KR20000073777A - Optical architecture for measuring the corneal curvature - Google Patents

Optical architecture for measuring the corneal curvature Download PDF

Info

Publication number
KR20000073777A
KR20000073777A KR1019990017278A KR19990017278A KR20000073777A KR 20000073777 A KR20000073777 A KR 20000073777A KR 1019990017278 A KR1019990017278 A KR 1019990017278A KR 19990017278 A KR19990017278 A KR 19990017278A KR 20000073777 A KR20000073777 A KR 20000073777A
Authority
KR
South Korea
Prior art keywords
image
lens
measuring
corneal
image sensor
Prior art date
Application number
KR1019990017278A
Other languages
Korean (ko)
Other versions
KR100320670B1 (en
Inventor
이상훈
Original Assignee
김현수
미래광학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김현수, 미래광학 주식회사 filed Critical 김현수
Priority to KR1019990017278A priority Critical patent/KR100320670B1/en
Publication of KR20000073777A publication Critical patent/KR20000073777A/en
Application granted granted Critical
Publication of KR100320670B1 publication Critical patent/KR100320670B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/255Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring radius of curvature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE: An optical system for a corneal curvature measurer is provided to prevent the change of size even if a focusing error occurs when a distance between an examined person's eye and the corneal curvature measurer is not exactly kept. CONSTITUTION: An image of meyering(MR) passing through a focusing lens(L1-1) offsets a numerical difference by an image lens(L1-2). At the same time, the image of meyering images the image of the meyering reflected from a corneal into a proper size in an image sensor. An optical image is changed to an electric signal by an image sensor and displayed on a monitor through an operator. Herein, an examiner gives a measurement order to the operator after focusing on the corneal(C) while looking at the monitor. The image sensor changes the meyering image to the electric signal and sends the electric signal to the operator. The size of the meyering image is analyzed and converted to a curvature value of the corneal(C). Then the examiner recognizes the curvature value of the corneal of the examined eye(E) through the monitor.

Description

각막곡률 측정 장치용 광학계{Optical architecture for measuring the corneal curvature}Optical architecture for measuring the corneal curvature

-본 발명은 인간의 각막곡률을 측정하기 위한 자동각막곡률측정장치의 광학계 구성에관한 것으로 피검안의 위치에 따라 각막곡률 값의 변화를 최소화 하기 위하여 측정용광학계를 Telecentric형으로 구성하는 방법에 관한 것이다.The present invention relates to the construction of an optical system of an automatic corneal curvature measuring device for measuring human corneal curvature, and to a method of configuring a measuring optical system in a telecentric type to minimize the change of corneal curvature according to the position of an eye. .

1)발명의 기술분야에 대한 개괄적 설명1) General description of the technical field of the invention

본 발명은 피검안의 위치에 따라 Image의 크기가 변하지 않도록 측정용 광학계를저렴한 생산비용을 유지하면서 구성 할 수 있는 효과적인 수단을 제공한다.The present invention provides an effective means for constructing the measurement optical system while maintaining a low production cost so that the size of the image does not change depending on the position of the eye.

2)종래의 기술2) conventional technology

(1)종래 기술 구성(1) Conventional technology composition

종래의 각막곡률 측정기기의 구성은 측정용 Pattern을 발생시키는 마니어링 MR과 각막에서 반사된 마이어링 MR의 상을 Image Sensor에 결상 시켜주는 측정용 Lens L1 측정용 Lens L1에 의해서 결상된 광학적 상을 전기적 신호로 바꾸어 주는 Image Sensor IS 측정시 Image sensor IS와 측정용 Lens L1사이에 개입되어 전체광학계를 Telecentric 으로 만들어주는 조리개 I 관측시에는 조리개 I를 Image sensor IS와 측정용 Lens L1사이에서 제거하고 측정시에는 조리개 I를 Image sensor IS와 측정용 Lens L1사이에 넣어주기위해서 조리개 I를 구동하는 Motor M으로 구성된다.Conventional corneal curvature measuring device is composed of the optical image formed by the lens L1 for measuring lens L1 for imaging the image of the mining MR and the miring MR reflected from the cornea to the image sensor. When measuring Image Sensor IS that converts into electrical signal, the aperture I is interposed between the image sensor IS and the measuring lens L1 to make the whole optical system telecentric. When the aperture I is observed, the aperture I is removed between the image sensor IS and the measuring lens L1. It consists of a motor M that drives the aperture I to insert the aperture I between the image sensor IS and the measuring lens L1.

(2) 종래 기술의 동작설명(2) Description of operation of the prior art

종래의 각막곡률 측정기기의 동작은 측정용 Pattern을 발생시키는 마니어링 MR에서 빛이 나오면 피검안 E의 각막C에 반사된 마이어링 MR의 모습이 나타나고 각막C에 서 반사된 마이어링 MR의 상은 측정용 Lens L1에 의해서 Image sensor IS의 상면에 결상되고 측정용 Lens L1에 의해서 결상된 광학적 상은 Image sensor IS에 의해서 전기적신호로 바뀐 후 연산장치를 통해서 모니터에 나타나면 측정자는 모니터를 보면서 피검자 의 각막 C에 focusing 을 한 후 연산장치에 측정지시를 내리면 연산장치는 Motor M을 작동시켜 조리개 I를 Image sensor IS와 측정용 Lens L1사이에 개입시켜 측정용 광학계가Telecentric이 되도록 한 후 이때 Image sensor IS상에 형성된 마이어링 상을 Image sensorIS 가 Pick up하여 전기적 신호로 바꾼 후에 연산장치로 보낸다. 연산장치로 보내진 마이어링의 상은 그 크기가 분석된 후 피검안 E의 각막C의 곡률값으로 환산하여 모니터상에 나타내면 측정자는 모니터를 보고 피검안 E의 각막C의 곡률값을 알수있게 된다.The operation of the conventional corneal curvature measuring device is that when the light from the manoring MR that generates the measurement pattern appears, the appearance of the mirroring MR reflected on the cornea C of the eye E and the image of the mirroring MR reflected from the cornea C is measured. The optical image formed by the lens L1 on the image sensor IS and the optical image formed by the measuring lens L1 is converted into an electrical signal by the image sensor IS, and then displayed on the monitor through the operation unit. After focusing, if the measurement instruction is given to the operation unit, the operation unit operates Motor M to intervene the aperture I between the image sensor IS and the measurement lens L1 so that the measurement optical system becomes telecentric. The image sensor IS picks up the miring phase, converts it into an electrical signal, and sends it to the computing device. The image of the miring sent to the arithmetic unit is analyzed and its size is converted into the curvature value of cornea C of eye E, and the measurer can see the curvature of cornea C of eye E by looking at the monitor.

(3)종래 기술의 문제점(3) Problems of the prior art

종래의 각막곡률 측정기기는 측정시 피검자의 눈과 각막곡률 측정기기 사이의 거리가 정확히 유지되지 않았을 때 발생하는 오차인 Focusing Error를 제거하기 위해서 주변광을 제거하고 Telecentric 조건이 만족되는 광만을 선별적으로 받아 들이기 위해서 조그만 크기의 조리개 I가 Image sensor IS와 측정용 Lens L1사이에 개입되기 때문에 관측시에는 광학계의 밝기가 충분히 밝지만 측정시에는 매우 어두운 광학계가 된다.Conventional corneal curvature measuring device removes ambient light and removes only the light that satisfies the telecentric condition in order to remove focusing error, which is an error that occurs when the distance between the subject's eye and the corneal curvature measuring device is not maintained correctly. A small aperture I intersects between the image sensor IS and the measuring lens L1 to receive the light, so that the brightness of the optical system is bright enough for observation, but it becomes a very dark optical system for measurement.

이는 마이어링 MR의 밝기가 매우 강해야 함을 의미하는데 마이어링 MR의 조명은This means that the brightness of the Meiring MR should be very strong.

피검자의 각막 C에 직접조명 하는 것이므로 피검자의 눈은 피로를 느끼게 된다.The eyes of the subject feel tired because the subject's cornea C is directly illuminated.

또한 측정시 조그만 크기의 조리개 I가 Image sensor IS와 측정용 Lens L1사이에 개입되므로 측정자는 측정하는 동안 피검자의 각막상태를 확인할 수 없게되어 측정도중에도 피검자의 눈과 각막곡률 측정기기 사이에 정렬상태가 양호하게 유지되고 있는지를 알 수가 없으므로 수차래 측정하여 측정도중에도 피검자의 눈과 각막곡률 측정기기사이에 정렬상태가 양호하게 유지되고 있다는 것을 통계적으로 확인해야 하는 불편이있다. 더욱이 측정시에 조그만 크기의 조리개 I가 Image sensor IS와 측정용 Lens L1사이에 예정된 위치에 정확히 놓여야 하므로 정밀제어 Motor 및 정밀제어 Motor를구동하기 위한 정밀제어 회로가 사용되어 제조비용이 높을 뿐만 아니라 System이 복잡하여지기 때문에 고장의 가능성도 높아지는 단점도 가지고 있다.In addition, a small aperture I intervenes between the image sensor IS and the measuring lens L1 during measurement, so that the measurer cannot check the corneal state of the subject during measurement, and the alignment state between the subject's eye and the corneal curvature measuring instrument during the measurement. It is inconvenient to statistically confirm that the alignment between the subject's eye and the corneal curvature measuring device is maintained well during measurement by measuring several times. In addition, a small aperture I should be placed precisely at a predetermined position between the image sensor IS and the measuring lens L1 during measurement. Therefore, a precision control circuit for driving the precision control motor and the precision control motor is used, and the manufacturing cost is high. It also has the disadvantage of increasing the possibility of failure due to the complexity of the system.

전술한 사항을 정리하면 종래의 각막곡률측정기기는 다음과 같은 단점을 가지고 있다.In summary, the conventional corneal curvature measuring device has the following disadvantages.

1.측정시 피검자의 눈을 피곤하게 만들수 있다.1. It can make the subject's eyes tired during the measurement.

2.여러 번 측정하여 피검자의 눈과 각막곡률 측정기기 사이에 정렬상태가 양호하다는 것을 통계적으로 확인 하여야 한다.2. Make several measurements to confirm statistically that the alignment between the subject's eyes and the corneal curvature measuring instrument is good.

3. 제조원가가 높고 고장의 가능성이 높다.3. High manufacturing cost and high probability of failure.

종래의 각막곡률 측정기기는 측정시 피검자의 눈과 각막곡률 측정기기 사이의 거리가 정확히 유지되지 않았을 때 발생하는 오차인 Focusing Error를 제거하기 위해서 주변광을 제거하고 Telecentric 조건이 만족되는 광만을 선별적으로 받아 들이기 위해서 조그만 크기의 조리개가 Image sensor 와 측정용 Lens 사이에 개입되기 때문에 관측시에는 광학계의 밝기가 충분히 밝지만 측정시에는 매우 어두운 광학계가 된다. 이는 마이어링의 밝기가 매우 강해야 함을 의미하는데 마이어링의 조명은 피검자의 각막에 직접조명 하는 것이므로 피검자의 눈은 피로를 느끼게 된다.Conventional corneal curvature measuring device removes ambient light and removes only the light that satisfies the telecentric condition in order to remove focusing error, which is an error that occurs when the distance between the subject's eye and the corneal curvature measuring device is not maintained correctly. A small aperture is interposed between the image sensor and the measuring lens in order to receive the light, so the brightness of the optical system is bright enough for observation, but it becomes a very dark optical system for measurement. This means that the brightness of the Meiring should be very strong. Since the illumination of the Meiring is a direct light on the cornea of the subject, the eyes of the subject feel fatigue.

본 발명의 광학계는 측정시 피검자의 눈과 각막곡률 측정기기 사이의 거리가 정확히 유지되지 않았을 때 발생하는 오차인 Focusing Error가 발생하더라도 Image Sensor에 결상 된 상이 흐려지기만 할 뿐 그 크기가 변하지 않는 Telecentric 광학계 이므로 종래의 기술에서 처럼 측정시 조리개가 Image sensor와 측정용 Lens사이에 개입시킬 필요가 없게된다.In the optical system of the present invention, even if a focusing error occurs, which is an error that occurs when the distance between the subject's eye and the corneal curvature measuring device is not accurately measured, the telecentric optical system does not change the size of the image sensor but only changes. Therefore, as in the prior art, the aperture does not need to intervene between the image sensor and the measuring lens.

이는 본 발명의 광학계는 측정시에도 충분히 밝은 광학계를 유지하는 것이 가능하다는 것을 의미하기 때문에 마이어링 MR의 밝기가 강해야 할 필요가 없어 피검자의 눈이 피로를 느끼지 않아도 된다. 또한 측정시에도 측정자는 측정하는 동안 피검자의 각막상태를 계속적으로 확인할 수This means that the optical system of the present invention can maintain a sufficiently bright optical system at the time of measurement, so the brightness of the Meiring MR does not have to be strong, and the eyes of the subject do not have to feel fatigue. In addition, during the measurement, the operator can continuously check the corneal condition of the subject during the measurement.

있으므로 측정도중에도 피검자의 눈과 각막곡률 측정기기 사이에 정렬Alignment between the subject's eye and the corneal curvature measuring instrument

상태가 양호하게 유지되고 있는지 확인이 가능해 수차래 측정하지 않아I can check whether it is in good condition and do not measure it several times

도 정밀측정이 가능하다.Precision measurement is also possible.

E: 피검안 C: 피검안의 각막 MR: 마이어링 광원 IS: Image SensorE: eye C: eye cornea MR: myring light source IS: image sensor

L1 : 측정렌즈 L1-1: 측정lens L1을 구성하는 Focusing LensL1: Measuring lens L1-1: Focusing lens constituting measuring lens L1

L1-2: 측정lens L1을 구성하는 결상 Lens M: 조리개 제어용 모터 I: 조리개L1-2: Image forming lens L1 M: Aperture control motor I: Aperture

1) 본 발명의 구성은 측정용 Pattern을 발생시키는 마니어링 MR과 각막에서 반사된마이어링 MR의 상을 Image Sensor에 결상 시켜주는 측정용 Lens L1, 측정용 Lens L1에의해서 결상된 광학적 상을 전기적 신호로 바꾸어 주는 Image Sensor IS, Image Sensor IS. 에서 전기적 신호로 전환된 마이어링의 상의 크기를 분석한 후 피검안 E의 각막C의 곡률값으로 환산하는 연산장치 및 피검안 E의 각막C의 Image 및 환산된 곡률값을 검사자가 볼수 있도록 하는 모니터로 구성되고 측정용 Lens L1은 Telecentric을 실현하기 위하여 피검안E 방향으로 주광선이 평행이 되도록 하는 Focusing Lens L1-1,Focusing Lens L1-1과 함께 각막에서 반사된 마이어링 MR의 상을 Image Sensor에 결상 시켜주는 3매로 구성된 결상 Lens L1-2로 구성된다.1) The configuration of the present invention is characterized in that the optical image formed by the measuring lens L1, the measuring lens L1 for imaging the image of the MRing and MRing reflecting from the cornea to the image sensor. Image Sensor IS, Image Sensor IS. An analysis device that analyzes the size of the image of the myring converted to electrical signal at, and converts the curvature value of cornea C of eye E and monitors that the inspector can see the image and converted curvature of cornea C of eye E The lens L1 for measuring is composed of the focusing lens L1-1 and focusing lens L1-1 which make the chief ray parallel to the E-eye to realize telecentric, and the image of the miring MR reflected from the cornea to the image sensor. It consists of an imaging lens L1-2 consisting of three sheets to form an image.

상에 나타내면 측정자는 모니터를보고 피검안 E의 각막C의 곡률값을 알 수 있게 된다.When shown on the monitor, the measurer can see the curvature value of cornea C of eye E.

2)본 발명의 작용설명2) Description of operation of the present invention

본 발명의 기술을 적용한 각막곡률 측정기기의 동작은 측정용 Pattern을 발생시키는마이어링 MR에서 빛이 나오면 피검안 E의 각막C에 반사된 마이어링 MR의 모습이나타나고 각막C에서 반사된 마이어링 MR의 상은 측정용 Lens L1에 의해서 Imagesensor IS의 상면에 결상되는데 측정용 Lens L1은 Telecentric을 실현하기 위하여 측정용Lens L1에 있는 Focusing Lens L1-1의 초점위치와 등가가 되는 S위치가 Aperture Stop이되도록 측정용 Lens L1이 구성되면 피검안E 방향에서 주광선은 평행이 되기 때문에 측정시에 피검자의 눈과 각막곡률측정기기 사이의 거리가 정확히 유지되지 않을 경우에도Image Sensor IS에 결상 된 상이 흐려지기만 할 뿐 그 크기가 변하지 않게 된다.The operation of the corneal curvature measuring device to which the technique of the present invention is applied is a miring MR reflected from the cornea C when the light is emitted from the myring MR generating the measurement pattern, and the cornea C is reflected from the cornea C. The image of the image is formed on the image sensor IS by the measuring lens L1. The measuring lens L1 has an Aperture Stop that is equivalent to the focal position of the focusing lens L1-1 on the measuring lens L1 in order to realize telecentricity. When the measuring lens L1 is configured, the chief rays of light are parallel in the E direction of the eye, only the image formed in the image sensor IS is blurred even when the distance between the eye of the subject and the corneal curvature measuring device is not maintained accurately during measurement. Its size does not change.

측정용 Lens L1의 Focusing Lens L1-1을 통과한 마이어링 MR의 상은 3매로 구성된 측정용Lens L1의 결상 Lens L1-2에 의해서 . Focusing Lens L1-1 의해서 발생한 수차를 상쇄시킴과 동시에 각막에서 반사된 마이어링 MR의 상을 Image Sensor에 적당한 크기로 결상시켜주게 된다. 측정용 Lens L1에 의해서 Image sensor IS의 결상면에 결상된 광학적 상은 Image sensor IS에 의해서 전기적 신호로 바뀐 후 연산장치를 통해서 모니터에 나타난다. 이때 측정자는 모니터를 보면서 피검자의 각막 C에 focusing 을 한 후 연산장치에 측정지시를 내리면 Image sensor IS상에 형성된 마이어링 상을 Image sensor IS 가 Pick up하여 전기적 신호로 바꾼 후에 연산장치로 보낸다. 연산장치로 보내진 마이어링의 상은 그 크기가 분석된후 피검안 E의 각막C의 곡률값으로 환산하여 모니터상에 나타내면 측정자는 모니터를보고 피검안 E의 각막C의 곡률값을 알 수 있게 된다.The image of the miring MR passing through the focusing lens L1-1 of the measuring lens L1 is determined by the imaging lens L1-2 of the measuring lens L1 composed of three sheets. At the same time, the aberration generated by the focusing lens L1-1 is canceled and the image of the mirroring MR reflected from the cornea is imaged to an appropriate size in the image sensor. The optical image formed on the imaging surface of the image sensor IS by the lens L1 for measurement is converted into an electrical signal by the image sensor IS and then displayed on the monitor through a computing device. At this time, the operator focuses on the cornea C of the subject while looking at the monitor, and then gives a measurement instruction to the computational device. The miring image formed on the image sensor IS is picked up, converted into an electrical signal, and sent to the computational device. The image of the mirings sent to the arithmetic unit is analyzed and its size is converted into the curvature value of cornea C of the eye E, and the measurer can see the monitor and know the curvature value of the cornea C of the eye E.

-본 발명의 따른 측정용 Lens L1의 실시예An embodiment of the measuring lens L1 according to the present invention

가) 실시예 1A) Example 1

구 분division 곡률(mm)Curvature (mm) 두께(mm)Thickness (mm) 굴절률Refractive index FocusingLens 부L1-1------------결상Lens 부L1-2Focusing Lens Part L1-1 ------------ Imaging Lens Part L1-2 120.0-120.0------------------14.217-1762.5-47.8120.0-120.0 ------------------ 14.217-1762.5-47.8 3.540.0271143.540.027114 1.791.001.801.711.01.731.791.001.801.711.01.73

나) 실시예 2B) Example 2

구 분division 곡률(mm)Curvature (mm) 두께(mm)Thickness (mm) 굴절률Refractive index FocusingLens 부L1-1------------결상Lens 부L1-2Focusing Lens Part L1-1 ------------ Imaging Lens Part L1-2 80.0-250-------------------1421-20.441.3-15080.0-250 ------------------- 1421-20.441.3-150 455.5890.14.7455.5890.14.7 1.791.001.791.701.01.801.791.001.791.701.01.80

본 발명의 광학계는 측정시 피검자의 눈과 각막곡률 측정기기 사이의 거리가 정확히 유지되지 않았을 때 발생하는 오차인 Focusing Error가 발생하더라도 Image Sensor IS에 결상 된 상이 흐려지기만 할 뿐 그 크기가 변하지 않는 Telecentric 광학계 이므로 종래의 기술에서 처럼 측정시 조리개 I가 Image sensor IS와 측정용 Lens L1사이에 개입시킬 필요가 없게된다. 이는 본 발명의 광학계는 측정시에도 충분히 밝은 광학계를 유지하는 것이 가능하다는 것을 의미하기 때문에 마이어링 MR의 밝기가 강해야 할 필요가 없어 피검자의 눈이 피로를 느끼지 않아도 된다. 또한 측정시에도 측정자는 측정하는 동안 피검자의 각막상태를 계속적으로 확인할 수있으므로 측정도중에도 피검자의 눈과 각막곡률 측정기기 사이에 정렬상태가 양호하게 유지되고 있는지 확인이 가능해 수차래 측정하지 않아도 정밀측정이 가능하다.더욱이 조리개 I가 존재하지 않기 때문에 정밀제어 Motor 및 정밀제어 Motor를 구동하기 위한 정밀제어 회로를 생략하는 것이 가능하여 저렴한 제조비용을 유지할수 있을 뿐만 아니라 System이 단순하여지기 때문에 고장의 가능성도 낮아지는 장점도 가지고 있다. 전술한 사항을 정리하면 본 발명의 광학계를 사용한 각막곡률측정기기는 다음과 같은장점을 가지고 있다.In the optical system of the present invention, even if a focusing error occurs, which is an error that occurs when the distance between the eye of the subject and the corneal curvature measuring device is not accurately measured, the image formed in the image sensor IS is only blurred. As it is an optical system, the aperture I does not need to intervene between the image sensor IS and the lens L1 for measurement, as in the conventional art. This means that the optical system of the present invention can maintain a sufficiently bright optical system at the time of measurement, so the brightness of the Meiring MR does not have to be strong, and the eyes of the subject do not have to feel fatigue. In addition, during measurement, the measurer can continuously check the condition of the subject's cornea during the measurement. Therefore, it is possible to check whether the alignment between the eye of the subject and the corneal curvature measuring instrument is well maintained during the measurement. In addition, since there is no aperture I, it is possible to omit the precision control circuit and the precision control circuit for driving the precision control motor, thereby maintaining a low manufacturing cost and simplifying the system. It also has the advantage of being lowered. In summary, the corneal curvature measuring device using the optical system of the present invention has the following advantages.

1.측정시 피검자의 눈을 피곤하지 않도록 하는 것이 가능하다.1. It is possible to avoid tired eyes of the subject during measurement.

2.측정시에도 피검자의 각막상태를 계속적으로 관측할 수 있으므로 여러 번2. The cornea state of the subject can be observed continuously during measurement.

정할 필요가 없다.There is no need to decide.

3.제조원가가 저렴하고 높고 고장의 가능성이 낮다.3. The manufacturing cost is low, high, and the probability of failure is low.

Claims (4)

측정용 Pattern을 발생시키는 마니어링과 각막에서 반사된 마이어링의 상을 Image Sensor에 결상 시켜주는 측정용 Lens, 측정용 Lens에 의해서 결상된광학적 상을 전기적 신호로 바꾸어 주는 Image Sensor 와, Image Sensor 에서 전기적 신호로 전환된 마이어링 상의 크기를 분석한 후 피검안의 각막의 곡률 값으로 환산하는 연산장치 및 피검안의 각막의 Image 및 환산된 곡률값을 검사자가 볼 수 있도록 하는 모니터로 구성되는 각막곡률 측정기기에 있어서 종래에 기술에서 사용되고 있는 조리개를 사용하지 않을 목적으로 측정용 Lens를 피검자방향의 Telecentric광학계로 구성하는 것이 특징인 각막곡률 측정기기The measurement lens that forms the image of the mining and reflecting mirror image from the cornea on the image sensor, the image sensor that converts the optical image formed by the measurement lens into an electrical signal, and the image sensor Corneal curvature measuring instrument consisting of a calculator that analyzes the size of the miring phase converted into electrical signals and converts it into curvature values of the cornea of the eye, and a monitor that allows the inspector to view the image and converted curvature of the cornea of the eye. Corneal curvature measuring device characterized in that for measuring the purpose of not using the aperture used in the prior art in the measurement lens to the telecentric optical system for the subject 청구항1에 있어서 측정용 Lens의 구성이 Telecentric을 실현하기 위하여 피검안 방향으로 주광선이 평행이 되도록 하는 Focusing Lens; Focusing Lens와 함께 각막에서 반사된 마이어링의 상을 Image Sensor에 결상 시켜주는 결상 Lens로 구성되는 것이 특징인 각막곡률 측정기기.The focusing lens of claim 1, wherein the configuration of the measuring lens comprises paralleling the chief rays of light in a direction to be examined in order to realize telecentric; Corneal curvature measuring device characterized in that it consists of an imaging lens for imaging the image of the miring reflected from the cornea with the focusing lens. 청구항2에 있어서 측정용 Lens의 구성이 전술한 발명의 구성 및 작용의 가)실시예1 과 같은광학계를 사용하는 것이 특징인 각막곡률 측정기기.The corneal curvature measuring device according to claim 2, wherein the configuration of the measuring lens is the same as that of the first embodiment. 청구항 2에 있어서 측정용 Lens의 구성이 전술한 전술한 발명의 구성 및 작용의 나)실시예 2와 같은광학계를 사용하는 것이 특징인 각막곡률 측정기기The corneal curvature measuring device according to claim 2, wherein the measuring lens has the same optical system as in Example 2 of the above-described configuration and function of the invention.
KR1019990017278A 1999-05-14 1999-05-14 Device for measuring the corneal curvature KR100320670B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990017278A KR100320670B1 (en) 1999-05-14 1999-05-14 Device for measuring the corneal curvature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990017278A KR100320670B1 (en) 1999-05-14 1999-05-14 Device for measuring the corneal curvature

Publications (2)

Publication Number Publication Date
KR20000073777A true KR20000073777A (en) 2000-12-05
KR100320670B1 KR100320670B1 (en) 2002-01-17

Family

ID=19585443

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990017278A KR100320670B1 (en) 1999-05-14 1999-05-14 Device for measuring the corneal curvature

Country Status (1)

Country Link
KR (1) KR100320670B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100899291B1 (en) * 2006-10-12 2009-05-27 유니코스주식회사 A Focal length revision method and equipment of optometer
KR100988927B1 (en) * 2008-04-08 2010-10-20 임용무 Device for measuring curvature

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043202B1 (en) * 2008-10-24 2011-06-21 주식회사 휴비츠 method for controlling position of eye examining apparatus using mire ring light and focus light and eye examining apparatus using the same
KR101056960B1 (en) * 2008-11-25 2011-08-16 주식회사 휴비츠 Corneal curvature measuring method to compensate for measurement position error and optometry using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100899291B1 (en) * 2006-10-12 2009-05-27 유니코스주식회사 A Focal length revision method and equipment of optometer
KR100988927B1 (en) * 2008-04-08 2010-10-20 임용무 Device for measuring curvature

Also Published As

Publication number Publication date
KR100320670B1 (en) 2002-01-17

Similar Documents

Publication Publication Date Title
EA004236B1 (en) System and method for the non-contacting measurement of the axis length, and/or cornea curvature, and/or anterior chamber depth of the eye, preferably for intraocular lens calculation
JPS6153052B2 (en)
US5144346A (en) Ophthalomological apparatus for alignment and refraction
US4795250A (en) Ophthalmic apparatus
US6164778A (en) Corneal endothelial cell photographing apparatus
KR20000073777A (en) Optical architecture for measuring the corneal curvature
JPH02264632A (en) Sight line detector
EP0641541B1 (en) Apparatus for obtaining images of cornea endothelium
JP4231273B2 (en) Eye characteristics measuring device
JP3305410B2 (en) Ophthalmic equipment
JPH0984760A (en) Positioning detection device for ophthalmic equipment
JPH0430854B2 (en)
KR20130094245A (en) Ophthalmic apparatus, method for controlling ophthalmic apparatus, and storage medium
JP2707337B2 (en) Corneal shape measuring device
US20230266568A1 (en) Optical system and inspection apparatus
JP3581454B2 (en) Corneal endothelial imaging device with corneal thickness measurement function
JPH06181888A (en) Ophthalmoscope
JP2000023916A (en) Eye examination instrument
JP2007178742A (en) Method and device for evaluating spectacle lens
JPH02206425A (en) Glance detection apparatus
JPH067299A (en) Ophthalmologic refractometer
JPH049135A (en) Eye refraction meter
JP3046062B2 (en) Eye refractive power measuring device
CN114532970A (en) Watch projector for visual acuity test
JPH09168513A (en) Ocular refraction measuring instrument

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111206

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee