KR20000065580A - Process for Preparing Amino-terminal Methionine Free Recombinant Interferon-alpha - Google Patents

Process for Preparing Amino-terminal Methionine Free Recombinant Interferon-alpha Download PDF

Info

Publication number
KR20000065580A
KR20000065580A KR1019990012001A KR19990012001A KR20000065580A KR 20000065580 A KR20000065580 A KR 20000065580A KR 1019990012001 A KR1019990012001 A KR 1019990012001A KR 19990012001 A KR19990012001 A KR 19990012001A KR 20000065580 A KR20000065580 A KR 20000065580A
Authority
KR
South Korea
Prior art keywords
interferon
recombinant interferon
recombinant
methionine
amino
Prior art date
Application number
KR1019990012001A
Other languages
Korean (ko)
Other versions
KR100327971B1 (en
Inventor
강관엽
정수일
Original Assignee
허영섭
재단법인 목암생명공학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 허영섭, 재단법인 목암생명공학연구소 filed Critical 허영섭
Priority to KR1019990012001A priority Critical patent/KR100327971B1/en
Publication of KR20000065580A publication Critical patent/KR20000065580A/en
Application granted granted Critical
Publication of KR100327971B1 publication Critical patent/KR100327971B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/56IFN-alpha

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: Provided is a preparation method of recombinant interferon-alpha of which methionine at amino end is eliminated. Thereby the recombinant interferon-alpha is prepared easily which is suitable for a therapeutic recombinant protein for administration and which is safe in vivo. CONSTITUTION: A method for preparation of recombinant interferon-alpha of which methionine at amino end is prepared by: treating aminopeptidase originated from Aeromonas proteolytica into recombinant interferon alpha to remove methionine at amino end and reacting at 20-30°C for 12-20 hours; isolating and purifying using cation exchange chromatography; and expressing the recombinant interferon alpha in the recombinant E.coli δpMAIFN alpha, KCCM 10053.

Description

아미노 말단 메티오닌이 제거된 재조합 인터페론-α의 제조방법{Process for Preparing Amino-terminal Methionine Free Recombinant Interferon-alpha}Process for Preparing Amino-terminal Methionine Free Recombinant Interferon-alpha}

본 발명은 형질전환된 재조합 대장균으로부터 아미노 말단에 존재하는 메티오닌이 제거된 재조합 인터페론-α의 제조방법에 관한 것이다. 좀 더 구체적으로, 본 발명은 재조합 인터페론-α에 아미노펩티다제를 처리하여 아미노 말단의 메티오닌을 제거하고, 양이온 교환 크로마토그래피(cation-exchange chromatography)를 이용하여 정제하는 공정을 포함하는, 형질전환된 재조합 대장균으로부터 아미노 말단에 존재하는 메티오닌이 제거된 재조합 인터페론-α를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a recombinant interferon-α from which the methionine present at the amino terminus is removed from the transformed recombinant E. coli. More specifically, the present invention comprises the step of treating recombinant interferon-α with an aminopeptidase to remove amino-terminal methionine and purifying using cation-exchange chromatography. The present invention relates to a method for producing a recombinant interferon-α from which methionine present at an amino terminus is removed from recombinant E. coli.

유전공학의 발달과 함께, 재조합 미생물을 이용하여 필요한 단백질을 제조하는 방법이 급속도로 발전하여 왔다. 그러나, 일반적으로 유전자 재조합 기술로 발현된 단백질 생산물은 아미노 말단에 그 단백질 생산물의 유전자가 지정하는 아미노산 서열 이외에 추가로 메티오닌(N-met)을 가지는 비천연형의 재조합 단백질이 만들어지며 대장균의 경우도 예외는 아니다. 재조합 단백질은 인체내의 단백질과 동일한 구조를 가지지 못하므로, 체내 투여를 목적으로 하는 치료제용 재조합 단백질을 대장균으로부터 발현하여 생산할 경우, N-met은 숙주로부터 예기치 못했던 면역반응을 유발시키거나, 단백질 자체가 불안정하여 기능을 완전히 수행하지 못하기도 하였다. 예를 들어, 사람의 뇌하수체에서 분비되며 아미노 말단이 페닐알라닌-프롤린-트레오닌(Phe-Pro-Thr)으로 시작되는 191개의 아미노산으로 구성된 인간성장호르몬은 유전자 재조합 방법으로 제조되어 왜소증의 치료에 사용되고 있다. 그러나, 상기의 재조합 인간성장호르몬에는 191개의 아미노산 이외에도 아미노 말단에 메티오닌이 제거되지 않은 채 남아 있는 경우가 많으며, 이러한 메티오닌이 부가된 인간성장 호르몬에의해 예기치 못했던 항체형성이 유발된다는 보고가 있었다.With the development of genetic engineering, methods for producing necessary proteins using recombinant microorganisms have been rapidly developed. However, in general, a protein product expressed by genetic recombination technology produces a non-natural recombinant protein having methionine (N-met) in addition to the amino acid sequence designated by the gene of the protein product at its amino terminus. No exception. Recombinant proteins do not have the same structure as proteins in the human body, so when the recombinant recombinant protein for body administration is produced by E. coli, N-met causes an unexpected immune response from the host or the protein itself It was unstable and could not fully function. For example, human growth hormone composed of 191 amino acids secreted by the human pituitary gland and whose amino terminus starts with phenylalanine-proline-threonine (Phe-Pro-Thr) has been produced by genetic recombination and used in the treatment of dwarfism. However, in the recombinant human growth hormone, in addition to 191 amino acids, methionine has not been removed at the amino terminus in many cases, and it has been reported that unexpected antibody formation is caused by the human growth hormone added with methionine.

따라서, 이러한 재조합 단백질의 문제를 해결하기 위하여 다양한 방법들이 개발되어 왔으며, 예를 들면, 아미노 말단에 위치한 메티오닌을 제거하기 위해 재조합 융합단백질을 생산하여 절단하는 방법(참조: WO 89/12678, EP 20209, EP321940)이나, 재조합 단백질을 숙주세포 밖으로 분비되는 과정에서 메티오닌이 절단되도록 하는 방법(참조: EP 008832, USP 4,755,464) 등이 제안된 바 있다. 그러나, 이러한 방법들은 발현벡터의 재조작 및 숙주세포의 형질변환과 같은 추가조작이 필요하고, 발효의 최적화를 위한 조건을 설정해 주어야 한다는 문제점을 노출하였다.Therefore, various methods have been developed to solve the problem of such recombinant proteins, for example, a method for producing and cleaving a recombinant fusion protein to remove methionine located at the amino terminus (see WO 89/12678, EP 20209). , EP321940), or a method (see EP 008832, USP 4,755,464) for cutting methionine in the process of secreting the recombinant protein out of the host cell has been proposed. However, these methods expose the problem that additional manipulation such as re-engineering of expression vectors and transformation of host cells is necessary and conditions for optimization of fermentation should be set.

한편, 재조합 단백질의 아미노 말단에 위치하는 메티오닌만을 선택적으로 절단하는 효소인 아미노펩티다제(methionine aminopeptidase)를 이용하여 천연형의 단백질을 제조하는 방법이 제시되었다(참조: WO 86/01229, WO 86/204527, EP6296695, USP 5,569,598). 그러나, 이 방법에 의하면, 재조합 단백질을 비교적 간단하게 천연형의 단백질로 전환시킬 수는 있었으나, 전기 아미노펩티다제가 재조합 단백질에 작용하여 천연형의 단백질로 전환시키기 위해서는, 아미노 말단의 메티오닌만을 제거하고 절단반응을 정지하여야 하며, 소량만으로도 재조합 단백질을 천연형의 단백질로 전환할 수 있어야 함은 물론, 아미노펩티다제의 메티오닌 제거활성이 메티오닌 다음에 오는 인접 아미노산의 종류에 크게 영향을 받는다는 단점을 내포하고 있었다. 따라서, 각각의 재조합 단백질의 구조적, 생화학적 특성에 맞게 효율적으로 아미노 말단의 메티오닌을 제거하고 정제하는 방법을 개발하여야 할 필요성이 끊임없이 대두되었다.Meanwhile, a method of preparing a native protein using a method of aminopeptidase, an enzyme that selectively cleaves only methionine located at the amino terminus of a recombinant protein, has been proposed (see WO 86/01229 and WO 86). / 204527, EP6296695, USP 5,569,598). According to this method, however, the recombinant protein could be converted to a naturally occurring protein relatively simply. However, in order for the aminopeptidase to act on the recombinant protein and convert to a native protein, only the amino terminal methionine was removed. The cleavage reaction must be stopped, and a small amount must be able to convert the recombinant protein into a natural protein, and the methionine removal activity of the aminopeptidase is greatly affected by the type of adjacent amino acid following methionine. Was doing. Therefore, there is a constant need to develop a method for efficiently removing and purifying amino-terminal methionine according to the structural and biochemical properties of each recombinant protein.

이에, 본 발명자들은 대장균으로부터 발현된 재조합 인터페론-α의 아미노 말단 메티오닌을 효율적으로 제거하여, 재조합 단백질로서 단일성이 더욱 확실하고 임상적으로 인체에 보다 안전한 아미노 말단 메티오닌이 제거된 재조합 인터페론-α를 제조하기 위해 예의 노력한 결과, 재조합 인터페론-α가 그 구조적인 특이성으로 인해 아미노 말단의 메티오닌만이 선택적으로 제거될 수 있으며, 또한 양이온 교환 크로마토그래피를 통해 아미노 말단의 메티오닌이 제거된 천연형의 인터페론-α가 손쉽게 정제될 수 있음을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have efficiently removed the amino terminal methionine of recombinant interferon-α expressed from E. coli, thereby producing a recombinant interferon-α in which the amino terminal methionine is removed more reliably and clinically safer in human body as a recombinant protein. As a result of intensive efforts, the recombinant interferon-α can selectively remove only amino-terminal methionine due to its structural specificity, and it is also a natural type of interferon-α in which amino-terminal methionine is removed through cation exchange chromatography. It was confirmed that can be easily purified, and to complete the present invention.

결국, 본 발명의 주된 목적은 형질전환된 대장균으로부터 아미노 말단에 존재하는 메티오닌이 제거된 재조합 인터페론-α를 제조하는 방법을 제공하는 것이다.After all, the main object of the present invention is to provide a method for producing a recombinant interferon-α from which the methionine present at the amino terminus is removed from the transformed E. coli.

도 1은 부분정제된 인터페론-α의 등전점분획전기이동법(IEF: iso- electrofocusing)에 의한 젤 사진이다.1 is a gel photograph by iso-electrofocusing (IEF) of partially purified interferon-α.

도 2는 부분정제된 인터페론-α에 아미노펩티다제(aminopeptidase)처리 후 양이온 교환 크로마토그래피로 분리한 시료의 IEF에 의한 젤 사진이다.Figure 2 is a gel photograph by IEF of a sample separated by cation exchange chromatography after aminopeptidase treatment of partially purified interferon-α.

도 3은 부분정제된 인터페론-α의 아미노 말단의 아미노산 서열 분석결과를 보여주는 크로마토그램이다.Figure 3 is a chromatogram showing the amino acid sequence analysis of the amino terminal of the partially purified interferon-α.

도 4는 부분정제된 인터페론-α에 아미노펩티다제 처리 후, 양이온 교환 크로마토그래피로 분리한 시료의 아미노 말단의 아미노산 서열 분석결과를 보여주는 크로마토그램이다.4 is a chromatogram showing the amino acid sequence analysis of the amino terminal of the sample separated by cation exchange chromatography after aminopeptidase treatment to partially purified interferon-α.

본 발명의 아미노 말단 메티오닌이 제거된 재조합 인터페론-α의 제조방법은 부분정제된 재조합 인터페론-α에 아미노펩티다제를 처리하고, 양이온교환 크로마토그래피를 이용하여 메티오닌이 제거된 재조합 인터페론-α를 정제하는 공정을 포함한다.In the present invention, a method for preparing recombinant interferon-α from which amino terminal methionine is removed is treated with aminopeptidase to partially purified recombinant interferon-α, and purified methionine-removed recombinant interferon-α using cation exchange chromatography. It includes a process to make.

본 발명에서는 부분정제된 인터페론으로부터 아미노 말단 메티오닌이 제거된 재조합 인터페론-α를 제조한다. 후술하는 실시예에서는 형질전환된 재조합 대장균으로부터 봉입체(inclusion body) 형태로 발현된 인터페론-α(참조: 대한민국특허 제 134856호)를 8M 우레아(urea)에 용해시킨 후 다시 활성화(refolding)시키고, Cu2+-킬레이트 세파로오스를 이용한 금속-킬레이트 친화성 크로마토그래피 및 SP 세파로오스를 이용한 이온교환 크로마토그래피를 수행하여 부분정제한 인터페론-α를 채용한 예를 들어 설명하고 있으나, 본 발명의 아미노 말단 메티오닌이 제거된 재조합 인터페론-α의 제조방법에서 사용될 수 있는 부분정제된 인터페론-α의 범위는 후술하는 실시예에 국한되지 않고, 다양한 재조합 단백질 발현체로부터 부분정제된 인터페론-α를 포함한다.In the present invention, recombinant interferon-α is prepared in which amino terminal methionine is removed from partially purified interferon. In the following example, the interferon-α (refer to Korean Patent No. 134856) expressed in the form of inclusion body from the transformed recombinant E. coli was dissolved in 8M urea and then refolded, and Cu2 + Although the example employs a partially purified interferon-α by carrying out metal-chelate affinity chromatography with chelate sepharose and ion exchange chromatography with SP sepharose, the amino terminal methionine of the present invention The range of partially purified interferon-α that can be used in the preparation of this removed recombinant interferon-α is not limited to the examples described below, and includes interferon-α partially purified from various recombinant protein expressors.

부분정제된 인터페론-α 시료의 pH를 조절한 후 ZnCl2를 첨가하고, 아미노펩티다제를 부분정제된 단백질 mg당 0.2 내지 10 unit이 되도록 넣은 후, 20 내지 30℃, 가장 바람직하게는 25℃에서, 12 내지 20 시간, 보다 바람직하게는 14 내지 18 시간, 가장 바람직하게는 16 시간 동안 반응시켜 아미노 말단의 메티오닌을 제거한다. 상기 공정에서 수득한 아미노펩티다제가 처리된 시료의 pH를 4.0으로 낮춘 후, 완충용액으로 2배 희석한 시료를 0.45μm 필터로 여과한 후, 강력한 이온교환성질을 가진 이온교환 수지를 이용하여 양이온 교환 크로마토그래피를 수행한다. 이어, 50 내지 200mM NaCl이 첨가된 완충용액을 이용하여 단계별로 용출시키고, 단계별로 용출된 시료를 등전점분획전기이동법(IEF: isoelectrofocusing)를 이용하여, 아미노 말단의 메티오닌이 완전히 제거된 분획을 확인한 후, 인터페론-α를 수득한다.After adjusting the pH of the partially purified interferon-α sample, ZnCl2 was added and the aminopeptidase was added at 0.2 to 10 units per mg of the partially purified protein, and then at 20 to 30 ° C, most preferably at 25 ° C. For 12 to 20 hours, more preferably 14 to 18 hours, most preferably 16 hours to remove the amino terminal methionine. After the pH of the aminopeptidase-treated sample obtained in the above process was lowered to 4.0, the sample diluted twice with the buffer solution was filtered through a 0.45 μm filter, and then the cation was prepared using an ion exchange resin having strong ion exchange properties. Exchange chromatography is performed. Subsequently, eluted stepwise using a buffer solution of 50 to 200 mM NaCl, and the fraction eluted from the amino-terminal methionine was confirmed by isoelectrofocusing (IEF). Afterwards, interferon-α is obtained.

아미노펩티다제에 의하여 인터페론-α 의 아미노 말단 메티오닌(N-met)이 특이적으로 제거될 수 있는 것은 인터페론-α의 디설파이드 결합 구조에 기인하며, 인터페론-α은 두 개의 디설파이드 결합(disulfide bond; cys1-cys98, cys29-cys138)를 가진다. 두 개의 디설파이드 결합을 모두 가진 것을 빠른 단위체(fast monomer)라 하고, 그 중 하나(cys29-cys138)만을 가진 것을 느린 단위체(slow monomer)라 하며, 두 가지 형태 모두는 생물학적 활성에 있어서 동일하고 대부분의 인터페론-α은 빠른 단위체로 존재한다. 빠른 단위체의 첫번째 시스테인은 디설파이드 결합에 의하여 98번째 시스테인과 내부결합(internal bridge)을 형성하고 있으므로, 아미노펩티다제 처리에 의하여 N-met이 제거된 이후 효소반응은 정지하게 되며, 이러한 구조적 특이성은 사용한 아미노펩티다제에 의하여 특이적으로 N-met만이 제거될 수 있도록 하는 원리를 제공한다.The amino terminal methionine (N-met) of interferon-α can be specifically removed by the aminopeptidase due to the disulfide bond structure of interferon-α, and interferon-α is divided into two disulfide bonds; cys1-cys98, cys29-cys138). Those with both disulfide bonds are called fast monomers, those with only one (cys29-cys138) are called slow monomers, and both forms are identical in biological activity and most Interferon-α exists as a fast monomer. Since the first cysteine of the fast monomer forms an internal bridge with the 98th cysteine by disulfide bond, the enzymatic reaction is stopped after N-met is removed by aminopeptidase treatment. It provides a principle that only N-met can be specifically removed by the aminopeptidase used.

이하, 실시예에 의하여 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오로지 본 발명을 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 실시예에 의하여 제한되지 않는다는 것은 당업계의 통상적인 지식을 가진 자에게 있어서 자명할 것이다 .Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by the examples according to the gist of the present invention.

실시예 1: 부분정제된 인터페론-α의 수득Example 1 Obtaining Partially Purified Interferon-α

부분정제된 인터페론-α를 수득하기 위하여, 살모넬라 균주의 L-아라비노스 오페론을 이용한 유도성 발현벡터에 인간의 인터페론-α 유전자가 삽입된 플라즈미드로 형질전환된 재조합 대장균(E.coli △pMAIFNα, KCCM 10053)으로 부터 봉입체(inclusion body) 형태로 발현된 인터페론-α(참조: 대한민국특허 제 134856호)을 8M 우레아(urea) 용액에 용해시킨 후, 점차적으로 희석함으로써 활성화(refolding)과정을 수행하였고, 활성화된 인터페론-α을 흡착용액(1M NaCl을 함유하는 20mM 인산염 완충용액(pH 7.2))으로 평형화된 Cu2+-킬레이트 세파로오스(Cu2+-chelate Sepharose, Pharmacia Biotech, Sweden)에 흡착시킨 후, 5 내지 20mM의 이미다졸(imidazole)로 용출시켰다. 용출된 시료를 한외여과 과정을 통해 농축한 후, 다시 SP 세파로오스(SP Sepharose, Pharmacia Biotech, Sweden)에 붙여 50 내지 250mM의 NaCl로 용출하여 부분정제된 인터페론-α를 수득하였다. 부분정제된 인터페론-α 시료에 있어서 아미노 말단의 아미노산을 492 Protein Sequencer(Perkin Elmer, U.S.A.)를 이용하여 서열분석한 결과, 전체 인터페론-α의 30% 이상이 N-met을 가지고 있음이 확인되었다.In order to obtain partially purified interferon-α, recombinant E. coli (E. coli ΔpMAIFNα, KCCM) transformed with a plasmid in which a human interferon-α gene was inserted into an inducible expression vector using L-arabinose operon of Salmonella strains. 10053) was dissolved in 8M urea solution of interferon-α (refer to Korean Patent No. 134856) expressed in the form of an inclusion body, and then gradually diluted to perform the refolding process. Activated interferon-α was adsorbed onto Cu 2+ -chelate Sepharose (Cu2 + -chelate Sepharose, Pharmacia Biotech, Sweden) equilibrated with adsorption solution (20 mM phosphate buffer (pH 7.2) containing 1 M NaCl), and then 5 to Eluted with 20 mM imidazole. The eluted sample was concentrated through ultrafiltration, and then attached to SP Sepharose (SP Sepharose, Pharmacia Biotech, Sweden) to elute with 50 to 250 mM NaCl to obtain partially purified interferon-α. In the partially purified interferon-α samples, amino-terminal amino acids were sequenced using 492 Protein Sequencer (Perkin Elmer, U.S.A.). As a result, at least 30% of the total interferon-α had N-met.

실시예 2: 등전점분획전기이동법을 이용한 인터페론-α의 분리확인Example 2: Confirmation of Interferon-α Separation Using Isoelectric Point Fractionation Electrophoresis

실시예 1에 의해 부분정제된 시료와 pI 표준시료를 pI 범위가 3 내지 9인 IEF 젤(NOVEX, U.S.A.)의 각 웰에 넣은 후, 100V로 1시간, 200V로 1시간, 500V로 30분동안 전개하여 IEF 젤 전기영동을 하였다. 음극과 양극에는 각각 음극 완충용액과 양극 완충용액을 넣고, NOVEX 지침서(pp.19-20, NOVEX pre-cast gel instruction)와 동일하게 전개하여, 전개된 IEF 젤을 caps(3-[cyclohexylamino]-1-propane-sulphonic acid) 완충용액(조성: 10mM caps(pH 11), 10% methanol)를 매개로 PVDF 막(Biorad, U.S.A.)에 전기이동(electroblotting)시켰고, 단백질이 이동되어 붙어 있는 PVDF 막을 쿠마씨 블루(Coomassie Brilliant Blue)로 염색하여 각각의 밴드 위치를 확인하였다(참조: 도 1). 도 1에서, 레인 1은 부분정제된 인터페론-α이며; 및, 레인 2는 pI 표준시료를 각각 나타낸다. 이때, PVDF 막으로 전기이동된 각 밴드를 잘라내어, 492 Protein Sequencer(Perkin Elmer, U.S.A.)를 이용하여 아미노 말단의 아미노산 서열을 분석하였다(참조: 표 1). 하기 표 1 및 도 1에서 보듯이, 아미노 말단에 메티오닌을 가진 인터페론-α(met-IFN)는 pI 6.2부근의 위쪽 밴드에 높은 비율로 존재하며 중간 밴드와 아래쪽 밴드에는 메티오닌이 완전히 제거된 인터페론-α(IFN)만이 존재하였다. 이로부터, met-IFN와 IFN이 이온교환 크로마토그래피로 분리될 수 있음을 암시하였다.The sample and the pI standard sample partially purified according to Example 1 were placed in each well of an IEF gel (NOVEX, USA) having a pI range of 3 to 9, and then 1 hour at 100V, 1 hour at 200V, and 30 minutes at 500V. It was developed and subjected to IEF gel electrophoresis. Cathode buffer and anode buffer were added to the cathode and anode, respectively, and developed in the same manner as the NOVEX guidelines (pp.19-20, NOVEX pre-cast gel instruction), and caps (3- [cyclohexylamino]-was developed. The PVDF membrane was electrophoreted to PVDF membrane (Biorad, USA) via 1-propane-sulphonic acid) buffer solution (composition: 10 mM caps (pH 11), 10% methanol), and the protein was transferred to the PVDF membrane. Staining with Coomassie Brilliant Blue confirmed the respective band positions (see FIG. 1). In Figure 1, lane 1 is partially purified interferon-α; And lane 2 represent pI standard samples, respectively. At this time, each band electrophoresis was cut out by the PVDF membrane, and the amino acid sequence of the amino terminal was analyzed using a 492 Protein Sequencer (Perkin Elmer, U.S.A.) (see Table 1). As shown in Table 1 and FIG. 1, interferon-α (met-IFN) having methionine at its amino terminal is present at a high ratio in the upper band near pI 6.2 and in the middle and lower bands, interferon- completely removed methionine. only α (IFN) was present. This suggests that met-IFN and IFN can be separated by ion exchange chromatography.

부분정제된 인터페론-α의 아미노말단의 아미노산 서열분석 결과Amino acid sequencing result of amino terminal of partially purified interferon-α 구분division 아미노산 검출 순서Amino Acid Detection Sequence 1One 22 33 44 위쪽 밴드Upper band MetMet AspAsp LeuLeu ProPro 중간 밴드Middle band XX AspAsp LeuLeu ProPro 아래쪽 밴드Bottom band XX AspAsp LeuLeu ProPro

X: 아미노산이 검출되지 않음X: no amino acids detected

실시예 3: 아미노펩티다제 처리Example 3: Aminopeptidase Treatment

부분정제된 인터페론-α 시료의 pH를 8.0으로 조절한 후, ZnCl2를 0.01 내지 0.1mM이 되도록 첨가하고, 에어로모나스 프로테오리티카(Aeromonas proteolytica)에서 유래한 아미노펩티다제(Sigma, U.S.A.)를 부분정제된 인터페론-α 단백질 mg당 0.2 내지 10 unit이 되도록 넣은 후, 25℃에서 16시간 동안 반응시켰다. 이어, 실시예 2와 같은 방법으로 IEF 젤 전기영동을 하여 아미노 말단 메티오닌의 제거를 확인하였다(참조: 도 2). 도 2에서 레인 1은 pI 표준시료이며; 레인 2는 부분정제된 인터페론-α 시료; 레인 3은 Resource S로 분리된 인터페론-α 시료; 및, 레인 4는 부분정제된 인터페론-α에 아미노펩티다제를 처리한 시료이다. 도 2에서 보듯이, 상기 방법으로 아미노펩티다제를 처리한 결과, IEF 상에서 met-IFN 밴드가 IFN 밴드로 전환되는 것을 확인하였다.After adjusting the pH of the partially purified interferon-α sample to 8.0, ZnCl2 was added to 0.01 to 0.1 mM, and aminopeptidase (Sigma, USA) derived from Aeromonas proteolytica was added. 0.2 to 10 units per mg of partially purified interferon-α protein was reacted at 25 ° C. for 16 hours. Subsequently, IEF gel electrophoresis was performed in the same manner as in Example 2 to confirm the removal of the amino terminal methionine (see FIG. 2). Lane 1 in Figure 2 is the pI standard sample; Lane 2 is a partially purified interferon-α sample; Lane 3 is an interferon-α sample separated by Resource S; And lane 4 is a sample obtained by treating aminopeptidase with partially purified interferon-α. As shown in Figure 2, the aminopeptidase treatment by the above method, it was confirmed that the met-IFN band is converted to the IFN band on the IEF.

실시예 4: 양이온교환 크로마토그래피Example 4: Cation Exchange Chromatography

실시예 3에서와 같이, 아미노펩티다제가 처리된 시료의 pH를 4.0으로 낮춘 후, pH 4.3 내지 5.5인 20mM 제일인산나트륨 완충용액(이하, '완충용액 1'이라 함)으로 2배 희석시키고, 희석된 시료를 0.45μm 필터로 여과한 후 완충용액 1로 평형화(equilibration)시킨 Resource S(Pharmacia Biotech, Sweden) 컬럼을 통과시켰다. Resource S에 붙은 시료를 50 내지 200mM NaCl이 첨가된 완충용액 1을 이용하여 단계별로 용출시키고, 단계별로 용출된 시료를 사용하여 실시예 2와 같이 IEF를 이용하여 met-IFN이 완전히 제거된 분획을 확인하였고(참조: 도 2, 레인 3), 최종적으로 아미노 말단의 아미노산 서열분석을 통하여 공정 전과 후를 비교해 볼 때, N-met 이 완전히 제거된 것을 확인하였다(참조: 도 3, 도 4). 도 3의 아미노 말단의 아미노산 서열분석 결과에서 보듯이, 부분정제된 인터페론-α의 상당부분은 아미노 말단에 메티오닌을 갖고 있음이 확인되었고, 도 4에서 보듯이 아미노펩티다제 처리 후에 Resource S로 분리한 인터페론-α의 첫번째 아미노 말단 서열에서는 아미노산이 검출되지 않았다. 전기와 같은 에드만 분해(Edman degradation) 과정을 통해 서열분석되는 경우 아미노산이 검출되지 않았다는 사실은 상기 공정을 통해 메티오닌이 제거되어, 인터페론-α(IFN)의 첫번째 아미노 말단 서열이 시스테인이 되었다는 것을 의미하며, 이 첫번째 시스테인이 디설파이드 결합을 통한 내부결합(internal bridge)을 형성하여 98번 시스테인과 연결되어 있음에 기인한 것이다. 검출된 두번째 아미노산은 아스파르트산(aspartic acid)이 검출되었으며, 이 결과는 이미 보고된 바와 일치하는 것이었다(참조: H.S. Park, Korean Biochem. J., Vol.20, No.4, pp.336-344, 1987).As in Example 3, the pH of the aminopeptidase-treated sample was lowered to 4.0, and then diluted twice with 20 mM sodium phosphate buffer solution (hereinafter referred to as 'buffer 1') having a pH of 4.3 to 5.5, The diluted sample was filtered through a 0.45 μm filter and passed through a Resource S (Pharmacia Biotech, Sweden) column equilibrated with Buffer 1. The sample attached to Resource S was eluted step by step using Buffer 1 to which 50 to 200 mM NaCl was added, and the fraction of met-IFN was completely removed using IEF as in Example 2 using the sample eluted step by step. It was confirmed (see Figure 2, lane 3), and finally compared to before and after the process by amino acid sequencing of the amino terminal, it was confirmed that the N-met was completely removed (see Figure 3, Figure 4). As shown in the amino terminal sequence analysis of the amino terminal of Figure 3, it was confirmed that a significant portion of the partially purified interferon-α has a methionine at the amino terminal, as shown in Figure 4 separated by Resource S after aminopeptidase treatment No amino acids were detected in the first amino terminal sequence of one interferon-α. The fact that no amino acids were detected when sequencing through the Edman degradation process described above meant that methionine was removed through this process, resulting in the first amino terminal sequence of interferon-α (IFN) becoming cysteine. This first cysteine is connected to cysteine 98 by forming an internal bridge through disulfide bonds. Aspartic acid was detected as the second amino acid detected, and the result was consistent with that previously reported (HS Park, Korean Biochem. J., Vol. 20, No. 4, pp. 336-344). , 1987).

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해서 정의된다고 할 것이다.As described above in detail the specific parts of the present invention, for those skilled in the art, these specific descriptions are only preferred embodiments, which are not intended to limit the scope of the present invention. Will be obvious. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

이상에서 상세히 설명하고 입증하였듯이, 본 발명은 형질전환된 재조합 대장균으로부터 아미노 말단의 메티오닌이 제거된 재조합 인터페론-α의 제조방법을 제공한다. 본 발명에 의하면, 체내투여를 목적으로 하는 치료제용 재조합 단백질에 적합하도록, 단일성이 더욱 확실하고 임상적으로 보다 안전한 아미노 말단의 메티오닌이 제거된 재조합 인터페론-α를 간단한 공정을 통하여 제조할 수 있다.As described and demonstrated in detail above, the present invention provides a method for preparing a recombinant interferon-α, wherein the amino terminal methionine is removed from the transformed recombinant E. coli. According to the present invention, the recombinant interferon-α from which the amino terminal methionine is removed can be produced more reliably and clinically and more securely suitable for a recombinant protein for therapeutic purposes intended for in vivo administration.

Claims (6)

재조합 인터페론-α에 아미노펩티다제를 처리하고 반응시킨 다음, 양이온교환 크로마토그래피를 이용하여 메티오닌이 제거된 재조합 인터페론-α을 정제하는 공정을 포함하는 아미노 말단 메티오닌이 제거된 재조합 인터페론-α의 제조방법.Preparation of the amino-terminal methionine-free recombinant interferon-α, which comprises a step of treating and reacting the recombinant interferon-α with an aminopeptidase and then purifying the recombinant interferon-α from which methionine has been removed by cation exchange chromatography. Way. 제 1항에 있어서,The method of claim 1, 재조합 인터페론-α는 재조합 대장균(E.coli △pMAIFNα, KCCM 10053)으로부터 발현된 것을 특징으로 하는Recombinant interferon-α is characterized in that it is expressed from recombinant E. coli (E. coli ΔpMAIFNα, KCCM 10053) 아미노 말단 메티오닌이 제거된 재조합 인터페론-α의 제조방법.A method for preparing recombinant interferon-α, wherein amino terminal methionine is removed. 제 1항에 있어서,The method of claim 1, 아미노펩티다제는 에어로모나스 프로테오리티카(Aeromonas proteolytica)에서 유래한 것을 특징으로 하는Aminopeptidase, characterized in that derived from Aeromonas proteolytica (Aeromonas proteolytica) 아미노 말단 메티오닌이 제거된 재조합 인터페론-α의 제조방법.A method for preparing recombinant interferon-α, wherein amino terminal methionine is removed. 제 1항에 있어서,The method of claim 1, 반응은 20 내지 30℃, 12 내지 20 시간 동안 수행되는 것을 특징으로 하는The reaction is characterized in that carried out for 20 to 30 ℃, 12 to 20 hours 아미노 말단 메티오닌이 제거된 재조합 인터페론-α의 제조방법.A method for preparing recombinant interferon-α, wherein amino terminal methionine is removed. 제 1항에 있어서,The method of claim 1, 양이온 교환 크로마토그래피의 수지는 Resource S인 것을 특징으로 하는Resin of cation exchange chromatography is Resource S, characterized in that 아미노 말단 메티오닌이 제거된 재조합 인터페론-α의 제조방법.A method for preparing recombinant interferon-α, wherein amino terminal methionine is removed. 제 5항에 있어서,The method of claim 5, 양이온 교환 크로마토그래피는 50 내지 200mM NaCl이 첨가된 pH 4.3 내지 5.5인 20mM 제일인산나트륨 완충용액을 이용하여 용출되는 것을 특징으로 하는Cation exchange chromatography is eluted using a 20 mM sodium phosphate buffer solution with a pH of 4.3 to 5.5 to which 50 to 200 mM NaCl is added. 아미노 말단 메티오닌이 제거된 재조합 인터페론-α의 제조방법.A method for preparing recombinant interferon-α, wherein amino terminal methionine is removed.
KR1019990012001A 1999-04-07 1999-04-07 Process for Preparing Amino-terminal Methionine Free Recombinant Interferon-alpha KR100327971B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990012001A KR100327971B1 (en) 1999-04-07 1999-04-07 Process for Preparing Amino-terminal Methionine Free Recombinant Interferon-alpha

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990012001A KR100327971B1 (en) 1999-04-07 1999-04-07 Process for Preparing Amino-terminal Methionine Free Recombinant Interferon-alpha

Publications (2)

Publication Number Publication Date
KR20000065580A true KR20000065580A (en) 2000-11-15
KR100327971B1 KR100327971B1 (en) 2002-03-14

Family

ID=19578874

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990012001A KR100327971B1 (en) 1999-04-07 1999-04-07 Process for Preparing Amino-terminal Methionine Free Recombinant Interferon-alpha

Country Status (1)

Country Link
KR (1) KR100327971B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453604C1 (en) * 2011-03-24 2012-06-20 Общество С Ограниченной Ответственностью "Фармапарк" Hybrid protein (versions), bacterial strain escherichia coli - hybrid protein producer (versions) and method for producing methionine-free human interferon alpha-2

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196323A (en) * 1985-04-27 1993-03-23 Boehringer Ingelheim International Gmbh Process for preparing and purifying alpha-interferon
KR970010135B1 (en) * 1993-06-17 1997-06-21 주식회사 엘지화학 Novel aminopeptidase isolated from streptococcus thermonitrificans

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453604C1 (en) * 2011-03-24 2012-06-20 Общество С Ограниченной Ответственностью "Фармапарк" Hybrid protein (versions), bacterial strain escherichia coli - hybrid protein producer (versions) and method for producing methionine-free human interferon alpha-2
WO2012128661A1 (en) * 2011-03-24 2012-09-27 Общество С Ограниченной Ответственностью "Фармапарк" Fusion protein, fusion protein-producing strain of escherichia coli bacteria and a method for producing methionine-free human interferon alpha-2b from said fusion protein

Also Published As

Publication number Publication date
KR100327971B1 (en) 2002-03-14

Similar Documents

Publication Publication Date Title
EP0382403B1 (en) Expression systems for amidating enzyme
US5618697A (en) Process for preparing a desired protein
JP2594037B2 (en) Alpha amidating enzyme composition and method for producing the same
AU591464B2 (en) Method of removing n-terminal amino acid residues using aeromonas aminopeptidases
OLSEN et al. Identification and characterization of Saccharomyces cerevisiae yapsin 3, a new member of the yapsin family of aspartic proteases encoded by the YPS3 gene
US5763215A (en) Method of removing N-terminal amino acid residues from eucaryotic polypeptide analogs and polypeptides produced thereby
JP2514167B2 (en) Polypeptides and polypeptide compositions
JP4634611B2 (en) Method for obtaining active β-NGF
JPS62171699A (en) Production of protein
Ghrir et al. Study of a zone highly sensitive to proteases in flavocytochrome b2 from Saccharomyces cerevisiae
Lynn et al. Multiple forms of the asclepains cysteinyl proteases from milkweed
KR100327971B1 (en) Process for Preparing Amino-terminal Methionine Free Recombinant Interferon-alpha
CA2057014C (en) Process for purification of polypeptide
Clarke et al. Expression and Purification of Correctly Processed, Active Human TACE Catalytic Domain inSaccharomyces cerevisiae
KR960011525B1 (en) Process for the preparation of motilin-like polypeptide and expression thereof
CN1384199A (en) Recombinant expression vector expressing human pancreatic tissue kallikrein gene and prepn of human pancreatic tissue kallikrein
EP0629695B1 (en) Novel Aminopeptidase from Streptomyces
EP0322084A2 (en) Tumor cell inhibition factor
KR100369839B1 (en) Aminopeptidase isolated from bacillus licheniformis, preparation process thereof, and process for producing natural protein using the same enzyme
Wei et al. Large scale isolation and properties of subunits from bovine heart cytochrome oxidase.
KR100449125B1 (en) Method for purifying aminopeptidase m from kidney of pig in higher purity and yield, thereby removing methionine without treatment of protease inhibitor
Mercier et al. Amino terminal sequence of porcine pre-β-lactoglobulin. Comparison with its ovine counterpart
Mati et al. Mitogenic activity of hydrophobic fractions of proteose peptone from cows', ewes' and goats' milk measured with MARK 3 hybridoma culture
KR0132003B1 (en) Process for preparation of recombinant proteins by use of streptomyces thermonitrificans aminopeptidase
KR100243526B1 (en) An aminopeptidase purified from aspergillus flavus and a method removing methionine residue from recombinant

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090108

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee