041B1 (en) 2008-04-10 2012-03-19 씨제이제일제당 (주) A transformation vector using transposon, a microorganism transformed with the vector and method of producing l-lysine using the microorganism
US8932861B2 (en) 2008-04-10 2015-01-13 Cj Cheiljedang Corporation Transformation vector comprising transposon, microorganisms transformed with the vector, and method for producing L-lysine using the microorganism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048202A1 (en) * 2007-10-09 2009-04-16 Korea Advanced Institute Of Science And Technology Method for preparing succinic acid using glycerol as carbon source

Also Published As

Publication number Publication date
KR100313134B1 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
Lee et al. Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens
Ma et al. Open fermentative production of l-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient
Carvalho et al. Succinic acid production from glycerol by Actinobacillus succinogenes using dimethylsulfoxide as electron acceptor
Dezam et al. Microbial production of organic acids by endophytic fungi
Yang et al. 3.16-Fumaric acid
US5962285A (en) Process for making polycarboxylic acids
Zeidan et al. Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars
US10801053B2 (en) Process for producing a rhamnolipid produced by Pseudomonas or Enterobacter using andiroba or murumuru seed waste
US9062329B2 (en) Production of arabital
Li et al. Dual-phase fermentation enables Actinobacillus succinogenes 130ZT to be a potential role for high-level lactate production from the bioresource
KR100372218B1 (en) Organic Acid Producing Microorganism and Process for Preparing Organic Acids Employing the Same
CA2386169A1 (en) Improved fermentation process
Xiu et al. Stoichiometric analysis and experimental investigation of glycerol–glucose co-fermentation in Klebsiella pneumoniae under microaerobic conditions
Lu et al. A simple novel approach for real-time monitoring of sodium gluconate production by on-line physiological parameters in batch fermentation by Aspergillus niger
Kamzolova et al. Succinic acid production from n‐alkanes
KR100313134B1 (en) Method for Manufacturing Succinic Acid Using Glycerol
Otto et al. Production of organic acids by Yarrowia lipolytica
KR0136574B1 (en) Process for fermentative production of 2-(4-hydroxyphenoxy-) propionic acid
Brink et al. Malic acid production by Aspergillus oryzae: the immobilized fungal fermentation route
Anastassiadis et al. Process optimization of continuous gluconic acid fermentation by isolated yeast‐like strains of Aureobasidium pullulans
US20100261251A1 (en) Microbial kinetic resolution of ethyl-3,4-epoxybutyrate
Rokem TCA cycle organic acids produced by filamentous fungi: the building blocks of the future
KR101261002B1 (en) Stenotrophomonas nitritireducens and Manufacturing method for hydroxy-fatty acid with high yield by using the same
KR100301960B1 (en) Method for Manufacturing Succinic Acid from Whey
KR20130101348A (en) MANUFACTURING METHOD FOR γ-DODECALACTONE FROM HYDROXY FATTY ACID WITH HIGH YIELD AND COMPOSITION THEREOF

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121008

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20151002

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20161017

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20170928

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 18

EXPY Expiration of term