KR20010000401A - field ionization vacuum gauge - Google Patents

field ionization vacuum gauge Download PDF

Info

Publication number
KR20010000401A
KR20010000401A KR1020000056563A KR20000056563A KR20010000401A KR 20010000401 A KR20010000401 A KR 20010000401A KR 1020000056563 A KR1020000056563 A KR 1020000056563A KR 20000056563 A KR20000056563 A KR 20000056563A KR 20010000401 A KR20010000401 A KR 20010000401A
Authority
KR
South Korea
Prior art keywords
vacuum
ionization
field ionization
electrode
metal
Prior art date
Application number
KR1020000056563A
Other languages
Korean (ko)
Other versions
KR100383441B1 (en
Inventor
김도윤
Original Assignee
김도윤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김도윤 filed Critical 김도윤
Priority to KR10-2000-0056563A priority Critical patent/KR100383441B1/en
Publication of KR20010000401A publication Critical patent/KR20010000401A/en
Application granted granted Critical
Publication of KR100383441B1 publication Critical patent/KR100383441B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • G01L21/30Vacuum gauges by making use of ionisation effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE: A vacuum gauge for field ionization is provided to precisely measure a vacuum(10-6Pa-10-11Pa) from an ultra high vacuum to an extreme high vacuum, thereby applicable to experiments requiring such a vacuum degree at a low cost. CONSTITUTION: A vacuum gauge for field ionization includes an ionization(emitter) electrode(1) and a collector electrode(2) mounted in a vacuum sealed container facing to each other under the state of insulation, wherein the ionization electrode is formed of a metal for introducing electricity from the outside of the vacuum container and closely contacting the container for maintaining the vacuum state and the collector electrode is formed of a metal in the semi-spherical shape for collecting generated ion to measure an ion current. In order to cause the field ionization, a positive voltage is applied to more than one needle having a radius less than 0.1micron at an end part or doped with carbon atoms in the shape of a tube of several nanometers.

Description

장이온화 진공게이지 {field ionization vacuum gauge}Field ionization vacuum gauge {field ionization vacuum gauge}

진공도를 계측함에 있어서 간단한 구조로 10-11Pa이하의 극고진공까지 정확하게 계측 할 수 있도록 하는 것이 본 발명의 목적이다.In measuring the degree of vacuum, it is an object of the present invention to make it possible to accurately measure extremely high vacuum of 10 -11 Pa or less with a simple structure.

초고진공을 계측하기 위하여 이온게이지가 가장 널리 사용된다. 이온게이지는 이온을 발생시키는 기구로서 필라멘트와 그리드를 사용하고 여기서 발생한 이온의 양을 콜렉터로 측정한다. 그러나 이 장치는 구조가 복잡할 뿐 아니라 필라멘트에서 발생한 전자가 그리드에 충돌할 때 연X선과 이차전자를 발생시킨다. 이로 인하여 가스입자가 전혀 없다고 가정하더라도 콜렉터에는 X-ray photon effect에 의한 미세한 전류가 흐르게 되고 이 전류는 대체로 10-8Pa에서 흐르는 이온전류에 해당하므로 10-9Pa이하의 진공도는 측정할 수가 없게 된다.Ion gauges are most widely used to measure ultra-high vacuum. Ion gauges use filaments and grids to generate ions and measure the amount of ions generated by the collector. However, the device is not only complicated in structure, but also generates soft X-rays and secondary electrons when electrons from the filament hit the grid. Because of this, even if there are no gas particles at all, a minute current flows through the collector due to the X-ray photon effect, and this current corresponds to an ion current flowing at 10 -8 Pa. Therefore, the vacuum degree below 10 -9 Pa cannot be measured. do.

한정된 공간내의 가스입자의 양을 측정 하기 위하여 여러 가지 종류의 진공게이지가 사용되고있으나 이온게이지로 측정할 수 없는 극고진공영역 (10-9Pa-10-11Pa)까지 측정할 수 있는 장치는 대단히 고가이며 복잡한 장치이다. 본 발명은 이온게이지보다 더 단순한 구조로 극고진공영역까지 측정할 수 있는 장치를 제시하고자 한다.Various types of vacuum gauges are used to measure the amount of gas particles in a limited space, but the apparatus capable of measuring up to a very high vacuum region (10 -9 Pa-10 -11 Pa) that cannot be measured by ion gauge is very expensive. It is a complex device. The present invention proposes a device that can measure up to an extremely high vacuum region with a simpler structure than an ion gauge.

고진공이상의 진공도를 측정하는 방법으로서는 공간내의 가스입자를 이온화시키고 그이온전류를 측정함으로서 간접적으로 가스의 양을 알아내는 것이 일반적 방법이다. 공간내의 가스를 이온화시키는 방법은 기체의 이온화에너지보다 큰 에너지를 가진 입자를 중성기체분자에 충돌시키는 방법과 높은 전기장을 인가하여 장이온화를 시키는 방법이 있다. 지금까지 대부분의 이온화 방법이 전자(前者)에 속하며 후자는 장이온화를 이루는 조건이 어렵고 이온전류가 대단히 미약하여 실용적으로는 사용되는 경우가 대단히 제한적이다. 장 이온화이론을 개략적으로 설명하면 다음과같다.As a method of measuring the degree of vacuum above a high vacuum, it is common to find the amount of gas indirectly by ionizing gas particles in a space and measuring the ion current. The method of ionizing a gas in space includes a method of colliding particles having energy greater than the ionization energy of the gas to neutral gas molecules and a field ionization by applying a high electric field. Until now, most of the ionization methods belong to the former, and the latter are very limited in practical use due to the difficult conditions for achieving field ionization and very low ion current. The general theory of field ionization is as follows.

- 장 이온화 이론-Field Ionization Theory

외부 전기장이 가해지지 않은 경우 금속표면 근처에 있는 중성자내의 전자의 기저상태 에너지준위 Eg는 금속원자의 Fermi 준위 Ef보다 훨씬 아래에 위치하게 된다.If no external electric field is applied, the ground state energy level E g of the electrons in the neutrons near the metal surface is far below the Fermi level E f of the metal atom.

그러나 외부 전기장이 가해지면 전자의 에너지 준위는 중성원자와 금속표면사이의 거리 X에 비하여 eFx만큼 증가하게 된다. 이때 중성원자내 전자의 에너지 준위Eg가 어떤 임계거리 Xc에서는 금속의 Fermi 준위까지 증가하게 되고 따라서 중성원자와 금속표면 사이의 전위장벽을 통하여 전자의 tunneling에 의하여 중성원자가 이온화하게 되는데 이것을 장 이온화(field ionization)라고 한다.(도 5)However, when an external electric field is applied, the energy level of the electron increases by eFx relative to the distance X between the neutral atom and the metal surface. At this time, the energy level E g of the electron in the neutral atom is increased to the Fermi level of the metal at a certain critical distance Xc. Therefore, the neutral atom is ionized by tunneling electrons through the potential barrier between the neutral atom and the metal surface. field ionization) (FIG. 5).

이러한 전위장벽의 감소는 전자와 금속내부의 유도된 영상전하 분포와의 인력 때문에 일어난다. 임계거리 Xc보다 작은 영역에서는 중성원자의 기저상태 에너지 준위가 금속의 Fermi 준위 아래로 내려가게 된다. 이러한 경우에는 금속의 모든 에너지 상태가 충만하므로 Pauli 배타율에 의해 금속에서 더 이상의 전자를 받아들일 수 없게 되어 전위장벽이 커져 이온화 확률이 급격히 줄어들게 된다. 따라서 X〈Xc 인 경우 전자의 tunneling에 의한 이온화가 일어나지 않는다.This reduction in potential barrier occurs because of the attractive force between the electrons and the induced image charge distribution inside the metal. In the region less than the critical distance Xc, the ground state energy level of the neutrons falls below the Fermi level of the metal. In this case, since all energy states of the metal are full, the Pauli exclusion rate prevents the accepting of more electrons in the metal, which leads to a large potential barrier, which dramatically reduces the probability of ionization. Therefore, when X <Xc, ionization by tunneling of electrons does not occur.

1차원에서의 전위장벽을 통하여 tunneling이 일어날 확률 P는 WKB1)근사방법에 의해서The probability P for tunneling through the potential barrier in one dimension is WKB 1)

로 주어진다.Is given by

위 식에서 v(x)와 E는 각 전자의 위치에너지와 전체에너지이고 m은 전자의 질량, x1, x2는 에너지 준위 E에서 전위장벽의 양끝 좌표이다. (31)식에서 에너지가 ev로, 장벽의 폭이 cm단위로 표시될 때 수치를 넣어 계산한 식은Where v (x) and E are the potential and total energy of each electron, m is the mass of the electron, and x1 and x2 are the coordinates at both ends of the potential barrier at the energy level E. In equation (31), when the energy is ev and the width of the barrier is expressed in cm,

와 같이 표현된다.It is expressed as

(1)식에서 전위장벽 V(x)2)는 전기영상법에 의해In the equation (1), the potential barrier V (x) 2) is

으로 주어지는데 여기서 첫째항은 tunneling하는 전자와 금속표면에서 xi만큼 떨이진 만큼 양이온에 의한 coulomb potential 이고 둘째항은 외부전기장에 의한 전자의 potential, 세째항과 넷째항은 전자의 양의 영상과 음의 영상에 의한 potential 에너지를 나타낸다.Where the first term is the coulomb potential by the cation as far as xi from the tunneling electron and the metal surface, the second term is the potential of the electron due to the external electric field, and the third and fourth terms are the positive and negative images of the electron. Represents potential energy by

이온화가 일어나는 임계거리 즉 tunneling확률이 최대가 되는 거리 Xc는 다음 조건식 에서 주어진다.The critical distance at which ionization takes place, that is, the distance Xc at which the tunneling probability is maximized, is given by the following equation.

여시서 I는 이온화 포텐셜,는 금속의 일함수, aa, ai는 각각 가스원자와 이온의 분극도이다.Where I is the ionization potential, Is the work function of the metal, a a and a i are the polarization degree of the gas atom and the ion, respectively.

세째항은 전자의 영상 Potential이고 네째항은 이온화가 일어나기 전후의 분극에너지 차이이다.The third term is the imaging potential of the former and the fourth term is the difference in polarization energy before and after ionization occurs.

마지막 두 항은 I와에 비해 매우 적은 값이므로 무시할 수 있고 따라서 임계거리 Xc는The last two terms are I and Is very small compared to, and can be ignored, so the critical distance Xc is

로 주어진다.Is given by

임계거리 Xc에서의 최대 투과율은 (3)식으로 주어지는 전위 장벽 대신 장벽의 높이가 (I-ΔV)임을 가정함으로써 근사적으로 구할 수 있다.The maximum transmittance at the critical distance Xc can be approximated by assuming that the height of the barrier is (I-ΔV) instead of the potential barrier given by (3).

여기서 here

로 주어지는데 'Schottky reduction' 이라한다.3) It is given as 'Schottky reduction'. 3)

그러면 Xc에서 최대투과확률은 (I-ΔV)를 (32)식에 대입하여 적분하면Then, at Xc, the maximum transmission probability is integrated by substituting (I-ΔV) into (32)

로 주어진다.Is given by

이온화 전극이 텅스텐이고 가스가 헬륨일 때 장 이온화를 위한 최적전기장 F는 Muller와Young4)에 의해서 계산되었는데 440MV/cm이고 이때 임계거리 Xc는 4.6Å 이었다. 따라서 P(Xc)=2.35×10-3으로 된다.When the ionization electrode is tungsten and the gas is helium, the optimal electric field F for field ionization was calculated by Muller and Young 4) , where the critical distance Xc was 4.6 Å. Therefore, P (Xc) = 2.35 × 10 −3 .

여기서 전기장의 크기 440MV/cm는 일반적으로 생각할 수 없는 엄청난 크기의 수치이다. 그러나 전기장이 이온화전극의 끝 부분의 반경에 반비례함에 착안하면 이온화 전극의 끝 부분의 반경(r)만 작게 해 준다면 얼마든지 가능하다.The electric field size of 440 MV / cm is a huge figure that is generally unthinkable. However, if the electric field is inversely proportional to the radius of the tip of the ionization electrode, it is possible as long as the radius r of the tip of the ionization electrode is reduced.

실험에 의하면 끝 부분의 반경 r이 50nm인 한 개의 텅스텐전극에 전압 10kV정도를 가했을 때 진공도가 10-3Pa일 때 장 이온화에 의한 이온전류는 1nA정도였다. 그러나 이 정도의 전류로는 10-10Pa이하의 진공도일 때 10-4pA로서 측정 불가능한 값이 된다.According to the experiment, when a voltage of 10 kV was applied to one tungsten electrode having a radius r of 50 nm, the ion current by field ionization was about 1 nA when the vacuum degree was 10 -3 Pa. However, with this degree of current, it is unmeasurable as 10 -4 pA at a vacuum of 10 -10 Pa or less.

그래서 본 발명에서는 텅스텐 전극대신에 탄소나노튜브를 사용하였다. 탄소나노튜브는 도 3 에서 보는바와 같이 탄소원자가 끝 부분의 반경이 수nm 튜브형태로 배열된 구조로 되어있으며, 한꺼번에 수십억개의 전극을 각각 임계거리(Xc)를 훨씬 넘어서 배치하는 것이 대단히 쉬운 일이다. 그러므로 같은 조건일 때 텅스텐 전극보다 훨씬 낮은 전압인 수kV정도에서 장 이온화가 일어나며 이온전류도 수 천만 배로서 10-10Pa이하의 진공도일 때 수nA로 측정이 가능한 값이 된다.Thus, in the present invention, carbon nanotubes are used instead of tungsten electrodes. As shown in FIG. 3, carbon nanotubes have a structure in which the carbon atoms are arranged in the shape of a few nm tube, and it is very easy to arrange billions of electrodes at a time far beyond the critical distance (Xc). . Therefore, under the same conditions, field ionization occurs at a voltage much lower than that of a tungsten electrode, which is several kV, and the ion current is tens of millions of times, which can be measured at several nA when the vacuum degree is less than 10 -10 Pa.

1) Bhom, D. : Quantum theory (Prentice Hall, New York, 1951)Bhom, D .: Quantum theory (Prentice Hall, New York, 1951)

2) Muller E. W. and Bahadur, K. : Phys. Rev.,102, 624 (1956)2) Muller E. W. and Bahadur, K .: Phys. Rev. 102, 624 (1956)

3) Nishikawa, O. : Butsuri, 37 (1982)3) Nishikawa, O .: Butsuri, 37 (1982)

4) Muller E. W. and Young, R. D. : J.Appl. Phys., 32, 2425 (1961)4) Muller E. W. and Young, R. D .: J. Appl. Phys., 32, 2425 (1961)

도 1 , 도 2 는 장이온화 진공게이지Fig. 1 and Fig. 2 show the ionization vacuum gauge

도 3 은 장이온화 전극의 구조3 shows the structure of the ionization electrode

도 4 는 탄소나노튜브의 구조4 is a structure of carbon nanotubes

도 5 는 고전기장내의 금속표면 부근의 가스원자가 가지는 전자의 위치에너지Fig. 5 shows the potential energy of electrons of a gas atom near a metal surface in a high electric field.

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

(1) 장이온화 전극(1) long ionization electrode

(2) 콜렉터(collector)(2) collector

(3) 탄소나노튜브(3) carbon nanotubes

(4) 진공전극(vacuum electric feed through)(4) vacuum electric feed through

(5) 프랜지(5) Frangipani

본 발명에서 장 이온화 진공게이지는 이온화전극(emitter)과 콜렉터(collector) 두 부분으로 구성되어 있으며 이온화전극과 콜렉터는 진공실링(vacuum sealing)이 된 용기내에 각각 절연이 된 상태로 서로 마주보고 설치되어 있다. 이온화전극은 진공용기 밖에서 전기를 도입할 수 있도록 금속으로 이루어져있으며 진공을 유지할 수 있도록 용기와 잘 밀착되어 있다. 또 이온화 전극의 진공용기 내부의 끝단에는 장이온화가 잘 일어날 수 있도록 탄소나노튜브가 도포 되어 있다. 콜렉터는 이온화전극과 마찬가지로 외부에서 이온전류를 측정할 수 있도록 금속으로 이루어져있으며 진공을 유지할 수 있도록 용기와 잘 밀착되어 있고 발생한 이온을 잘 포획할 수 있도록 반구형태로 되어있다. 그러나 이 형태는 진공배기(眞空排氣)의 효율을 고려하여 여러 형태로 변형될 수 있다. 장 이온화 진공게이지의 진공용기는 다른 측정하고자하는 진공용기에 잘 부착할 수 있도록 열린 쪽에 프렌지를 부착할 수 있으며, 정확한 진공계측을 위하여 프렌지 위에 이온화전극과 콜렉터를 부착하여 측정하고자 하는 진공용기에 바로 부착할 수도 있다. 전원은 DC전압으로 수백에서 수천V의 양의 전압이 이온화 전극에 인가되고 콜렉터에는 전류를 읽을 수 있도록 전류계가 부착된다 이때 콜렉터는 양이온을 잘 포집할 수 있도록 수십V정도의 음의 전압을 인가할 수도 있다.In the present invention, the field ionization vacuum gauge is composed of two parts, an ionizer and a collector, and the ionization electrode and the collector are installed to face each other in an insulated state in a container that is vacuum sealed. have. The ionization electrode is made of metal so that electricity can be introduced from outside the vacuum vessel and is in close contact with the vessel to maintain the vacuum. In addition, carbon nanotubes are coated on the ends of the ionization electrodes in order to facilitate long ionization. Like the ionization electrode, the collector is made of metal to measure the ion current from the outside, close to the container to maintain vacuum, and hemispherical to capture the generated ions. However, this form can be modified into various forms in consideration of the efficiency of the vacuum exhaust. The vacuum container of the long ionized vacuum gauge can be attached to the open side so that it can be attached well to the other vacuum container to be measured. It can also be attached. The power supply is a DC voltage, a positive voltage of hundreds to thousands of V is applied to the ionizing electrode, and an ammeter is attached to the collector to read the current. At this time, the collector can apply a negative voltage of tens of V to collect the positive ion well. It may be.

초고진공에서 극고진공까지의 진공도(10-6Pa-10-11Pa)를 단순한 구조의 게이지를 이용하여 정확히 측정할 수 있도록 함으로서 극고진공을 요하는 입자가속기, AES RBS XPS등의 표면분석장비, 우주개발 실험과 그 외에도 많은 초고진공과 극고진공을 요하는 실험에 값싸게 적용할 수 있다.Particle accelerators requiring very high vacuum, surface analysis equipment such as AES RBS XPS, by measuring the vacuum degree from ultra high vacuum to ultra high vacuum (10 -6 Pa-10 -11 Pa) accurately using a simple gauge It can be applied inexpensively to space development experiments and many other ultra high and ultra high vacuum experiments.

Claims (2)

진공도를 계측하는 진공게이지에 있어서 장 이온화원리를 이용하는 것을 특징으로 하고 장 이온화를 일으키기 위하여 끝부분의 반경이 0.1미크론 미만의 바늘 하나이상 에 양의 전압이 인가되도록 한 장치In the vacuum gauge for measuring the degree of vacuum, the field ionization principle is used, and a device in which a positive voltage is applied to at least one needle having a radius of less than 0.1 micron in order to cause field ionization. 제 1항에 있어서 끝부분의 반경이 0.1미크론 미만의 바늘 대신에 탄소나노튜브를 도포함을 특징으로 하는 장치The device of claim 1, wherein the tip radius includes carbon nanotubes instead of needles less than 0.1 micron.
KR10-2000-0056563A 2000-09-26 2000-09-26 The Vaccum Gauge Using Field-Ionization of Carbon-Nano-Tube KR100383441B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0056563A KR100383441B1 (en) 2000-09-26 2000-09-26 The Vaccum Gauge Using Field-Ionization of Carbon-Nano-Tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0056563A KR100383441B1 (en) 2000-09-26 2000-09-26 The Vaccum Gauge Using Field-Ionization of Carbon-Nano-Tube

Publications (2)

Publication Number Publication Date
KR20010000401A true KR20010000401A (en) 2001-01-05
KR100383441B1 KR100383441B1 (en) 2003-05-12

Family

ID=19690577

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0056563A KR100383441B1 (en) 2000-09-26 2000-09-26 The Vaccum Gauge Using Field-Ionization of Carbon-Nano-Tube

Country Status (1)

Country Link
KR (1) KR100383441B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7835198B2 (en) 2007-03-05 2010-11-16 Hynix Semiconductor Inc. Apparatus and method for detecting leakage current of semiconductor memory device, and internal voltage generating circuit using the same
KR101296275B1 (en) * 2009-09-15 2013-08-14 캐논 아네르바 가부시키가이샤 Device for measuring mean free path, vacuum gauge, and method for measuring mean free path
CN103762147A (en) * 2013-12-24 2014-04-30 兰州空间技术物理研究所 Anode structure of ionization gauge
CN103762146A (en) * 2013-12-24 2014-04-30 兰州空间技术物理研究所 Ionization gauge
KR20170102553A (en) * 2015-01-15 2017-09-11 엠케이에스 인스트루먼츠, 인코포레이티드 Polymer composite vacuum components

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844513B1 (en) 2006-04-14 2008-07-08 한국표준과학연구원 Pressure sensor using a Carbon Nanotube field emission
KR101869613B1 (en) * 2016-11-30 2018-06-21 한국표준과학연구원 Pressure sensor using vaccum discharge tube

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766331A (en) * 1980-10-09 1982-04-22 Toshiba Corp Measuring device for degree of vacuum
JPH0772031A (en) * 1993-09-02 1995-03-17 Ebara Corp Measuring method for degree of vacuum and ionization vacuum gage
JP3403845B2 (en) * 1995-02-23 2003-05-06 株式会社アルバック Ultra high vacuum measurement method
US6025723A (en) * 1997-08-27 2000-02-15 Granville-Phillips Company Miniature ionization gauge utilizing multiple ion collectors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7835198B2 (en) 2007-03-05 2010-11-16 Hynix Semiconductor Inc. Apparatus and method for detecting leakage current of semiconductor memory device, and internal voltage generating circuit using the same
KR101296275B1 (en) * 2009-09-15 2013-08-14 캐논 아네르바 가부시키가이샤 Device for measuring mean free path, vacuum gauge, and method for measuring mean free path
CN103762147A (en) * 2013-12-24 2014-04-30 兰州空间技术物理研究所 Anode structure of ionization gauge
CN103762146A (en) * 2013-12-24 2014-04-30 兰州空间技术物理研究所 Ionization gauge
KR20170102553A (en) * 2015-01-15 2017-09-11 엠케이에스 인스트루먼츠, 인코포레이티드 Polymer composite vacuum components
US11366036B2 (en) 2015-01-15 2022-06-21 Mks Instruments, Inc. Polymer composite vacuum components

Also Published As

Publication number Publication date
KR100383441B1 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
Silcox et al. Hysteresis in hard superconductors
Schulz Measurement of atomic and molecular excitation by a trapped-electron method
Lovall et al. Electron emission and structural characterization of a rope of single-walled carbon nanotubes
Wadhawan et al. Effects of O2, Ar, and H2 gases on the field-emission properties of single-walled and multiwalled carbon nanotubes
Heylen Electrical ionisation and breakdown of gases in a crossed magnetic field
Podenok et al. Electric field enhancement factors around a metallic, end-capped cylinder
KR20010000401A (en) field ionization vacuum gauge
CN106206237A (en) A kind of highly sensitive carbon nanotube cathod ionization gauge
Aban’shin et al. A planar diamond-like carbon nanostructure for a low-voltage field emission cathode with a developed surface
Yan et al. Measurement of the atomic ion fraction of ion emitted from a miniature penning ion source
JP3525135B2 (en) Carbon atom cluster ion generating apparatus and carbon atom cluster ion generating method
Zeng et al. Numerical calculations of field enhancement and field amplification factors for a vertical carbon nanotube in parallel-plate geometry
Michan et al. High electron gain from single-walled Carbon nanotubes stimulated by interaction with an electron beam
Smerdov et al. The Investigation of a Novel Field Emission Cathode Prototype for Electron Microscopy Methods of Monitoring the Environment, Substances, Materials and Products
Drukarev et al. The relativistic double photoeffect
CN108091529A (en) A kind of field-transmitting cathode electron source and its application
Li et al. Mechanism of field electron emission from carbon nanotubes
Saitou Trajectory analysis of ions formed in the field emitter inter-electrode region
Brozdnichenko et al. Magnetic properties of multiwall carbon nanotubes and astralenes in strong electric fields
Sakurai et al. Development and application of highly charged ion source
Fomani et al. Low-voltage field ionization of gases up to torr-level pressures using massive arrays of self-aligned gated nanoscale tips
Iacobucci et al. Carbon nanotube—Based cold cathodes: Field emission angular properties and temporal stability
Reeves Comparison of the Sharpness of Tungsten Field Emission Tips from Traditional Electrical Characterization to Tip Geometries Imaged by Scanning Electron Microscopy
Bennett Electron Multiplication Processes in High‐Voltage Electrical Discharge in Vacuum
Ishii et al. Reduction of the divergence angle of an incident beam to enhance the demagnification factor of a two-stage acceleration lens in a gas ion nanobeam system of several tens of keV

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120517

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130411

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee