KR20000061897A - A method making use of ultrasonic wave for treating waste water - Google Patents

A method making use of ultrasonic wave for treating waste water Download PDF

Info

Publication number
KR20000061897A
KR20000061897A KR1019990011278A KR19990011278A KR20000061897A KR 20000061897 A KR20000061897 A KR 20000061897A KR 1019990011278 A KR1019990011278 A KR 1019990011278A KR 19990011278 A KR19990011278 A KR 19990011278A KR 20000061897 A KR20000061897 A KR 20000061897A
Authority
KR
South Korea
Prior art keywords
reaction
hydrogen peroxide
tank
iron salt
frequency
Prior art date
Application number
KR1019990011278A
Other languages
Korean (ko)
Other versions
KR100324473B1 (en
Inventor
임재호
이승무
박주량
Original Assignee
박형재
반월염색사업협동조합
이철
주식회사 엔바이오넷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박형재, 반월염색사업협동조합, 이철, 주식회사 엔바이오넷 filed Critical 박형재
Priority to KR1019990011278A priority Critical patent/KR100324473B1/en
Publication of KR20000061897A publication Critical patent/KR20000061897A/en
Application granted granted Critical
Publication of KR100324473B1 publication Critical patent/KR100324473B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides

Abstract

PURPOSE: A non-biodegradable wastewater treatment method using ultrasonic waves is provided, which is characterized in that ultrasonic waves are radiated into the non-biodegradable wastewater, so that COD removal rate increases and usage of hydrogen peroxide which is very expensive is reduced. CONSTITUTION: The treatment system comprises the following parts of: a feed tank(1), an oxidation tank(3), a neutralization tank(5) injected a coagulant and sodium hydroxide (NaOH) and a settler (6). The oxidation tank(3) is equipped with a peristaltic influent pump. And the non-biodegradable wastewater reacts with ferrous chloride and hydrogen peroxide in the tank. The system is characterized in that ultrasonic waves of 300-500kHz are radiated into the oxidation tank(3).

Description

초음파를 이용한 난분해성 폐수처리방법{A METHOD MAKING USE OF ULTRASONIC WAVE FOR TREATING WASTE WATER}Non-degradable wastewater treatment using ultrasonic waves {A METHOD MAKING USE OF ULTRASONIC WAVE FOR TREATING WASTE WATER}

본 발명은 초음파를 이용한 난분해성 폐수처리방법에 관한 것으로, 특히 산화반응조의 처리대상폐수에 초음파를 조사하여 처리수의 COD제거율을 보다 향상시킨 초음파를 이용한 난분해성 폐수처리방법에 관한 것이다.The present invention relates to a method for treating hardly decomposable wastewater using ultrasonic waves, and more particularly, to a method for treating hardly degradable wastewater using ultrasonic waves by further improving the COD removal rate of treated water by irradiating ultrasonic waves to the wastewater to be treated in an oxidation reactor.

각종산업의 발전과 더불어 대단위 장치산업화가 이루어짐에 따라서 필연적으로 발생하는 유해산업 폐기물은 질적 양적으로 급격히 증가하고 있다. 이것들은 환경오염 방지를 위하여 무해화시켜 적정 처분되어야 하는데, 이들 각종 유해폐기물과 폐수처리과정에서 생기는 슬러지를 부적절하게 토양 투기나 매립하게 되면 유해물질(중금속 등)이 토양과 수계에 용출되고 또한 부패성이 큰 폐기물을 위생적인 문제 등으로 2차적인 환경오염의 문제를 유발시키게 되므로 최종적으로 인간과 자연환경에 무해하고 안전하게 처분되어야 한다.With the development of various industries and the industrialization of large-scale equipment, the inevitably generated hazardous industrial waste is rapidly increasing in quality and quantity. These should be disposed of properly and harmlessly to prevent environmental pollution. Improper soil dumping or reclamation of these various hazardous wastes and sludges from the wastewater treatment process will cause harmful substances (heavy metals, etc.) to elute and decay. Since this large waste causes hygiene problems and secondary environmental pollution, it must be disposed of safely and safely to humans and the natural environment.

일반적으로, 유기성물질은 소각하거나 산화시켜 무해화할 수 있고, 무기성물질(중금성 함유)은 화학적으로 침전시킨 후 최종처분시 시멘트 고형화 같은 방법을 통해서 주위환경과 차단시키거나, 철을 사용하여 함유 중금속을 복합산화물인 Ferrite로 만들어 이를 활용하는 방식 등을 채택할 수 있다.In general, organic materials can be incinerated or oxidized to be harmless.Inorganic materials (including pneumatic compounds) can be chemically precipitated and then separated from the surrounding environment through methods such as cement solidification at the time of final disposal, or contained using iron. It is possible to adopt a method of making heavy metals into ferrite composite oxides and utilizing them.

한편, 난분해성 폐수처리방법으로 널리 쓰이는 펜톤산화반응은 난분해성 폐수중 난분해성 유기물을 2가철이온과 과산화수소를 이용하여 최종적으로 물과 탄산가스로 산화 분해시키는 방법으로서, 그 응용범위가 넓고 2차공해를 유발시키지 않는다는 장점을 갖고 있다.On the other hand, the Fenton oxidation reaction widely used as a hardly degradable wastewater treatment method is a method of finally oxidatively decomposing the hardly decomposable organic matter in the hardly decomposable wastewater into water and carbon dioxide using a ferric ion and hydrogen peroxide. It has the advantage of not causing pollution.

이때, 펜톤산화반응의 반응기구는 다음과 같다.At this time, the reactor port of the fenton oxidation reaction is as follows.

Fe2++ H2O2------→ Fe3++ OH-+ ·OH -------[1] Fe 2+ + H 2 O 2 ------ → Fe 3+ + OH - + · OH ------- [1]

RH + ·OH -------→ R· + H2O -------------[2]RH + · OH ------- → RH + H 2 O ------------- [2]

여기서, 과산화수소는 철이온과 반응하여 상기 식[1]에서와 같이 강력한 산화반응을 나타내는 OH라디칼(Radical)을 발생시키고, 이 라디칼이 식[2]에 따라 폐수중의 유기물과 수소를 빼앗는 산화반응을 일으켜 최종적으로 물과 탄산가스로 분해시킨다.Here, hydrogen peroxide reacts with iron ions to generate OH radicals, which exhibit a strong oxidation reaction as in Equation [1], and this radical is an oxidation reaction that desorbs organic matter and hydrogen in waste water according to Equation [2]. To decompose into water and carbon dioxide.

이때, 사용되는 철염은 1가와 2가를 모두 사용할 수 있으나, 1가철염이 더욱효과적인 것으로 알려져 있으며, 최종적으로 3가철염은 염기를 가하여 수산화철염으로 침전시켜서 분리 제거시키게 된다.At this time, the iron salt used can be used both monovalent and divalent, but the monovalent iron salt is known to be more effective, and finally the trivalent iron salt is removed by precipitating with iron hydroxide by adding a base.

그러나, 펜톤산화반응에 의한 난분해성 폐수처리방법은 Fenton 시약이라고 불리우는 고가의 과산화수소와 철염을 다량 사용하게 되어 폐수처리비용이 과다하게 소요된다는 단점이 있다.However, the poorly degradable wastewater treatment method by the Fenton oxidation reaction has a disadvantage in that the wastewater treatment cost is excessively consumed because a large amount of expensive hydrogen peroxide and iron salt called Fenton reagent is used.

또한, 펜톤산화반응에 의한 난분해성 폐수처리방법은 다량의 과산화수소와 철염을 사용하여도 그 분해효율이 떨어져 난분해성 폐수로부터 고액 분리되는 펜톤무기슬러지의 양이 증대되고, 슬러지 폐기시 매립이라는 2차적 문제를 야기시키게 된다.In addition, the method of treating hardly decomposable wastewater by the Fenton oxidation reaction decreases the decomposition efficiency even when a large amount of hydrogen peroxide and iron salt are used, and the amount of Fenton inorganic sludge which is solid-liquid separated from the hardly decomposable wastewater is increased. It causes problems.

특히, 처리수에 잔존하는 과산화수소는 처리수의 COD 유발요인으로 작용하여 오히려 처리수의 COD 제거율(%) 저하를 초래하게 된다.In particular, the hydrogen peroxide remaining in the treated water acts as a COD inducing factor of the treated water, which results in lowering the COD removal rate (%) of the treated water.

본 발명은 산화반응조의 난분해성 폐수에 초음파를 조사하여 처리수의 COD제거율을 보다 향상시킴으로써 고가의 과산화수소 사용을 억제할 수 있고, 이로부터 난분해성 폐수처리비용을 절약할 수 있는 초음파를 이용한 난분해성 폐수처리방법을 제공함에 그 목적이 있다.The present invention can suppress the use of expensive hydrogen peroxide by irradiating the ultra-degradable wastewater of the oxidation reaction tank to improve the COD removal rate of the treated water, from which it is difficult to decompose the cost of difficult-decomposable wastewater treatment. The purpose is to provide a wastewater treatment method.

도1은 본 발명에 따른 초음파조사장치가 장착된 난분해성 폐수처리장치를 나타내는 개략도,1 is a schematic diagram showing a hardly decomposable wastewater treatment apparatus equipped with an ultrasonic irradiation apparatus according to the present invention,

도2는 철염의 투여량, 초음파의 주파수와 COD제거율의 관계를 나타내는 그래프,Figure 2 is a graph showing the relationship between the dose of iron salt, the frequency of ultrasound and the COD removal rate,

도3은 철염의 투여량, 초음파의 주파수와 투과율의 관계를 나타내는 그래프이다.3 is a graph showing the relationship between the dose of iron salt, the frequency of ultrasound, and the transmittance.

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

1: 저장조 2: 정량펌프 3: 산화반응조 5: 중화응집조 6: 침전조1: Storage tank 2: Metering pump 3: Oxidation reaction tank 5: Neutralization coagulation tank 6: Precipitation tank

상기한 목적을 달성하기 위하여 본 발명은 난분해성 폐수를 산화반응조에서 철염과 과산화수소로 산화반응시킨 후, 중화응집조와 침전조를 거치면서 슬러지와 상등수로 고액 분리하는 난분해성 폐수처리방법에 있어서, 상기 산화반응조에서 철염과 과산화수소에 의해 산화되는 난분해성 폐수에 300∼500kHz의 초음파를 조사하는 것을 특징으로 하는 초음파를 이용한 난분해성 폐수처리방법을 제공한다.In order to achieve the above object, the present invention oxidizes the hardly degradable wastewater with iron salt and hydrogen peroxide in an oxidation reaction tank, and then, in the hardly decomposable wastewater treatment method for solid-liquid separation of sludge and supernatant while passing through a neutralization coagulation tank and a precipitation tank. The present invention provides a method for treating hardly decomposable wastewater using ultrasonic waves, which comprises irradiating 300-500 kHz ultrasonic waves to hardly decomposable wastewater oxidized by iron salts and hydrogen peroxide in a reactor.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

도1은 본 발명에 따른 초음파조사장치가 장착된 난분해성 폐수처리장치를 나타내는 개략도이고, 도2는 철염의 투여량, 초음파의 주파수와 COD제거율의 관계를 나타내는 그래프이며, 도3은 철염의 투여량, 초음파의 주파수와 투과율의 관계를 나타내는 그래프이다.Figure 1 is a schematic diagram showing a difficult-degradable wastewater treatment apparatus equipped with an ultrasonic irradiation apparatus according to the present invention, Figure 2 is a graph showing the relationship between the dose of iron salt, the frequency of ultrasound and the COD removal rate, Figure 3 is the administration of iron salt It is a graph showing the relationship between the amount and frequency of ultrasonic waves and transmittance.

일반적으로, 인간의 가청주파수 영역인 16Hz범위보다 더 높은(〉16 kHz)주파수를 갖는 음파인 초음파(Power Ultrasound)는 캐비테이션(Cavitation)으로 인한 기포내에 고온, 고압조건이 형성되어 기포 붕괴시 초래되는 고온에 의한 열분해 반응과, 열분해 과정에서 생성되는 OH 라디칼이 관여하는 화학반응을 수반하게 된다.In general, the ultrasonic wave (Power Ultrasound) having a frequency higher than the human audible frequency range of 16 Hz (> 16 kHz) is a high temperature and high pressure condition in the bubble caused by cavitation (Cavitation) is formed when bubbles collapse It involves a pyrolysis reaction at high temperature and a chemical reaction involving OH radicals generated during the pyrolysis process.

즉, 액체에 초음파가 닿으면 그곳에 있는 미세한 기포가 감압측의 반주기에서는 팽창하여 주위 액체로부터 기체나 액체의 증기를 받아들이며, 증압측의 반주기에서는 수축하면서 기포속의 기체를 용해시키거나 액체증기를 응축시킨다.That is, when ultrasonic waves come into contact with the liquid, the fine bubbles therein expand in the half cycle on the decompression side to receive gas or vapor from the surrounding liquid, and in the half cycle on the boost side, the gas in the bubbles dissolves or condenses the liquid vapor. .

이때, 액체내의 기포는 진동하면서 그 평균직경이 증대되고, 진동폭이 커지면서 직경이 최대로 되었을 때 순간적으로 깨지면서 하기의 식[3],[4],[5]으로부터 산출되는 수백기압의 압력과 수천도의 열을 발생시켜 화학반응의 에너지원을 만들게 된다,At this time, the bubbles in the liquid are vibrated and the average diameter is increased, and when the diameter is maximized as the vibration width increases, the pressure and the pressure of several hundred atmospheres calculated from the following equations [3], [4] and [5] It generates the heat of the island, creating an energy source for chemical reactions.

이러한 캐비테이션(Cavitation)은 nano second order의 아주 짧은 시간동안에 일어나며, 생성된 열이 주위로 전달되기에 충분한 시간이 되지 못하기 때문에 그 부분에서는 단열과정으로 볼 수 있다.This cavitation occurs in a very short time of the nano second order, and it can be seen as an adiabatic process in that part because the generated heat is not enough time to transfer around.

그리고, 기포에 인접한 부분의 국부 온도가 순간적으로 상승하여 hot-spot이 생기면서 이 부분에서의 온도가 수천도에 이르게 되고, 이때의 높은 국부온도로 인하여 주위에 있는 반응물 입자들의 운동에너지를 커지게 하여 분자의 운동이 활발하게 될 뿐 아니라, 반응에 필요한 충분한 활성에너지를 얻게 되고 또한 높은 압력은 혼합효과를 높여 주게 되어 반응속도를 빠르게 해 준다.In addition, the local temperature of the portion adjacent to the bubble instantly rises to form a hot-spot, and the temperature at this portion reaches thousands of degrees. At this time, the high local temperature increases the kinetic energy of the reactant particles in the surroundings. Therefore, not only the movement of the molecules is active, but also the sufficient activation energy necessary for the reaction is obtained, and the high pressure increases the mixing effect, which speeds up the reaction.

M(pollutant) -------→Product (Pyrolysis Reaction) ……………[3]M (pollutant) ------- → Product (Pyrolysis Reaction). … … … … [3]

Tmax= ToPm(K-1)/P --------------------------[4]T max = T o P m (K-1) / P -------------------------- [4]

Pmax=P〔Pm(P-1)/P〕(K/(K-1))-------------------------- [5]Pmax= P [Pm(P-1) / P](K / (K-1))-------------------------- [5]

여기서, TO: 주변온도Where T O : ambient temperature

K : 가스혼합물 또는 가스증기의 Polytropic IndexK: Polytropic Index of gas mixture or gas vapor

P : 크기가 가장 커졌을 때의 기포내의 압력, 통상 액체의 증기압과 같은 것으로 함.P: The pressure in the bubble at the largest size, usually the same as the vapor pressure of the liquid.

Pm: 기포가 깨지는 순간의 액체속의 압력P m : Pressure in the liquid at the moment the bubble breaks

한편, 캐비테이션(Cavitation)이 균일액체 속에서 일어날 때의 과정은 핵의 생성단계와 기포의 성장단계 그리고 내부적 파열단계 등으로 진행되는데, 핵은 액체상태를 유지하는 서로 끄는 분자간의 인력으로 인해 생성되며, 그것이 커다란 부(-)의 음압환경에 놓이게 되면 체적이 커지고 궁극적으로 내부적 파열에 의해 작은 자유기포로 쪼개진다.On the other hand, when cavitation takes place in a homogeneous liquid, the process proceeds to the nucleus generation stage, the bubble growth stage, and the internal rupture stage. When it is placed in a large negative pressure environment, the volume grows and ultimately breaks up into small free bubbles due to internal bursting.

따라서, 1.5kHz 이상의 주파수를 갖는 음파를 물속에 통과시키면 이러한 과정에 의해 팽창파와 압축파로 인해 증기로 채워진 공동기포가 깨지는 동안이나 깨진 바로 직후에 순간적으로 상승한 압력과 온도의 작용으로 화학반응이 일어나고 이와 같은 음화학반응(sonochemical reaction)에서는 열분해와 라디칼반응이 동시에 일어나며, 휘발성반응물의 경우에는 깨지는 기포의 기체속에서, 또는 그 기포를 둘러싸고 있는 뜨거운 경계면내에서 직접 열분해를 하게 되는데 반응물의 농도가 높을 때에는 경계면에서의 열분해가 우세하며 농도가 낮을 때에는 자유라디칼 반응이 우세하다.Therefore, when a sound wave with a frequency of 1.5 kHz or more is passed through the water, a chemical reaction occurs due to the action of pressure and temperature which rises momentarily during the breakage of the vapor-filled cavity due to the expansion wave and the compression wave or immediately after the breakage. In the same sonochemical reaction, pyrolysis and radical reaction take place simultaneously. In the case of volatile reactants, pyrolysis is carried out directly in the gas of the broken bubble or in the hot interface surrounding the bubble. Pyrolysis at the interface prevails and at low concentrations free radical reactions prevail.

또한, 초음파 조사에 의한 음화학반응에서는 열분해와 라디칼반응이 동시에 일어나는데, 열분해 과정에서 생성되는 OH 라디칼이 화학반응에 관여하게 되고, 라디칼은 물분자가 기포 붕괴시 발생되는 고온조건에서 H라디칼과 OH라디칼로 쪼개지며, 이때 생성된 OH 라디칼은 유기물과 반응하는 동시에 라디칼끼리 재결합하기도 한다.In addition, the pyrolysis and radical reaction occur simultaneously in the negative chemical reaction by ultrasonic irradiation. The OH radicals generated during the pyrolysis process are involved in the chemical reaction, and the radicals are H radical and OH under the high temperature condition at which the water molecules are collapsed. It splits into radicals, where the OH radicals react with the organics and at the same time recombine with each other.

H2O -------→ OH· + ·H ………………………[4]H 2 O ------- → OH. … … … … … … … … [4]

OH· + M ---------→ products …………………[5]OH · M −-------- → products… … … … … … … [5]

OH· + ·OH -------------→H2O2……………[6]OH · + OH ------------- → H 2 O 2 . … … … … [6]

예컨대, 200kHz의 초음파를 조사하였을 경우, 기포의 기·액 접촉 외각에는 온도가 약 800 K 정도까지 도달하는데, 이때 여기에서 일어나는 화학반응속도상수는 온도 증가에 따라 훨씬 상승하게 된다.For example, when ultrasonic waves of 200 kHz are irradiated, the temperature reaches up to about 800 K at the outside of the bubble-liquid contact outside of the bubble, and the chemical reaction rate constant occurring therein becomes much higher as the temperature increases.

그리고, 초음파에 의한 산화반응은 물에 초음파(30-500 kHz 정도, 압력진폭 = 3기압 (30 kW/m2))를 조사하면 산화되어서 과산화수소(H2O2)가 생성되고, 공기중에서 수면으로 뛰어든 질소(N2)가 초음파의 작용에 의해서 NO가 되고 이것이 다시 산화되어 아초산(HNO2)이 된다.In addition, the oxidation reaction by ultrasonic waves is oxidized when ultrasonic waves (about 30-500 kHz, pressure amplitude = 3 atm (30 kW / m 2 )) are oxidized to produce hydrogen peroxide (H 2 O 2 ), Nitrogen (N 2 ) jumped into is NO by ultrasonic action, which is oxidized to nitrous acid (HNO 2 ).

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

본 발명에서는 난분해성 폐수처리에 대한 실시예로, 포기처리공정에서 배출되는 처리수를 저장조(1)에 저장한 후, 정량펌프(2)로 반응공급량을 조절하면서 반응조(3)로 일정량 공급하고, 반응조(3)에서는 황산과 수산화나트륨으로 반응pH를 조절하여 주면서 철염 및 과산화수소를 계획한 일정한 속도로 주입하였다.In the present invention, as an embodiment for the non-degradable wastewater treatment, after storing the treated water discharged from the aeration treatment process in the storage tank (1), and supplies a fixed amount to the reaction tank (3) while adjusting the reaction supply amount with the metering pump (2) In the reaction tank (3), iron salt and hydrogen peroxide were injected at a constant rate while adjusting the reaction pH with sulfuric acid and sodium hydroxide.

그리고, 반응조(3)에서 반응시에 pH의 영향을 확인하기 위하여 pH미터프로브와, 반응의 산화·환원정도를 알기 위해서 ORP미터프로브를 사용하였고, 초음파 조사에 의한 음화학반응으로 발생되는 반응조내의 열은 서머커플로 측정하였다.In addition, a pH meter probe was used to confirm the influence of pH on the reaction in the reaction tank 3, and an ORP meter probe was used to determine the degree of oxidation and reduction of the reaction. Heat was measured with thermocouples.

또한, 본 발명에서는 반응조(3)의 하부로부터 조사되는 초음파의 주파수를 오실로스코프(Oscilloscope)로 측정하고, 초음파반응조(3)에서 처리된 처리수는 상부로 월류시켜서 중화응집조(5)로 보낸다.In addition, in the present invention, the frequency of the ultrasonic wave irradiated from the lower part of the reaction tank 3 is measured by an oscilloscope, and the treated water processed in the ultrasonic reaction tank 3 is passed to the upper part and sent to the neutralizing coagulation tank 5.

이때, 중화응집조(5)에서는 pH를 8정도로 유지하기 위하여 정량펌프로 NaOH를 주입하였고, 고분자응집제를 대략 3∼4ppm 범위로 주입하면서 교반기로 완속 교반하였다.At this time, in the neutralization coagulation tank 5, NaOH was injected into the metering pump to maintain the pH at about 8, and the polymer coagulant was slowly stirred with a stirrer while injecting the coagulant in the range of about 3 to 4 ppm.

그리고, 중화응집조(5)에서 처리된 처리수는 오버플로(Overflow)되어 침전조(6)로 보내지고, 침전조에서는 슬러지가 중력 침강되어 하부로 배출되는 동시에 상등수가 상부로 유출된다.Then, the treated water processed in the neutralization flocculation tank 5 overflows and is sent to the settling tank 6, in which the sludge is gravity settled and discharged to the bottom, and the supernatant flows out to the top.

한편, 본 발명은 난분해성 폐수를 처리할 시에 그 처리효율을 높이기 위하여 초음파응용기술을 적용시킨 기술로서, 난분해성 폐수가 담긴 반응조(3)의 하부로부터 초음파를 300, 350, 400, 450, 500kHz의 주파수로 변화시키면서 조사하고, 그 반응시간은 30분, 반응 pH 3.5에서 철염 및 과산화수소의 주입량을 변화시켜 가면서 반응시켰다.On the other hand, the present invention is to apply the ultrasonic application technology in order to increase the treatment efficiency when treating the difficult-degradable wastewater, the ultrasonic wave 300, 350, 400, 450, Irradiation was carried out while changing at a frequency of 500 kHz, and the reaction time was reacted with varying the injection amounts of iron salt and hydrogen peroxide at reaction pH 3.5.

[실시예1]Example 1

먼저, 난분해성 폐수가 담긴 반응조(3)의 하부로부터 초음파를 조사함에 있어, 그 반응시간을 30분, 반응pH를 3.5로 하고, 과산화수소는 첨가하지 않은 상태로 초음파의 각주파수에서 철염의 주입량만을 변화시켜 실험한 결과 다음의 표1과 같은 결과를 얻었다.First, in irradiating the ultrasonic wave from the lower part of the reactor 3 containing the hardly degradable waste water, the reaction time is 30 minutes, the reaction pH is 3.5, and only the injection amount of iron salt at the angular frequency of the ultrasonic wave is not added with hydrogen peroxide. The results of the experiments were changed to the results shown in Table 1 below.

표1. COD제거효율(%)Table 1. COD removal efficiency (%)

FeCl2(mg/L)FeCl 2 (mg / L) kHzkHz 300300 350350 400400 450450 500500 03005001,0001,5002,0000300 5001,000 1,5002,000 54.959.361.568.171.273.554.959.361.568.171.273.5 58.061.164.671.274.877.958.061.164.671.274.877.9 61.565.969.974.377.980.161.565.969.974.377.980.1 62.467.371.275.278.880.562.467.371.275.278.880.5 63.768.172.176.179.680.563.768.172.176.179.680.5

즉, 반응주파수가 300kHz일 때 FeCl2의 주입량이 0 mg/L에서 COD 제거율(%)은 54.9%, FeCl2의 주입량이 1,000 mg/L에서 COD 제거율(%)은 68.1%로 상승하고 FeCl2의 주입량이 2,000mg/L에서는 73.5%정도가 되었다.That is, when the response frequency 300kHz FeCl 2 COD removal efficiency in the injection amount is 0 mg / L of (%) was 54.9%, COD removal efficiency at the 1,000 mg / L injection amount of FeCl 2 (%) is increased to 68.1% and FeCl 2 The injection amount of was about 73.5% at 2,000 mg / L.

그리고, 반응주파수가 커지면 제거효율도 상승하여 반응 주파수가 400 kHz일 때는 FeCl2의 주입량이 0 mg/L에서 COD 제거율(%)은 61.5%, FeCl2의 주입량이 1,000mg/L에서 COD제거율(%)은 74.3%로 상승하고 FeCl2의 주입량이 2,000mg/L에서는 80.1%정도가 되었다.Then, the greater the response frequency removal efficiency when the response frequency 400 kHz to be elevated COD removal efficiency in the 0 mg / L injection amount of FeCl 2 (%) is 61.5%, the COD removal rate at 1,000mg / L injection amount of FeCl 2 ( %) Rose to 74.3% and the amount of FeCl 2 injected was about 80.1% at 2,000 mg / L.

또한, 반응주파수가 500 kHz일 때는 FeCl2의 주입량이 0mg/L에서 COD 제거율(%)은 63.7%, FeCl2의 주입량이 2,000 mg/L에서는 80.5% 정도가 되어 이로부터 철염의 주입량이 증가할수록 COD제거율(%)은 도2에 도시한 바와같이 거의 선형적으로 상승함을 알 수 있었다.In addition, when the reaction frequency is 500 kHz, the amount of FeCl 2 injected is 0 mg / L, the COD removal rate (%) is 63.7%, and the amount of FeCl 2 injected is about 80.5% at 2,000 mg / L. The COD removal rate (%) was found to rise almost linearly as shown in FIG.

한편, 초음파의 반응주파수가 300 kHz보다 400kHz에서는 약 8.98%, 500 kHz에서는 9.52%정도 처리효율이 상승하였다.On the other hand, the treatment frequency of the ultrasonic wave was about 8.98% at 400 kHz and 9.52% at 500 kHz than 300 kHz.

이상의 실험결과에 의하면, 도3에 도시한 바와같이 초음파 적용시에 주파수는 300 kHz보다 400kHz에서 처리효율이 상대적으로 크게 증가하였으나 500 kHz에서는 400kHz에 비하여 소폭 증가하였음을 알 수 있다.According to the above experimental results, as shown in FIG. 3, the frequency of the ultrasonic treatment increased more significantly at 400 kHz than at 300 kHz, but it was slightly increased at 400 kHz compared to 400 kHz.

그리고, 처리수의 색도(투과율, %)는 도3에 도시한 바와 같이 반응주파수가 300kHz에서의 FeCl2의 주입량이 0 mg/L일 때 63%, FeCl2의 주입량이 1,000mg/L에서 투과율(%)은 65%, FeCl2의 주입량이 2.000 mg/L에서는 98.0%로 급상승하여 거의 투명한 상태가 되었다.As shown in Fig. 3, the chromaticity (transmittance,%) of the treated water is 63% when the injection frequency of FeCl 2 is 300 mg / L and the injection rate of FeCl 2 is 1,000 mg / L, as shown in FIG. (%) Jumped to 65% and the injected amount of FeCl 2 to 98.0% at 2.000 mg / L, becoming almost transparent.

또한, 반응주파수가 500kHz에서도 FeCl2의 주입량이 0 mg/L에서 투과율(%)은 65%, FeCl2의 주입량이 1,000mg/L에서는 98.0%로 급상승하여 거의 투명한 상태가 되었다.In addition, even when the reaction frequency was 500 kHz, the FeCl 2 injection amount was 0 mg / L, the transmittance (%) was 65%, and the FeCl 2 injection amount was rapidly increased to 98.0% at 1,000 mg / L, and became almost transparent.

이상의 결과로부터, 색도(투과율,%)에서는 반응주파수에 따른 영향이 크지 않지만 주파수가 높을수록 좋은 결과를 나타내었으며, 철염의 경우 철염의 주입량이 1,000mg/L에서 반응주파수에 큰 영향을 받지 않고 거의 비슷한 투과도(%) 96∼98%를 나타내어 색도제거에도 매우 효과가 좋음을 확인하였다.From the above results, the chromaticity (transmittance,%) was not affected by the reaction frequency, but the higher the frequency was, the better the results were.In the case of iron salt, the injection amount of iron salt was almost unaffected by the reaction frequency at 1,000 mg / L. Similar transmittance (%) 96-98% was shown to be very effective in removing the color.

[실시예2]Example 2

난분해성 폐수가 담긴 반응조의 하부로부터 초음파를 조사함에 있어, 그 반응시간을 30분, 반응pH를 3.5로 하면서 초음파의 각주파수에서 철염 주입량을 1,000mg/L과 1,500mg/L로 하고, 과산화수소의 주입량을 0 에서 500mg/L까지 변화시키면서 실험하였다.In irradiating ultrasonic waves from the lower part of the reactor containing hardly degradable waste water, the reaction time was 30 minutes, the reaction pH was 3.5, and the iron salt injection amount was 1,000 mg / L and 1,500 mg / L at each frequency of ultrasonic waves. Experiments were performed with varying doses from 0 to 500 mg / L.

표2. COD제거율(%)Table 2. COD removal rate (%)

H2O2(mg/L)H 2 O 2 (mg / L) kHzkHz 300300 400400 500500 01003005000100300500 68.169.073.074.868.169.073.074.8 74.375.782.384.574.375.782.384.5 76.177.984.185.476.177.984.185.4

이때, 실험결과에 의하면 상기 표2에 나타난 바와같이 철염의 주입량이 1,000mg/L, 반응 주파수가 300kHz에서 과산화수소의 주입량을 0mg/L에서 500mg/L까지 증가시킬 경우, 난분해성 폐수의 COD제거율(%)은 H2O2의 주입량이 0 mg/L에서 68.1%이었으나, H2O2의 주입량이 300mg/L에서 73.0%, H2O2의 주입량이 500mg/L에서 74.8%로 증가하였다.According to the experimental results, as shown in Table 2 above, when the injection amount of iron salt was increased to 1,000 mg / L and the reaction frequency was increased to 300 mg / L from 0 mg / L to 500 mg / L at 300 kHz, the COD removal rate of the hardly degradable wastewater ( %) of the injected amount of H 2 O 2 yieoteuna 68.1% in the 0 mg / L, the injected amount of H 2 O 2 is injected amount of 73.0%, H 2 O 2 at 300mg / L was increased from 500mg / L to 74.8%.

그리고, 반응주파수가 높아지면 처리효율은 상승하는데 철염의 주입량이 1,000mg/L, 반응주파수 400kHz에서 염색 폐수의 COD 제거율(%)은 H2O2의 주입량이 0 mg/L에서 74.3%이었으나, H2O2의 주입량이 300mg/L에서 82.3%로 증가하였다.In addition, the treatment efficiency increases as the reaction frequency increases, but the COD removal rate (%) of the dye wastewater at 1000 mg / L of iron salt and the reaction frequency of 400 kHz was 74.3% at 0 mg / L of H 2 O 2 . The dose of H 2 O 2 increased from 300 mg / L to 82.3%.

또한, 철염의 주입량이 1,000mg/L, 반응주파수가 500kHz에서 난분해성 폐수의 COD 제거율(%)은 H2O2의 주입량이 0 mg/L에서 76.1%이었으나, H2O2의 주입량이 300mg/L에서는 84.1%, H2O2의 주입량이 500mg/L으로 하면 COD 제거율(%)은 85.4%로 증가하였다.In addition, the injection amount of the iron salt 1,000mg / L, COD removal rate (%) of the response at 500kHz frequency recalcitrant wastewater is yieoteuna the injected amount of H 2 O 2 76.1% in the 0 mg / L, the injected amount of H 2 O 2 300mg The COD removal rate (%) increased to 85.4% at 84.1% / L and 500 mg / L injection of H 2 O 2 .

한편, 철염의 주입량을 1,500 mg/L으로 증가하였을 경우에도 위와 비슷한 결과를 나타내었는데, 하기의 표3에 나타낸 바와같이 반응주파수가 300kHz에서 과산화수소의 주입량을 0 mg/L에서 500 mg/L까지 증가시킬 경우, 난분해성 폐수의 COD제거율(%)은 H2O2의 주입량이 300mg/L에서 81.4%, H2O2의 주입량이 500mg/L에서 83.6%로 증가하였다.On the other hand, when the iron salt injection amount increased to 1,500 mg / L, the results were similar to the above. As shown in Table 3 below, the injection rate of hydrogen peroxide increased from 0 mg / L to 500 mg / L at 300 kHz. If to, I increased COD removal rate of the degradable waste water (%) is the injection amount of 81.4%, H 2 O 2 in the injection amount of H 2 O 2 300mg / L from 500mg / L to 83.6%.

그리고, 철염의 주입량을 1,500 mg/L, 반응주파수 400kHz에서 염색 폐수의 COD 제거율(%)은 H2O2의 주입량이 0mg/L에서 77.9%이었으나, H2O2의 주입량이 300mg/L에서는 87.2%로 증가하였다.And, yieoteuna the injection amount of the iron salt 1,500 mg / L, COD removal rate (%) of the reaction frequency dyeing waste water from 400kHz is the injection amount of H 2 O 2 77.9% In 0mg / L, in the injected amount of H 2 O 2 300mg / L Increased to 87.2%.

또한, 철염의 주입량을 1,500 mg/L, 반응주파수가 500kHz에서 염색 폐수의 COD 제거율(%)은 H2O2의 주입량이 0 mg/L에서 79.6%이었으나, H2O2의 주입량이 300 mg/L에서 88.1%, H2O2의 주입량이 500mg/L에서 89.4%로 증가하였다.Further, yieoteuna the injection amount of the iron salt 1,500 mg / L, COD removal rate of the reaction frequency dyeing waste water from 500kHz (%) was 79.6% in the injected amount of H 2 O 2 0 mg / L , the injected amount of H 2 O 2 300 mg The injection rate of 88.1% at / L and H 2 O 2 increased to 89.4% at 500 mg / L.

표3. COD 제거율(%)Table 3. COD removal rate (%)

H2O2(mg/L)H 2 O 2 (mg / L) kHzkHz 300300 400400 500500 00 71.271.2 77.977.9 79.679.6 100100 73.073.0 79.279.2 81.081.0 300300 81.481.4 87.287.2 88.188.1 500500 83.683.6 89.489.4 89.489.4

한편, 실험결과에 의하면 반응시간이 30분, 반응 pH가 3.5에서 철염의 주입량이 1,000mg/L 과산화수소의 주입량을 0 mg/L에서 500mg/L까지 증가시킬 경우, 난분해성 폐수 처리수의 투과도(%)는 하기의 표4에 나타낸 바와같이 반응주파수가 300kHz에서 H2O2의 주입량이 0 mg/L에서 96%, 100mg/L에서 89%로 저하되었다가 H2O2의 주입량이 300mg/L에서는 95%, 500mg/L에서는 98%로 상승하였다.On the other hand, according to the experimental results, when the injection time of iron salt increased the injection amount of 1,000 mg / L hydrogen peroxide from 0 mg / L to 500 mg / L at a reaction time of 30 minutes and a reaction pH of 3.5, %) is to the reaction frequency, as shown in Table 4 were reduced at 96%, 100mg / L in the injected amount of H 2 O 2 0 mg / L on the 300kHz to 89% of this injection amount of H 2 O 2 300mg / It increased to 95% at L and 98% at 500 mg / L.

그리고, 반응주파수가 400kHz에서는 H2O2의 주입량이 0 mg/L에서 98%, 100mg/L에서 98%정도이고, H2O2의 주입량이 300mg/L에서는 99%, 500mg/L에서는 99%상승하였다.At 400 kHz, the H 2 O 2 dose was about 98% at 0 mg / L and 98% at 100 mg / L, and the H 2 O 2 dose was 99% at 300 mg / L and 99 at 500 mg / L. % Rose.

또한, 반응주파수가 500kHz에서도 H2O2의 주입량이 0 mg/L에서 98%, 100mg/L에서 98% 정도이고 H2O2의 주입량이 300mg/L에서는 99%, 500 mg/L에서는 99%로 반응주파수가 400kHz인 경우와 차이가 없었다.In addition, even when the reaction frequency is 500 kHz, the H 2 O 2 dose is about 98% at 0 mg / L and 98% at 100 mg / L, and the H 2 O 2 dose is 99% at 300 mg / L and 99 at 500 mg / L. The response frequency was not different from that of 400kHz.

그리고 반응시간이 30분, 철염의 주입량이 1,500mg/L일 때는 하기의 표5에 나타낸 바와같이 반응 pH가 3.5에서 과산화수소의 주입량을 0 mg/L에서 500mg/L까지 증가시킬 경우, 난분해성 폐수처리수의 투과도(%)는 반응주파수가 300kHz에서 H2O2의 주입량이 0 mg/L에서 97%, 100mg/L에서 98%, H2O2의 주입량이 300mg/L에서는 99%, 500mg/L에서는 99%로 상승하였다.When the reaction time is 30 minutes and the injection amount of iron salt is 1,500 mg / L, as shown in Table 5 below, when the injection amount of hydrogen peroxide is increased from 0 mg / L to 500 mg / L at a reaction pH of 3.5, it is difficult to decompose wastewater. transmittance (%) of treated water is the reaction frequency is 97% in the injected amount of H 2 O 2 0 mg / L on the 300kHz, 98%, 99% in the injected amount of H 2 O 2 300mg / L at 100mg / L, 500mg At / L it rose to 99%

또한, 반응주파수가 400kHz에서는 H2O2의 주입량이 0 mg/L에서 98%, 100mg/L에서 99% 정도이고 H2O의 주입량을 증가시켜도 처리수의 색도는 비슷한 현상을 나타냈으며, 반응주파수가 500kHz에서도 H2O2의 주입량이 0mg/L에서 98%, 100mg/L에서 99%로 반응 주파수가 400kHz인 경우와 큰 차이가 없었다.In addition, when the reaction frequency was 400kHz, the H 2 O 2 injection amount was 98% at 0 mg / L and 99% at 100 mg / L, and the chromaticity of the treated water showed a similar phenomenon even when the H 2 O injection amount was increased. Even at the frequency of 500 kHz, the injection amount of H 2 O 2 was 98% at 0 mg / L and 99% at 100 mg / L.

이와같이 철염의 주입량이 1,000 mg/L에서 과산화수소가 소량 첨가될 경우 처리수의 색도(투과도, %)가 약간 저하되는 현상은 과산화수소와 철염이 산화반응할 시에 초음파가 조사되면서 반응액을 현탁·분산시키기 때문에 투과도가 저하되는 것으로 사료되며, 철염의 주입량이 1,500mg/L인 경우인 철염에 의한 응집효과가 커지므로 반응액 속의 고형물의 응집·침전효과가 크기 때문에 투과도에 부정적인 영향을 주지 않음을 알 수 있다.As such, when a small amount of hydrogen peroxide is added at an injection amount of 1,000 mg / L, the chromaticity (permeability,%) of the treated water is slightly reduced. Ultrasonic irradiation is performed when the hydrogen peroxide and iron salt are oxidized to suspend and disperse the reaction solution. It is thought that the permeability decreases because the coagulation effect by iron salt increases when the iron salt is injected at 1,500 mg / L. Can be.

그리고, 처리수의 투과도에 과산화수소의 주입량이 미치는 영향은 잔존 과산화수소가 처리수의 투과도에 영향을 미치지 않으므로 좋은 색도제거효율을 나타내고 있다.In addition, the effect of the hydrogen peroxide injection amount on the permeability of the treated water shows a good color removal efficiency since the remaining hydrogen peroxide does not affect the permeability of the treated water.

그러나, 잔존 과산화수소가 처리수의 COD 유발요인으로 작용하여 과산화수소가 과량 존재할 경우는 오히려 COD 제거율(%)의 저하를 나타내고 있다.However, when the residual hydrogen peroxide acts as a cause of COD in the treated water and the excess hydrogen peroxide is present, the COD removal rate (%) is lowered.

표4. 색도변화(투과도 %)Table 4. Chromaticity change (permeability%)

H2O2(mg/L)H 2 O 2 (mg / L) kHzkHz 300300 400400 500500 01003005000100300500 9689959896899598 9898999998989999 9898999998989999

표5. 색도변화 (투과도, %).Table 5. Chromaticity change (permeability,%).

H2O2(mg/L)H 2 O 2 (mg / L) kHzkHz 300300 400400 500500 01003005000100300500 9798999997989999 9899999998999999 9899999998999999

[실시예3]Example 3

난분해성 폐수가 담긴 반응조의 하부로부터 초음파를 조사함에 있어, 그 반응시간을 30분, 반응pH를 3.5로 하면서 철염 주입량을 1,000mg/L과 1,500mg/L로 하고, 과산화수소의 주입량을 0 에서 700mg/L까지 변화시키면서 실험하였다.In irradiating ultrasonic waves from the lower part of the reactor containing hardly degradable waste water, the reaction time was 30 minutes, the reaction pH was 3.5, the iron salt injection amount was 1,000 mg / L and 1,500 mg / L, and the hydrogen peroxide injection amount was 0 to 700 mg. The experiment was carried out with changes up to / L.

이때, 과산화수소와 철염의 주입량을 각각 500mg/L, 1,000mg/L으로 할 경우, 펜톤산화반응과 초음파를 이용한 펜톤산화반응의 COD 제거율(%)은 각각 72.57%와 74.78%로 나타났다.At this time, when the injection amounts of hydrogen peroxide and iron salt were 500 mg / L and 1,000 mg / L, respectively, the COD removal rate (%) of the fenton oxidation reaction and the fenton oxidation reaction using ultrasound was 72.57% and 74.78%, respectively.

또한, 과산화수소와 철염의 주입량을 각각 500mg/L, 1,500mg/L으로 할 경우, 펜톤산화반응과 초음파를 이용한 펜톤산화반응의 COD 제거율(%)은 각각 76.55%와 83.63%로 나타났다.In addition, when the injection amounts of hydrogen peroxide and iron salt were 500 mg / L and 1,500 mg / L, respectively, the COD removal rate (%) of the fenton oxidation reaction and the fenton oxidation reaction using ultrasonic wave was 76.55% and 83.63%, respectively.

이로부터, 펜톤산화반응보다 초음파산화반응의 COD 제거율이 약 10%정도의 상승을 기대할 수 있고, 그 상승효과만큼 과산화수소의 소비도 줄일 수 있어 난분해성 폐수처리비용를 절약할 수 있게 된다.From this, it can be expected that the COD removal rate of the ultrasonic oxidation reaction is about 10% higher than the Fenton oxidation reaction, and the consumption of hydrogen peroxide can be reduced by the synergistic effect, thereby saving the cost of difficult-decomposable wastewater treatment.

본 발명은 반응조의 처리수에 초음파를 조사하여 처리수의 COD제거율을 보다 향상시킴으로써 고가의 과산화수소 사용을 억제할 수 있고, 이로부터 난분해성 폐수처리비용을 절약할 수 있는 효과를 제공하게 된다.The present invention can suppress the use of expensive hydrogen peroxide by irradiating the treated water of the reaction vessel with ultrasonic waves to further improve the COD removal rate of the treated water, thereby providing the effect of reducing the cost of difficult-decomposable wastewater treatment.

Claims (1)

난분해성 폐수를 산화반응조(3)에서 철염과 과산화수소로 산화반응시킨 후, 중화응집조(5)와 침전조(6)를 차례로 거치면서 슬러지와 상등수로 고액 분리하는 난분해성 폐수처리방법에 있어서,In the hardly decomposable wastewater treatment method in which the hardly decomposable wastewater is oxidized with iron salt and hydrogen peroxide in an oxidation reaction tank (3), and then solid-liquidly separated into sludge and supernatant while passing through a neutralization coagulation tank (5) and a precipitation tank (6). 상기 산화반응조(3)에서 철염과 과산화수소에 의해 산화되는 난분해성 폐수에 300∼500kHz의 초음파를 조사하는 것을 특징으로 하는 초음파를 이용한 난분해성 폐수처리방법.Ultra-degradable wastewater treatment method using ultrasonic waves, characterized in that for irradiating the hard-decomposable wastewater oxidized by iron salt and hydrogen peroxide in the oxidation reaction tank (3).
KR1019990011278A 1999-03-31 1999-03-31 A method making use of ultrasonic wave for treating waste water KR100324473B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990011278A KR100324473B1 (en) 1999-03-31 1999-03-31 A method making use of ultrasonic wave for treating waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990011278A KR100324473B1 (en) 1999-03-31 1999-03-31 A method making use of ultrasonic wave for treating waste water

Publications (2)

Publication Number Publication Date
KR20000061897A true KR20000061897A (en) 2000-10-25
KR100324473B1 KR100324473B1 (en) 2002-02-27

Family

ID=19578409

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990011278A KR100324473B1 (en) 1999-03-31 1999-03-31 A method making use of ultrasonic wave for treating waste water

Country Status (1)

Country Link
KR (1) KR100324473B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100343428B1 (en) * 1998-11-16 2002-07-15 세 영 모 The industrial wastewater treatment process and apparatus combined the technique of decomposition by ultrasound/oxidants with the biological treatment technique.
KR100352168B1 (en) * 1999-11-18 2002-09-12 (주)대양이.엔.씨 Wastewater treatment apparatus using microwave
KR100669005B1 (en) * 2006-10-10 2007-01-16 금호환경 주식회사 Biofilter having ultrasonic scum removing apparatus
KR100755498B1 (en) * 2006-11-16 2007-09-04 정덕교 Wastewater treatment method of advanced oxidation process using by-product waste ferrous sulfate heptahydrate
KR100841691B1 (en) 2001-08-15 2008-06-26 텍사코 디벨롭먼트 코포레이션 Reactor and solids settler for grey water treatment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040013942A (en) * 2002-08-09 2004-02-14 이원홍 The heavy metal clear-fixed method in dreggy sludge by the ultrasonic irradiation
KR101428609B1 (en) 2012-11-16 2014-08-08 현대자동차주식회사 The method of removal of heavy metal in sludge

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3489856B2 (en) * 1993-07-15 2004-01-26 環境エンジニアリング株式会社 Organic sludge treatment method
JPH0889975A (en) * 1994-09-26 1996-04-09 Marusoo Sangyo Kk Treatment of organic halogen compound-containing aqueous solution
KR19990009199U (en) * 1997-08-19 1999-03-15 김정술 Livestock wastewater purification and nitrogen oxidation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100343428B1 (en) * 1998-11-16 2002-07-15 세 영 모 The industrial wastewater treatment process and apparatus combined the technique of decomposition by ultrasound/oxidants with the biological treatment technique.
KR100352168B1 (en) * 1999-11-18 2002-09-12 (주)대양이.엔.씨 Wastewater treatment apparatus using microwave
KR100841691B1 (en) 2001-08-15 2008-06-26 텍사코 디벨롭먼트 코포레이션 Reactor and solids settler for grey water treatment
KR100669005B1 (en) * 2006-10-10 2007-01-16 금호환경 주식회사 Biofilter having ultrasonic scum removing apparatus
KR100755498B1 (en) * 2006-11-16 2007-09-04 정덕교 Wastewater treatment method of advanced oxidation process using by-product waste ferrous sulfate heptahydrate

Also Published As

Publication number Publication date
KR100324473B1 (en) 2002-02-27

Similar Documents

Publication Publication Date Title
Moradi et al. Various wastewaters treatment by sono-electrocoagulation process: a comprehensive review of operational parameters and future outlook
Korpe et al. Application of advanced oxidation processes and cavitation techniques for treatment of tannery wastewater—A review
Joshi et al. Treatment of landfill leachate using different configurations of ultrasonic reactors combined with advanced oxidation processes
Xu et al. Combination treatment of ultrasound and ozone for improving solubilization and anaerobic biodegradability of waste activated sludge
Batagoda et al. Nano-ozone bubbles for drinking water treatment
KR101026734B1 (en) Apparatus and method of treating discharge water for re-use
EP1550638A1 (en) Method of reducing volume of sludge and apparatus therefor
CN104098228A (en) Organic amine wastewater treatment method
Gujar et al. Application of hybrid oxidative processes based on cavitation for the treatment of commercial dye industry effluents
CN109574387A (en) A kind of combined technical method handling high concentration hard-degraded organic waste water
KR100324473B1 (en) A method making use of ultrasonic wave for treating waste water
KR101750442B1 (en) Sewage advanced treatment system using ultrasonic device
KR100719455B1 (en) Treatment method of hardly-degradable organic compounds in radioactive liquid waste
CN108975554A (en) The efficiently method of removal pulp-making waste-water COD
CN207405000U (en) A kind of compound advanced oxidation technology handles the device of high COD waste liquids
Saxena et al. Studies on the efficacy of ultrasonication processes in combination with advanced oxidizing agents for alum pretreated tannery waste effluent
Fındık Treatment of petroleum refinery effluent using ultrasonic irradiation
US11607653B2 (en) System and method for generating stabilized, gas infused liquids containing high and ultra-high concentrations of infused gas, and the stabilized, gas infused liquids
KR100646861B1 (en) Wastewater treating apparatus equipped with dissolved ozone flotation, pressurized ozone oxidation and dissolved ozone oxidation and wastewater treating method using the same
CN108996836A (en) A kind of industrial sewage treatment technology
KR100208956B1 (en) METHOD FOR TREATING WASTEWATER BY AN ELECTRON BEAM AFTER ADJUSTING pH
JPH11347592A (en) Method for treating sewage containing hardly decomposable organic matter
KR100352168B1 (en) Wastewater treatment apparatus using microwave
KR20050090663A (en) Waste water treatment apparatus and method using optical fenton oxidation mechanism
CN108409046A (en) A kind of wastewater treatment equipment and method

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130117

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140115

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150126

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160125

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170125

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180126

Year of fee payment: 17

LAPS Lapse due to unpaid annual fee