KR20000061705A - Manufacturing Method of Semiconductor Device - Google Patents

Manufacturing Method of Semiconductor Device Download PDF

Info

Publication number
KR20000061705A
KR20000061705A KR1019990010958A KR19990010958A KR20000061705A KR 20000061705 A KR20000061705 A KR 20000061705A KR 1019990010958 A KR1019990010958 A KR 1019990010958A KR 19990010958 A KR19990010958 A KR 19990010958A KR 20000061705 A KR20000061705 A KR 20000061705A
Authority
KR
South Korea
Prior art keywords
layer
metal
silicide
nitride
substrate
Prior art date
Application number
KR1019990010958A
Other languages
Korean (ko)
Other versions
KR100548596B1 (en
Inventor
남대현
Original Assignee
김영환
현대반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대반도체 주식회사 filed Critical 김영환
Priority to KR1019990010958A priority Critical patent/KR100548596B1/en
Publication of KR20000061705A publication Critical patent/KR20000061705A/en
Application granted granted Critical
Publication of KR100548596B1 publication Critical patent/KR100548596B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A method of fabricating a semiconductor device is provide to form a metal silicide contact having low resistance which doesn't require additional process for thermal treatment CONSTITUTION: In a method of fabricating a semiconductor device, a diffusion layer doped with impurities is formed on a substrate on which is formed an isolation layer. Wherein a thick CVD silicon oxide layer is deposited as insulating layer. Silicon of the substrate doped with impurities is exposed by removing a silicon oxide layer by using a resisting film patterned as a mask. After cleaning the substrate, a thin metal silicide layer is deposited over a surface of the substrate by sputtering method. A metal nitride layer is also is deposited on the metal silicide layer by sputtering method, and then a thick CVD tungsten layer is deposited on the resultant substrate.

Description

반도체장치의 제조방법{Manufacturing Method of Semiconductor Device}Manufacturing Method of Semiconductor Device

본 발명은 반도체장치의 제조방법에 관한 것으로서, 특히, 추가 열처리 공정이 필요 없는 메탈 실리사이드(Metal Silicide) 콘택을 형성할 수 있는 반도체장치의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device capable of forming a metal silicide contact without requiring an additional heat treatment process.

도 1a 내지 도 1f는 종래 기술에 따른 반도체장치의 제조공정도이다.1A to 1F are manufacturing process diagrams of a semiconductor device according to the prior art.

도 1a를 참조하면, 반도체기판(11)내에 STI(Shallow Trench Isolation)방법으로 형성된 소자격리막(15)과 이온주입방법으로 불순믈이 도핑된 액티브 영역(18)이 형성된다. 이어서 층간 절연층으로 두꺼운 두께의 CVD 실리콘산화막(SiO2)(21)이 증착 형성된다.Referring to FIG. 1A, a device isolation film 15 formed by a shallow trench isolation (STI) method and an active region 18 doped with impurities by an ion implantation method are formed in a semiconductor substrate 11. Subsequently, a thick CVD silicon oxide film (SiO 2 ) 21 is deposited by an interlayer insulating layer.

도 1b를 참조하면, 실리콘산화막(SiO2)(21)상에 리소그래피 방법으로 레지스트 막(101)을 패터닝한다Referring to FIG. 1B, a resist film 101 is patterned on a silicon oxide film (SiO 2 ) 21 by a lithography method.

도 1c를 참조하면, 패터닝된 레지스트 막(101)을 마스크로 하여 실리콘산화막(SiO2)(21)을 플라즈마 RIE(Reactive Ion Etching)방법으로 제거하여 불순물이 도핑된 반도체 기판의 실리콘(Silicon)을 노출시킨다. 그 후 레지스트 막(101)을 제거한다.Referring to FIG. 1C, a silicon oxide film (SiO 2 ) 21 is removed by a plasma reactive ion etching (RIE) method using a patterned resist film 101 as a mask to remove silicon of a semiconductor substrate doped with impurities. Expose Thereafter, the resist film 101 is removed.

도 1d를 참조하면, 반도체 기판을 세정한 후 반도체기판(11)의 전체 표면에 스퍼터(Sputter)방법으로 얇은 Ti(Titanium)(23) / TiN (Titanium Nitride)막(25)을 증착한다.Referring to FIG. 1D, a thin Ti (Titanium) 23 / TiN (Titanium Nitride) film 25 is deposited on the entire surface of the semiconductor substrate 11 by the sputtering method.

상기에서 Ti(Titanium)(23)은 스퍼터링(Sputtering)장비에서 타겟 물질(Target Material)로 순도 99.999%의 Ti를 챔버 온도 200 ~300℃에서 아르곤(Argon)가스로 스퍼터링하여 두께 100Å 정도의 티타니윰(Titanium)을 불순믈이 도핑된 액티브 영역(18) 및 실리콘산화막(SiO2)(21a)상에 증착한다. 이어서 같은 쳄버에서 타겟 물질(Target Material)로 순도 99.999%의 Ti를 챔버 온도 200 ~300℃에서 질소(N2)가스로 스퍼터링하여 두께 400Å 정도의 질화 티타니윰(Titanium Nitride)(25)을 Ti(Titanium)(23)상에 증착한다.In the above, Ti (Titanium) (23) is sputtered (Tiger) in the sputtering equipment (Target Material) of 99.999% of the purity of the Ti to the thickness of 100 곤 by sputtering with Argon gas at 200 ~ 300 ℃ Titanium is deposited on the impurity doped active region 18 and silicon oxide film (SiO 2 ) 21a. Subsequently, a titanium nitride (25) having a thickness of about 400 mm was sputtered by sputtering 99.999% of Ti as a target material with nitrogen (N 2 ) gas at a chamber temperature of 200 to 300 ° C. in the same chamber. (Titanium) (23) is deposited.

도 1e를 참조하면, 반도체 기판을 600℃ 이상의 고온 RTP(Rapid Thermal Processing) 또는 통상의 열처리 공정으로 Ti(Titanium)(23)을 기판(11)인 실리콘(Silicon)과의 열적반응으로 저저항의 티타늄 실리사이드(Titanium Silicide, TiSix)(27)를 형성한다.Referring to FIG. 1E, the semiconductor substrate is subjected to a low resistance by thermal reaction with Ti (Titanium) 23 with silicon, which is the substrate 11, by a high temperature rapid thermal processing (RTP) or a general heat treatment process of 600 ° C. or higher. Titanium Silicide (TiSi x ) 27 is formed.

상기에서 실리콘(Silicon)과의 열적반응으로 변환된(Transformed) 티타늄 실리사이드(Titanium Silicide)(27)는 두께 250Å 정도의 TiSix로 실리콘(Silicon)과의 계면(Interface)보다 낮은 곳에서 형성된다. TiSix의 형성공정시 실리콘(Silicon) 기판내의 실리콘 원자(Atoms)들의 공핍(Depletion)을 가져오며, Ti(Titanium)(23)의 TiSix으로의 상변태시 체적 축소(Volume Shrinkage)를 가져온다.Titanium Silicide 27, which is transformed by thermal reaction with silicon, is formed at a lower thickness than the interface with silicon with TiSi x having a thickness of about 250 microns. In the formation process of TiSi x , depletion of silicon atoms (Atoms) in a silicon substrate is brought about, and volume shrinkage is caused in the phase transformation of Ti (Titanium) 23 to TiSi x .

도 1f를 참조하면, 반도체 기판상에 두꺼운 두께의 CVD 텅스텐(Tungsten)(30)을 증착 형성한다. 이후 CMP(Chemical Mechanical Polishing)방법으로 실리콘산화막(SiO2)(21a)상의 텅스텐 (Tungsten)(30) 및 TiN(Titanium Nitride)막(25) 및 Ti(Titanium)(23)을 제거하여 플러그(Plug)(도시 안 함)를 형성하고, 이후 공정(Subsequent Processing)에서 메탈라인(Metal Line)을 패터닝힌다(도시 안 함). 상기 플러그로 불순물이 도핑된 액티브 영역(18)과 메탈라인을 전기적으로 연결한다.Referring to FIG. 1F, a thick CVD tungsten 30 is deposited on a semiconductor substrate. Thereafter, the plug is removed by removing the tungsten 30, the titanium nitride (25), and the titanium (23) from the silicon oxide film (SiO 2 ) 21a by the chemical mechanical polishing (CMP) method. (Not shown), and then metal lines (metal lines) in the subsequent processing (Subsequent Processing) (not shown). The plug electrically connects the active region 18 doped with impurities to the metal line.

상술한 종래 기술은 티타늄 실리사이드(Titanium Silicide)(27)의 상변태시 도펀트(Dopant)들의 외부 확산(Out Diffusion)이 발생되어 액티브 콘택 저항의 증가를 가져오며 또한 체적 축소(Volume Shrinkage)로 인한 액티브 영역의 정션(Junction)에서 누설 전류(Leakage Current)의 증가를 가져오는 등의 문제점이 있었다.In the above-described conventional technique, out diffusion of dopants occurs during phase transformation of titanium silicide 27, resulting in an increase in active contact resistance, and also an active region due to volume shrinkage. There was a problem such as an increase in leakage current at the junction of the junction.

따라서, 본 발명의 목적은 추가 열처리 공정이 필요 없는 저저항의 메탈 실리사이드(Metal Silicide) 콘택을 형성할 수 있는 반도체장치의 제조방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a method for manufacturing a semiconductor device capable of forming a low resistance metal silicide contact without the need for an additional heat treatment process.

상기 목적을 달성하기 위한 본 발명에 따른 반도체장치의 제조방법은 소자격리층이 형성된 반도체 기판내에 불순물이 도핑된 확산층을 형성하는 공정과, 상기 반도체 기판상에 절연층을 형성하는 공정과, 상기 절연층내에 콘택홀을 형성하여 상기 확산층을 노출시키는 공정과, PVD 방법으로 메탈 실리사이드(Metal Silicide)층을 상기 확산층 및 상기 절연층상에 형성하는 공정과, 상기 메탈 실리사이드(Metal Silicide)층상에 메탈 나이트라이드(Metal Nitride)층을 형성하는 공정과, 상기 반도체 기판상에 금속층으로 상기 콘택홀을 충진(Gap Filling)하는 공정을 구비한다.A method of manufacturing a semiconductor device according to the present invention for achieving the above object comprises the steps of forming a diffusion layer doped with an impurity in a semiconductor substrate having a device isolation layer, forming an insulating layer on the semiconductor substrate, and the insulation Forming a contact hole in the layer to expose the diffusion layer, forming a metal silicide layer on the diffusion layer and the insulating layer by PVD, and metal nitride on the metal silicide layer Forming a (metal nitride) layer; and filling the contact hole with a metal layer on the semiconductor substrate.

도 1a 내지 도 1f는 종래 기술에 따른 반도체장치의 제조공정도이다.1A to 1F are manufacturing process diagrams of a semiconductor device according to the prior art.

도 2a 내지 도 2f는 본 발명에 따른 반도체장치의 제조공정도이다.2A to 2F are manufacturing process diagrams of a semiconductor device according to the present invention.

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2f는 본 발명에 따른 반도체장치의 제조공정도이다.2A to 2F are manufacturing process diagrams of a semiconductor device according to the present invention.

도 2a를 참조하면, 반도체기판(111)내에 STI(Shallow Trench Isolation)방법으로 형성된 소자격리막(115)과 이온주입방법으로 불순믈이 도핑된 액티브 영역(118)이 형성된다. 이어서 층간 절연층으로 두꺼운 두께의 CVD 실리콘산화막(SiO2)(121)이 증착 형성된다.Referring to FIG. 2A, an isolation layer 115 formed by a shallow trench isolation (STI) method and an active region 118 doped with impurities by an ion implantation method are formed in the semiconductor substrate 111. Subsequently, a thick CVD silicon oxide film (SiO 2 ) 121 is deposited as an interlayer insulating layer.

도 2b를 참조하면, 실리콘산화막(SiO2)(121)상에 리소그래피 방법으로 레지스트 막(201)을 패터닝한다Referring to FIG. 2B, a resist film 201 is patterned on a silicon oxide film (SiO 2 ) 121 by a lithography method.

도 2c를 참조하면, 패터닝된 레지스트 막(201)을 마스크로 하여 실리콘산화막(SiO2)(121)을 플라즈마 RIE(Reactive Ion Etching)방법으로 제거하여 불순물이 도핑된 반도체 기판의 실리콘(Silicon)을 노출시킨다. 그 후 레지스트 막(201)을 제거한다.Referring to FIG. 2C, a silicon oxide film (SiO 2 ) 121 is removed by a plasma reactive ion etching (RIE) method using a patterned resist film 201 as a mask to remove silicon of a semiconductor substrate doped with impurities. Expose Thereafter, the resist film 201 is removed.

도 2d를 참조하면, 반도체 기판을 세정한 후 반도체기판(111)의 전체 표면에 스퍼터(Sputter)방법으로 얇은 TiSi2(Titanium Silicide)(123) 을 증착한다.Referring to FIG. 2D, a thin TiSi 2 (Titanium Silicide) 123 is deposited on the entire surface of the semiconductor substrate 111 by the sputtering method after cleaning the semiconductor substrate.

상기에서 TiSi2(Titanium Silicide)(123)은 PVD(Physical Vapor Deposition) 장비에서 TiSi2(Titanium Silicide)조성의 타겟 물질(Target Material)로 고온 기판 가열 방법으로 기판 온도 500 ~800℃ 에서 아르곤(Argon)가스로 스퍼터링하여 두께 250Å 정도의 TiSi2(Titanium Silicide)(123)을 불순믈이 도핑된 액티브 영역(118) 및 실리콘산화막(SiO2)(121a)상에 증착한다. TiSi2(Titanium Silicide)조성의 타겟 물질(Target Material)대신에 텅스텐 실리사이드 (WSi), 탄탈리움 실리사이드(TaSi2), 코발트 실리사이드(CoSi2)의 타겟 물질들에서 선택하여 증착 형성할 수 있다.In the above, TiSi 2 (Titanium Silicide) 123 is a target material of TiSi 2 (Titanium Silicide) composition in PVD (Physical Vapor Deposition) equipment, and is heated at a substrate temperature of 500 to 800 ° C. by argon at a substrate temperature of 500 to 800 ° C. Sputtering with a gas to deposit TiSi 2 (Titanium Silicide) 123 having a thickness of about 250 Å on the impurity doped active region 118 and the silicon oxide film (SiO 2 ) 121a. Instead of a target material of TiSi 2 (Titanium Silicide) composition, a target material of tungsten silicide (WSi), tantalum silicide (TaSi 2 ), and cobalt silicide (CoSi 2 ) may be selected for deposition.

도 2e를 참조하면, TiSi2(Titanium Silicide)(123)상에 스퍼터(Sputter)방법으로 얇은 질화 티타니윰(Titanium Nitride)(125)을증착한다.Referring to FIG. 2E, a thin titanium nitride 125 is deposited on a TiSi 2 (Titanium Silicide) 123 by a sputtering method.

상기에서 질화 티타니윰(Titanium Nitride)(125)은 도 2d에서 언급된 같은 장비에서 타겟 물질(Target Material)로 순도 99.999%의 Ti를 챔버 온도 200 ~300℃에서Titanium Nitride (125) in the above is a target material in the same equipment mentioned in Figure 2d (Ti) with a purity of 99.999% Ti at the chamber temperature of 200 ~ 300 ℃

질소(N2)가스로 스퍼터링하여 두께 400Å 정도의 질화 티타니윰(Titanium Nitride)(125)을 TiSi2(Titanium Silicide)(123)상에 증착한다.By sputtering with nitrogen (N 2 ) gas, titanium nitride (Titanium Nitride) 125 having a thickness of about 400 mm is deposited on TiSi 2 (Titanium Silicide) 123.

질화 티타니윰(Titanium Nitride)(125) 대신에 텅스텐 나이트라이드 (WN), 탄탈리움 나이트라이드(TaN), 코발트 나이트라이드(CoN)들 중에서 선택할 수 있다.Instead of titanium nitride 125, tungsten nitride (WN), tantalum nitride (TaN), and cobalt nitride (CoN) may be selected.

도 2f를 참조하면, 반도체 기판상에 두꺼운 두께의 CVD 텅스텐(Tungsten)(130)을 증착 형성한다.Referring to FIG. 2F, a thick CVD tungsten 130 is deposited on a semiconductor substrate.

상기에서 텅스텐(Tungsten)(130) 대신에 알루미늄(Aluminum, Aluminium Alloy), 구리 (Copper)들 중에서 선택할 수 있다.Instead of tungsten 130, it may be selected from aluminum (Aluminum, Aluminum Alloy) and copper (Copper).

이후 CMP(Chemical Mechanical Polishing)방법으로 실리콘산화막(SiO2)(121a)상의 텅스텐 (Tungsten)(130) 및 TiN(Titanium Nitride)막(125) 및 TiSi2(Titanium Silicide)(123)을 제거하여 플러그(Plug)(도시 안 함)를 형성하고, 이후 공정(Subsequent Processing)에서 메탈라인(Metal Line)을 패터닝힌다(도시 안 함). 상기 플러그로 불순물이 도핑된 액티브 영역(118)과 메탈라인을 전기적으로 연결한다.After CMP (Chemical Mechanical Polishing) method of a silicon oxide film (SiO 2), (121a), tungsten (Tungsten) (130) and TiN (Titanium Nitride) plug to remove the film 125 and the TiSi 2 (Titanium Silicide) (123) on the (Plug) (not shown) is formed, and then Metal Line is patterned (not shown) in Subsequent Processing. The plug electrically connects the active region 118 doped with impurities to the metal line.

상술한 바와 같이 본 발명에 따른 반도체 장치의 제조방법은 소자격리층이 형성된 반도체 기판내에 불순물이 도핑된 확산층을 형성하며, 상기 반도체 기판상에 절연층을 형성하며, 상기 절연층내에 콘택홀을 형성하여 상기 확산층을 노출시키며, PVD 방법으로 메탈 실리사이드(Metal Silicide)층을 상기 확산층 및 상기 절연층상에 형성하며, 상기 메탈 실리사이드(Metal Silicide)층상에 메탈 나이트라이드(Metal Nitride)층을 형성하며, 상기 반도체 기판상에 금속층으로 상기 콘택홀을 충진(Gap Filling)한다.As described above, the method of manufacturing a semiconductor device according to the present invention forms a diffusion layer doped with impurities in a semiconductor substrate on which an element isolation layer is formed, an insulating layer is formed on the semiconductor substrate, and contact holes are formed in the insulating layer. Exposing the diffusion layer, forming a metal silicide layer on the diffusion layer and the insulating layer by PVD, and forming a metal nitride layer on the metal silicide layer, The contact hole is filled with a metal layer on a semiconductor substrate.

따라서, 본 발명은 액티브 영역에 메탈 실리사이드(Metal Silicide)를 PVD(Physical Vapor Deposition)방법으로 직접 실리콘(Silicon)에 형성함으로 종전의 실리사이드 (Silicide) 상 변태시의 문제점들인 도펀트들의 외부 확산을 방지하여 콘택저항의 증가를 억제할 수 있으며 또한 체적축소를 최소화됨으로 누설전류의 증대로 인한 소자특성이 저하되는 것을 방지할 수 있는 잇점이 있다.Accordingly, the present invention forms metal silicide in the active region directly on silicon by PVD (Physical Vapor Deposition) method, thereby preventing external diffusion of dopants, which is a problem in the conventional silicide phase transformation. The increase in contact resistance can be suppressed and the volume reduction can be minimized, thereby preventing the deterioration of device characteristics due to an increase in leakage current.

Claims (5)

소자격리층이 형성된 반도체 기판내에 불순물이 도핑된 확산층을 형성하는 공정과,Forming a diffusion layer doped with impurities in the semiconductor substrate on which the device isolation layer is formed; 상기 반도체 기판상에 절연층을 형성하는 공정과,Forming an insulating layer on the semiconductor substrate; 상기 절연층내에 콘택홀을 형성하여 상기 확산층을 노출시키는 공정과,Forming a contact hole in the insulating layer to expose the diffusion layer; PVD 방법으로 메탈 실리사이드(Metal Silicide)층을 상기 확산층 및 상기 절연층상에 형성하는 공정과,Forming a metal silicide layer on the diffusion layer and the insulating layer by PVD; 상기 메탈 실리사이드(Metal Silicide)층상에 메탈 나이트라이드(Metal Nitride)층을 형성하는 공정과,Forming a metal nitride layer on the metal silicide layer; 상기 반도체 기판상에 금속층으로 상기 콘택홀을 충진(Gap Filling)하는 공정을 구비하는 반도체장치의 제조방법.And a step of filling the contact hole with a metal layer on the semiconductor substrate. 청구항 1에 있어서, 상기 절연층은 실리콘산화막으로 이루어지는 반도체장치의 제조방법.The method of claim 1, wherein the insulating layer is formed of a silicon oxide film. 청구항 1에 있어서, 상기 메탈 실리사이드(Metal Silicide)층은 TiSi2(Titanium Silicide), 텅스텐 실리사이드 (WSi), 탄탈리움 실리사이드(TaSi2), 코발트 실리사이드(CoSi2)의 타겟 물질들에서 하나를 선택하여 증착 형성하는 것으로 이루어지는 반도체장치의 제조방법.The method of claim 1, wherein the metal silicide layer is selected from target materials of TiSi 2 (Titanium Silicide), tungsten silicide (WSi), tantalum silicide (TaSi 2 ), and cobalt silicide (CoSi 2 ). A semiconductor device manufacturing method comprising vapor deposition. 청구항 1에 있어서, 상기 메탈 나이트라이드(Metal Nitride)층은 질화 티타니윰(Titanium Nitride)(125) 또는 텅스텐 나이트라이드 (WN) 또는 탄탈리움 나이트라이드(TaN) 또는 코발트 나이트라이드(CoN)으로 이루어지는 반도체장치의 제조방법.2. The metal nitride layer of claim 1, wherein the metal nitride layer is made of titanium nitride (TN) 125 or tungsten nitride (WN), tantalum nitride (TaN), or cobalt nitride (CoN). Method of manufacturing a semiconductor device. 청구항 1에 있어서, 상기 금속층은 텅스텐(Tungsten) 또는 알루미늄(Aluminum, Aluminium Alloy)또는 구리 (Copper)로 이루어지는 반도체장치의 제조방법.The method of claim 1, wherein the metal layer is made of tungsten, aluminum, aluminum alloy, or copper.
KR1019990010958A 1999-03-30 1999-03-30 Manufacturing Method of Semiconductor Device KR100548596B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990010958A KR100548596B1 (en) 1999-03-30 1999-03-30 Manufacturing Method of Semiconductor Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990010958A KR100548596B1 (en) 1999-03-30 1999-03-30 Manufacturing Method of Semiconductor Device

Publications (2)

Publication Number Publication Date
KR20000061705A true KR20000061705A (en) 2000-10-25
KR100548596B1 KR100548596B1 (en) 2006-02-02

Family

ID=19578174

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990010958A KR100548596B1 (en) 1999-03-30 1999-03-30 Manufacturing Method of Semiconductor Device

Country Status (1)

Country Link
KR (1) KR100548596B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400769B1 (en) * 2000-12-29 2003-10-08 주식회사 하이닉스반도체 Method for forming barrier layer of semiconductor device
US7189641B2 (en) 2003-08-19 2007-03-13 Samsung Electronics Co., Ltd. Methods of fabricating tungsten contacts with tungsten nitride barrier layers in semiconductor devices, tungsten contacts with tungsten nitride barrier layers
KR100715761B1 (en) * 2005-04-01 2007-05-08 영남대학교 산학협력단 The trobleshooting of electroless plating on Al pad of SiO2 wafer doped boron
US7521357B2 (en) 2004-02-24 2009-04-21 Samsung Electronics Co., Ltd. Methods of forming metal wiring in semiconductor devices using etch stop layers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279990A (en) * 1990-03-02 1994-01-18 Motorola, Inc. Method of making a small geometry contact using sidewall spacers
JP3018383B2 (en) * 1990-04-03 2000-03-13 ソニー株式会社 Wiring formation method
JP3369716B2 (en) * 1994-04-27 2003-01-20 川崎製鉄株式会社 Method of forming connection structure
KR960042961A (en) * 1995-05-25 1996-12-21 김주용 Method of forming diffusion barrier of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400769B1 (en) * 2000-12-29 2003-10-08 주식회사 하이닉스반도체 Method for forming barrier layer of semiconductor device
US7189641B2 (en) 2003-08-19 2007-03-13 Samsung Electronics Co., Ltd. Methods of fabricating tungsten contacts with tungsten nitride barrier layers in semiconductor devices, tungsten contacts with tungsten nitride barrier layers
US7521357B2 (en) 2004-02-24 2009-04-21 Samsung Electronics Co., Ltd. Methods of forming metal wiring in semiconductor devices using etch stop layers
KR100715761B1 (en) * 2005-04-01 2007-05-08 영남대학교 산학협력단 The trobleshooting of electroless plating on Al pad of SiO2 wafer doped boron

Also Published As

Publication number Publication date
KR100548596B1 (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US5970370A (en) Manufacturing capping layer for the fabrication of cobalt salicide structures
JP3704427B2 (en) Method for forming copper metal wiring of semiconductor device
US6436817B2 (en) Method for manufacturing a copper interconnection with an aluminum oxide-conductive layer stack barrier layer in semiconductor memory device
US6265271B1 (en) Integration of the borderless contact salicide process
US5552340A (en) Nitridation of titanium, for use with tungsten filled contact holes
JP2002050759A (en) Production method for mosfet element having metal gate
KR100235361B1 (en) Manufacturing method of semiconductor device
TW200525751A (en) Silicide/semiconductor structure and method of fabrication
US6368962B2 (en) Semiconductor processing method of forming a conductive line, and buried bit line memory circuitry
US6951786B2 (en) Method of forming a stack of refractory metal nitride over refractory metal silicide over silicon
US6642590B1 (en) Metal gate with PVD amorphous silicon layer and barrier layer for CMOS devices and method of making with a replacement gate process
US6440867B1 (en) Metal gate with PVD amorphous silicon and silicide for CMOS devices and method of making the same with a replacement gate process
KR20040017655A (en) Method for forming metal contact in semiconductor device
JPH08111527A (en) Preparation of semiconductor device with self-conformity silicide region
KR100548596B1 (en) Manufacturing Method of Semiconductor Device
US6316353B1 (en) Method of forming conductive connections
US6087259A (en) Method for forming bit lines of semiconductor devices
JP3361971B2 (en) Metal nitride conversion method and semiconductor device manufacturing method
US6245631B1 (en) Method of forming buried bit line memory circuitry and semiconductor processing method of forming a conductive line
KR20020050665A (en) Conductive line and interconnection thereof in semiconductor devices and fabricating method thereof
KR20030000965A (en) Method for forming bit line of semiconductor device
US20040224501A1 (en) Manufacturing method for making tungsten-plug in an intergrated circuit device without volcano phenomena
JPH11288923A (en) Trench forming method and manufacture thereof
JP2000133712A (en) Manufacture of semiconductor device
KR20030003322A (en) Method of simultaneously forming a diffusion barrier and a ohmic contact using titanium nitride

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101224

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee