KR20000055727A - tannin isolated from plant and process for making the derivative thereof - Google Patents

tannin isolated from plant and process for making the derivative thereof Download PDF

Info

Publication number
KR20000055727A
KR20000055727A KR1019990004505A KR19990004505A KR20000055727A KR 20000055727 A KR20000055727 A KR 20000055727A KR 1019990004505 A KR1019990004505 A KR 1019990004505A KR 19990004505 A KR19990004505 A KR 19990004505A KR 20000055727 A KR20000055727 A KR 20000055727A
Authority
KR
South Korea
Prior art keywords
tannin
persimmon
pine needles
acid
hops
Prior art date
Application number
KR1019990004505A
Other languages
Korean (ko)
Inventor
김용욱
임세진
김명애
Original Assignee
김용욱
김명애
임세진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김용욱, 김명애, 임세진 filed Critical 김용욱
Priority to KR1019990004505A priority Critical patent/KR20000055727A/en
Publication of KR20000055727A publication Critical patent/KR20000055727A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/84Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/28Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

본 발명은 율피, 감, 솔잎 및 호프로부터 추출분리한 탄닌성분의 구조분석 및 상기 탄닌성분의 유도체 합성에 관한 것으로 율피, 감, 솔잎, 호프로부터 탄닌 성분과 폴리페놀 성분을 추출분리 및 정제하여 이들의 구조를 분석하고 상기 분리된 탄닌성분중 피부미백, 박테리아 독소제거, 활성산소 유리기 소거, 종양억제 및 DNA 절단작용에 효과가 있는 엘라긱산 유도체, 갈릭산 유도체, 카테킨 유도체를 합성하여 제공하는 뛰어난 효과가 있다.The present invention relates to the structural analysis of tannin components extracted from jujuk, persimmon, pine needles and hops and to synthesis of the derivatives of the tannins, and extract and separate tannin and polyphenols from jujupi, persimmon, pine needles and hops. Analyze the structure of the tannin components of the isolated skin whitening, bacterial toxin removal, free radical scavenging of free radicals, tumor suppression and DNA cleavage effect effective in synthesizing and providing elagic acid derivatives, gallic acid derivatives, catechin derivatives There is.

Description

식물로부터 분리한 탄닌 및 그 유도체 제조방법{tannin isolated from plant and process for making the derivative thereof}Tannin isolated from plant and process for making the derivative

본 발명은 식물로부터 분리한 탄닌성분과 폴리페놀성분 및 그 유도체의 제조방법에 관한 것이다. 더욱 상세하게는 율피, 감, 솔잎 및 호프와 같은 식물로부터 갈릭산(gallic acid), 엘라긱산(ellagic acid), 카테킨(catechin) 등의 탄닌 성분과 모린, 플라보놀 등의 폴리페놀성분을 분리하여 구조분석한 후 이중 탄닌성분 유도체를 제조하는 방법에 관한 것이다.The present invention relates to a tannin component and a polyphenol component and derivatives thereof isolated from plants. More specifically, tannins such as gallic acid, ellagic acid, and catechin, and polyphenols such as moline and flavonol, are separated from plants such as yulpi, persimmon, pine needles, and hops. It relates to a method for preparing a double tannin derivative after structural analysis.

밤(Castanea crenata Sieb. et .Zucc.)은 맛이 뛰어나 오래 전부터 이용되어온 견과류로서 제례시엔 생과로 사용되지만 대부분의 경우 단순 가공되어 사용되어 왔다. 근래 들어 밤의 생산량이 증가함에 따라 이를 소비하기 위한 대책이 다각도로 이루어 졌으며, 밤의 탈피에 관한 연구나 통조림, 제빵에 사용, 저장 및 지질 등에 대한 연구가 활발히 이루어졌다. 율피는 밤의 내과피로서 밤을 이용한 가공식품 제조시 제거되어 폐기처리 되던 일종의 산업 부산물이었다. 그러나 최근에는 율피가 민간에서 피부미용팩의 한 성분으로 널리 사용되고 있으며, 그 수렴효과 및 피부미백효과가 크게 인정받고 있다.Chestnut (Castanea crenata Sieb. Et. Zucc.) Is a nut that has been used for a long time because of its excellent taste. In recent years, as the production of chestnut has increased, measures for consuming it have been made at various angles, and research on chestnut peeling, canning, baking, storage and lipids has been actively conducted. Yulpi was an inner skin of chestnut, a kind of industrial by-product that was removed and disposed of in the manufacture of processed foods using chestnuts. Recently, however, Yulpi is widely used as a component of skin care packs in the private sector, and its astringent and skin whitening effects are greatly recognized.

감은 학명이 Diospyros kaki Thunberg로 감나무는 우리나라를 비롯해 중국, 일본이 원산지이다. 이 감은 발육이 왕성하고 병충해의 피해가 적어서 재배 및 관리가 용이하며, 농약 등의 약을 쓰지 않아도 되는 장점이 있다. 감 과실은 포도당, 과당 등의 당류가 풍부한 알칼리성 식품으로 민간적 요법에서는 장의 수축과 기침을 멎게 하는 효능이 알려져 있다. 감 과실의 경우 탄닌 물질로 인해서 강한 떫은 맛을 느끼게 하는데 이유는 감의 탄닌 세포에 존재하는 탄닌의 농도에 의한 것이다. 이러한 탄닌 성분은 잎에서 합성되어 과실로 이동이 된 다음, 과실의 탄닌 세포에 축적된다고 알려져 있다. 감은 성숙되면서 떫은 맛을 잃어버리는데, 6월 초순에서 7월 중순까지는 감소하다가 그 후로 8월 하순까지는 증가하는 경향을 보인다. 그 다음 9월 초순부터 다시 감소한다. 감잎에 함유된 탄닌에 관한 연구가 그간 활발히 진행되었는데, 이를 이용한 감잎차등이 상품으로 개발된바 있다. 감잎에 함유된 탄닌 (감잎탄닌)은, 열에 안정한 특성을 지녔으며, 많은 페놀성 하이드록시 그룹(phenolic hydroxy group)을 가지고 있기 때문에 고농도에서는 겔화 되기 쉽고 물, 메탄올, 에탄올에는 잘 녹는다. 또한 일반적으로 감잎 탄닌은 고분자 물질로서 강한 수소결합을 형성하고 있기 때문에 분자량 측정이 곤란하다. 감잎 탄닌은 녹차 탄닌의 주성분인 (-)-에피갈로카테킨((-)-epigallocatechin)과 비슷하게 지질 과산화를 억제하며, 이러한 효과는 α-토코페롤(α-tocopherol)보다 20배 정도 큰 것으로 알려져 항암효과도 있으리라 추정된다. 감잎탄닌은 이외에도 독소를 해독하는 작용도 갖는다고 보고되고 있다. 보고에 따르면 일반 탄닌산의 경우 뱀 독소와의 결합이 약하여 원심분리에 의해 분리되지만, 감잎탄닌의 경우에는 독소와의 결합반응이 비가역적이기 때문에 원심 분리에 의해 쉽게 분리되지 않아, 박테리아 독소를 불활성화하는데 더 효과적이라고 하였다. 뿐만 아니라 디프테리아(diphtheria), 스타필로코쿠스(staphylococcus), 파상풍, 백일해 독소에 대해서도 감잎탄닌은 해독 효과를 나타낸다고 보고되었다. 한편 감잎의 에테르 분획에서 모아진 카테킨(catechin) 성분이 항암 효과와 콜레스테롤 억제 효과를 나타냄이 쥐를 이용한 전임상실험에서 밝혀졌다.Persimmon tree is Diospyros kaki Thunberg. Persimmon tree is native to Korea, China and Japan. This persimmon has a strong growth, less damage from pests, easy to cultivate and manage, and has the advantage of not using drugs such as pesticides. Persimmon fruit is an alkaline food rich in sugars such as glucose and fructose. It is known that folk remedies are effective in stopping bowel contraction and coughing. Persimmon fruit causes a strong astringent taste due to tannins, which is due to the concentration of tannin present in the tannin cells of persimmon. These tannins are known to be synthesized in leaves, migrated to fruit, and then accumulated in fruit tannin cells. Persimmon matures and loses its astringent taste, which decreases from early June to mid-July and then increases until late August. Then decrease from early September. Research on tannin contained in persimmon leaves has been actively conducted, and the persimmon leaf differential using this has been developed as a product. Tannins in persimmon leaves are heat-stable and contain many phenolic hydroxy groups, making them easy to gel at high concentrations and soluble in water, methanol, and ethanol. In general, persimmon leaf tannin is a high molecular material and forms a strong hydrogen bond, making it difficult to measure molecular weight. Persimmon leaf tannins inhibit lipid peroxidation, similar to (-)-epigallocatechin, the main component of green tea tannins. It is estimated to be effective. Persimmon leaf tannins have been reported to have a detoxifying effect. According to the report, in general tannic acid, the binding to snake toxin is weak and is separated by centrifugation. However, persimmon leaf tannin is not easily separated by centrifugation because the binding reaction with toxin is irreversible. More effective. In addition, persimmon leaf tannin has been reported to have detoxifying effects on diphtheria, staphylococcus, tetanus and pertussis toxin. In the preclinical experiments using rats, catechins from the ether fraction of persimmon leaves showed anti-cancer and cholesterol-inhibiting effects.

소나무는 학명이 Pinus densiflora Sieb. et Zucc.로서 국내 어느 지형에서나 자라고 있는 사철나무이다. 솔잎은 비타민 C를 다량 함유하여, 괴혈병에 좋고 어린이 영양 실조에 효능을 발휘한다. 잎에 많이 있는 클로로필은 고약 형태로 만들어 피부병에 이용되기도 한다. 솔잎으로부터 얻은 정유는 공기 정화제를 제조하는데 이용되며, 솔잎을 건조해 솔잎차를 만들어서 신경통이나 관절염, 동맥경화증 치료에 사용했다는 기록도 전해진다. 신선한 솔잎의 성분을 살펴보면 아스코르빈산, 카로틴, 비타민 K, 플라보노이드, 안토시안, 수지, 탄닌류, 키나산, 시킴산, 정유 등이 존재한다. 솔잎에는 흔히 독성이 염려되는 물질인 알칼로이드가 들어있지 않은 것이 특징이라고 할 수 있다.Pine is scientific name Pinus densiflora Sieb. et Zucc, a cedar tree that grows on any terrain in Korea. Pine needles contain large amounts of vitamin C, which is good for scurvy and malnutrition in children. Chlorophyll, which is abundant in the leaves, can be used as a form of plaster for skin diseases. Essential oils from pine needles are used to make air purifiers, and pine needles are dried to make pine needle tea and used to treat neuralgia, arthritis and atherosclerosis. The components of fresh pine needles include ascorbic acid, carotene, vitamin K, flavonoids, anthocyanins, resins, tannins, kinasan, shikimic acid, and essential oils. Pine needles are not characterized by alkaloids, which are often toxic substances.

학명이 Humulus Lupulus인 호프는 주로 맥주의 재료로서 많이 이용되고 있다. 이 호프에는 폴리페놀(Polyphenol) 화합물과 탄닌계열의 화합물이 존재한다. 맥주 제조시에는 호프에 함유된 탄닌성분이 단백질과 결합하여 침전을 형성하여 맥주의 품질을 떨어뜨린다.Hof, whose scientific name is Humulus Lupulus, is mainly used as a material for beer. This hop contains polyphenol compounds and tannin compounds. In beer production, the tannins in the hops combine with proteins to form precipitates that degrade the quality of beer.

상기 설명한 바와 같이 율피, 감, 솔잎 및 호프에 함유된 탄닌성분 및 폴리페놀성분은 피부미백효과, 박테리아의 독소를 제거하는 작용, 활성 산소 유리기 소거작용, 종양억제 작용 그리고 DNA 절단작용에 효과가 있어 최근 탄닌 및 폴리페놀 성분의 제조필요성이 크게 대두되고 있다.As described above, tannins and polyphenols contained in yeolpi, persimmon, pine needles and hops are effective in skin whitening, removing toxins from bacteria, free radical scavenging, tumor suppression, and DNA cleavage. Recently, the necessity of producing tannins and polyphenol components is increasing.

따라서 본 발명자들은 우리나라의 대표적인 탄닌함유 자원식물인 율피(Castanea crenata Sieb. et Zucc.), 감(Diospyros kaki Thunb.), 솔잎(Pinus densiflora Sieb. et Zucc.), 호프(Humuls lupulus)에 함유되어 있는 탄닌 및 폴리페놀 성분을 추출 분리하여 정제한 후 그 성분을 분석하고 그중 탄닌 유도체 성분을 제조하므로써 본 발명을 완성하였다.Therefore, the present inventors are contained in the representative tannin-containing resource plants of our country, Yulepi (Castanea crenata Sieb. Et Zucc.), Persimmon (Diospyros kaki Thunb.), Pine needles (Pinus densiflora Sieb. Et Zucc.) The present invention was completed by extracting and purifying the tannin and polyphenol components present, and analyzing the components and preparing tannin derivative components.

본 발명의 목적은 율피, 감, 솔잎 및 호프로부터 탄닌성분을 추출분리하여 제공함에 있다. 본 발명의 다른 목적은 상기 추출분리한 탄닌성분의 유도체를 합성하여 제공함에 있다.An object of the present invention is to provide an extract and separation of tannin components from yulpi, persimmon, pine needles and hops. Another object of the present invention is to synthesize and provide a derivative of the extracted tannin component.

본 발명의 상기 목적은 율피, 감, 솔잎, 호프에 함유되어 있는 탄닌 및 폴리페놀성분을 용매 추출법으로 추출, 분리 정제한 후 HPLC 및1H-NMR,13C-NMR , 분자량 분광광도계로 구조를 분석하고 갈릭산, 카테킨, 엘라긱산가 같은 탄닌 유도체를 합성하므로써 달성하였다.The above object of the present invention is to extract and separate and purify the tannin and polyphenol components contained in Yulpi, persimmon, pine needles, hops by solvent extraction method, and then the structure is analyzed by HPLC and 1 H-NMR, 13 C-NMR, molecular weight spectrophotometer. This was accomplished by analyzing and synthesizing tannin derivatives such as gallic acid, catechin, and ellagic acid.

이하 본 발명의 구성 및 작용을 상세히 설명한다.Hereinafter, the configuration and operation of the present invention will be described in detail.

도 1은 율피를 극성이 낮은 유기용매에서 높은 순서로 추출한 순서도를 나타낸다.FIG. 1 shows a flowchart in which yulp is extracted in a low order from an organic solvent having a low polarity.

도 2는 율피의 유기용매 추출물을 HPLC로 분석한 결과를 나타낸다.Figure 2 shows the results of analyzing the organic solvent extract of Yulpi by HPLC.

도 3은 감을 극성이 낮은 유기용매에서 높은 순서로 추출한 순서도를 나타낸다.3 shows a flowchart in which persimmons are extracted in a high order from an organic solvent having a low polarity.

도 4는 감의 유기용매 추출물을 HPLC로 분석한 결과를 나타낸다.Figure 4 shows the result of analyzing the organic solvent extract of persimmon by HPLC.

도 5는 솔잎을 극성이 낮은 유기용매에서 높은 순서로 추출한 순서도를 나타낸다.5 shows a flow chart of pine needles extracted in a low order from a low polar organic solvent.

도 6은 솔잎의 유기용매 추출물을 HPLC로 분석한 결과를 나타낸다.Figure 6 shows the results of analyzing the organic solvent extract of pine needles by HPLC.

도 7은 호프를 극성이 낮은 유기용매에서 높은 순서로 추출한 순서도를 나타낸다.7 shows a flowchart in which hops are extracted in a low order from an organic solvent having a low polarity.

도 8은 호프의 유기용매 추출물을 HPLC로 분석한 결과를 나타낸다.8 shows the results of HPLC analysis of the organic solvent extract of Hope.

본 발명은 율피의 탄닌성분 및 폴리페놀 성분들을 유기용매 및 물을 사용하여 추출, 분리한 후 칼럼 크로마토그라피로 정제하고 HPLC,1H NMR,13C NMR 및 분자량 스펙트럼을 실시하여 구조를 분석하는 단계; 감의 탄닌성분들을 상기 율피와 동일한 방법으로 추출, 분리 및 정제한 후 구조분석하는 단계; 상기 율피, 감과 동일한 방법으로 솔잎의 탄닌성분 및 폴리페놀성분들을 추출, 분리 및 정제한 후 구조분석하는 단계; 역시 상기 율피, 감 및 솔잎과 동일한 방법으로 호프의 탄닌성분 및 폴리페놀성분들을 추출, 분리 및 정제한 후 구조분석하는 단계; 상기 율피, 감, 솔잎, 호프에서 분리된 탄닌성분 중 갈릭산 유도체와 카테킨 유도체 및 엘라긱산 유도체 등의 탄닌유도체를 합성하는 단계로 구성된다.In the present invention, the tannin and polyphenol components of Yulpi are extracted and separated using an organic solvent and water, purified by column chromatography, and analyzed by HPLC, 1 H NMR, 13 C NMR, and molecular weight spectrum. ; Extracting, separating, and purifying tannin components of persimmon in the same manner as said yulpi; Extracting, separating, and purifying tannin and polyphenol components of pine needles in the same manner as in Yulpi and persimmon, followed by structural analysis; Extracting, separating and purifying the tannin component and the polyphenol component of the hops in the same manner as the yulpi, persimmon and pine needles, and then analyzing the structure; Synthesis of tannin derivatives such as gallic acid derivatives, catechin derivatives, and ellagic acid derivatives among tannins isolated from the yeast, persimmon, pine needles, and hops.

본 발명에서 사용된 실험 재료중 율피, 감, 솔잎 및 호프분은 국내산으로 경동 한약재 시장에서 구입하였고 TLC (Thin Layer Chromatography)는 Kieselgel 60F254plate (Merck 사)를 사용하였고, 이동상으로는 n-BuOH : 아세트산 : H2O ( 4 : 1 : 1 ), 에틸아세테이트: 헥산 ( 1 : 1 ), 메틸렌 크로라이드 : 메탄올 MeOH ( 9 : 1 ), 메틸렌 크로라이드 : 메탄올 ( 3 : 1 ) , 크로로포름 : 메탄올 ( 3 : 1 ) , 크로로포름 : 메탄올 ( 9 : 1 ), 크로로포름 : 메탄올 ( 20 : 1 ), 크로로포름: 메탄올( 2 : 1 ), 크로로포름 : 메탄올 ( 4 : 1 ) 등을 사용하였다. 전개된 성분의 검출은 10% 포스포몰리브산-에탄올(Phosphomolybdic acid-EtOH) 시약과 1% FeCl3-EtOH 시약을 사용하였고, 포스포몰리브산-에탄올(Phosphomolybdic acid-EtOH) 시약의 경우에는 전개된 TLC plate를 검출용액에 담갔다가 꺼내어 오븐에 구워내었으며, 1% FeCl3-EtOH 시약의 경우에는 스프레이로 분무한 후 건조하였다. HPLC는 Dionex-system을 이용하였으며, 농도구배(Gradient)조건으로 분석하였다. 분리된 각 피크는 표준물질의 용출시간(retention time)과 비교하여 동정하였으며, 분석조건은 하기와 같다.Yulpi, persimmon, pine needles, and hop meal of the experimental materials used in the present invention were domestically purchased from the Kyungdong Herbal Medicines market and TLC (Thin Layer Chromatography) was used by Kieselgel 60F 254 plate (Merck), and n-BuOH: Acetic acid: H 2 O (4: 1: 1), ethyl acetate: hexane (1: 1), methylene chloride: methanol MeOH (9: 1), methylene chloride: methanol (3: 1), chloroform: Methanol (3: 1), Chloroform: Methanol (9: 1), Chloroform: Methanol (20: 1), Chloroform: Methanol (2: 1), Chloroform: Methanol (4: 1) And the like were used. Detection of developed components was performed using 10% Phosphomolybdic acid-EtOH and 1% FeCl 3 -EtOH reagents, and in the case of Phosphomolybdic acid-EtOH reagents. The TLC plate was immersed in the detection solution, taken out, and baked in an oven. In the case of 1% FeCl 3 -EtOH reagent, it was sprayed with a spray and dried. HPLC was performed using Dionex-system and analyzed by gradient conditions. Each peak isolated was identified by comparison with the retention time of the standard, and the analysis conditions were as follows.

HPLC 분석조건HPLC analysis conditions

분석기기: Dionex Dual Pump DX-500Analyzer: Dionex Dual Pump DX-500

검 출 기: Dionex UV DetectorDetector: Dionex UV Detector

칼 럼: Cosmosil packed column (4.6×150 ㎜, 5ph Type)Column: Cosmosil packed column (4.6 × 150 ㎜, 5ph Type)

μ-Bondapak C18 reverse-phase column (4.6×150 ㎜)μ-Bondapak C18 reverse-phase column (4.6 × 150 mm)

이 동 상: Water (0.025% Phosphoric acid),Mobile phase: Water (0.025% Phosphoric acid),

Methanol (0.025% Phosphoric acid)Methanol (0.025% Phosphoric acid)

유 속: 1 ml/minFlow rate: 1 ml / min

기 록 계: Shimadzu integrator recorder (C-R7A)Record system: Shimadzu integrator recorder (C-R7A)

겔 여과 크로마토그라피(Gel Filtration Chromatography)에 이용된 레진(resin)은 Sephadex LH-20와 MCI-gel CHP-20P이었으며, 용출시킨 이동상은 증류수와 메탄올이었다.Resins used for Gel Filtration Chromatography were Sephadex LH-20 and MCI-gel CHP-20P. The eluted mobile phases were distilled water and methanol.

실시예 1: 율피의 탄닌성분 및 폴리페놀성분 추출, 분리, 정제 및 구조분석Example 1 Extraction, Separation, Purification and Structural Analysis of Tannin and Polyphenol Components of Yulpi

제 1단계: 추출 및 분리Step 1: Extract and Separate

본 단계에서는 율피 7㎏을 70% 아세톤액으로 실온에서 각각 3주(3 week)씩 4회 반복 추출한 후, 여과지로 여과하였다. 추출액 중 아세톤은 감압 하에서 제거하고, 조 추출물의 성분을 TLC로 조사하였다. 이때 사용한 이동상은 n-BuOH : 아세트산 : H2O ( 4 : 1 : 1 ) 및 에틸아세테이트 : 헥산( 1 : 1 ) 이었다. 수용액층을 둥근 플라스크(round buttom flask)에 넣고 온도를 40℃를 넘지 않게 주의하여 물을 모두 제거시켜 고체상의 물질을 얻었다 (500 g). 이 고체상의 물질을 증류수에 취해 분액 깔때기에 넣고 유기용매(Petroleum ether, Ether , EtOAc , BuOH)로 추출하였다. 이는 도 1에 나타낸 바와 같이 극성이 낮은 유기용매에서 높은 용매순으로(Pet. ether → Ether → EtOAc → BuOH) 차례대로 추출하였으며 추출 분리후 TLC로 성분을 조사하였다 (Chloroform : MeOH = 9 : 1 ). 유기 용매를 이용하여 추출할 때 추출되어 나오는 용액의 색이 투명해질 때까지 반복하여 추출하였다. 각 분획 용액을 감압하에서 그 용매를 날려 보내고, 얻어진 분획물은 질소 가스로 충진 시킨후, 냉동 보관시켰다.In this step, 7 kg of Yulpi were extracted four times for 3 weeks (3 weeks) at room temperature with 70% acetone solution and then filtered through filter paper. Acetone in the extract was removed under reduced pressure, and the components of the crude extract were examined by TLC. The mobile phase used was n-BuOH: acetic acid: H 2 O (4: 1: 1) and ethyl acetate: hexane (1: 1). The aqueous layer was placed in a round buttom flask and the water was carefully removed so as not to exceed 40 ° C. to obtain a solid substance (500 g). This solid material was taken up in distilled water and placed in a separatory funnel and extracted with an organic solvent (Petroleum ether, Ether, EtOAc, BuOH). As shown in FIG. 1, the organic solvents were extracted in the order of high solvent (Pet. Ether → Ether → EtOAc → BuOH) in the low polar organic solvent, and the components were examined by TLC after extraction separation (Chloroform: MeOH = 9: 1) . The extraction was repeated using an organic solvent until the color of the extracted solution became clear. Each fraction solution was blown off under reduced pressure, and the obtained fractions were filled with nitrogen gas and stored frozen.

제 2단계: 칼럼 크로마토그라피에 의한 정제Second Step: Purification by Column Chromatography

본 단계에서는 율피 에테르 분획의 무게를 측정한 후, 칼럼 크로마토그라피를 실시하였다. 칼럼에 충진할 Sehpadex LH-20 레진을 미리 MeOH 용매에 1일 동안 담가 팽윤시킨 후, 컬럼에 충진하고 메탄올 용매를 계속하여 흘려 보냈다. 시료는 소량의 메탄올에 완전히 용해시킨 다음 여과지로 여과한 후, 로딩시켰다. 로딩한 후 메탄올 용매를 사용하여 균등한(isocratic)조건으로 용출하였다. 용출된 용액의 성분을 TLC로 확인(Chloroform : MeOH = 3 : 1 , Chloroform : MeOH = 20 : 1)한 후, 분획별로 모아 감압하에서 용매를 모두 제거하고, 무게를 측정하였다. 농도구배(Gradient)로 컬럼크로마토그라피하기 위하여 Sephadex LH-20을 MeOH에 하루간 팽윤시킨 다음, 컬럼에 충진하고 농도구배 조건 상태로 (100 % MeOH → 80 % MeOH → 60 % MeOH → 40 % MeOH → 20 % MeOH → 증류수) 만들었다. 균등한 조건으로 분리한 분획은 다시 메탄올에 녹여 컬럼에 넣고, 농도구배 조건으로 용출하였다 ( 증류수 → 20 % MeOH → 40 % MeOH → 60 % MeOH → 80 % MeOH → 100 % MeOH). 각 분획을 자동분획수집기(Automatic fractional collector)로 받아 낸 후, TLC (Chloroform : MeOH = 3 : 1, Chloroform : MeOH = 20 : 1 )로서 각 성분의 분리를 확인하였다. TLC로 확인하여, 스팟(spot)의 분리가 미흡하면, MCI-gel CHP-20P를 사용해서 단일 용매 조건 및 농도구배(gradient)조건으로 반복하여 크로마토크라피를 실시하였다. 다른 분획인 에틸아세테이트와 부탄올 분획도 역시 같은 방법으로 컬럼크로마토그라피를 시행하였다.In this step, the yulp ether fraction was weighed and subjected to column chromatography. The Sehpadex LH-20 resin to be filled in the column was previously swelled in MeOH solvent for 1 day and then swollen, and the column was filled with methanol solvent. The sample was completely dissolved in a small amount of methanol, filtered through filter paper and then loaded. After loading, the mixture was eluted under isocratic conditions using methanol solvent. The components of the eluted solution were identified by TLC (Chloroform: MeOH = 3: 1, Chloroform: MeOH = 20: 1), and then collected by fractions to remove all solvents under reduced pressure, and weighed. Sephadex LH-20 was swelled in MeOH for one day in order to perform column chromatography with gradient, then packed into a column under concentration gradient (100% MeOH → 80% MeOH → 60% MeOH → 40% MeOH → 20% MeOH → distilled water). The fractions separated under the same conditions were dissolved in methanol again, placed in a column, and eluted under a concentration gradient (distilled water → 20% MeOH → 40% MeOH → 60% MeOH → 80% MeOH → 100% MeOH). After each fraction was collected by an automatic fractional collector, separation of each component was confirmed by TLC (Chloroform: MeOH = 3: 1, Chloroform: MeOH = 20: 1). When it was confirmed by TLC and the separation of spots was insufficient, chromatography was repeatedly performed under a single solvent condition and gradient condition using MCI-gel CHP-20P. The other fractions ethyl acetate and butanol fractions were also subjected to column chromatography in the same manner.

제 3단계: HPLC 분석Step 3: HPLC Analysis

HPLC 분석기기는 DIONEX system이었으며 검출기는 대부분의 탄닌이 방향족고리를 가지므로 254nm를 선택하였다. 이동상의 용매 조건은 농도구배로 하였으며, 분리하고자 하는 시료를 메탄올에 완전히 녹여 주입하였다. 이동상 용매의 농도구배조건은 μ-Bondapak C18역상 컬럼(reverse-phase column)을 사용했을 경우, 0.025% H3PO4를 함유한 메탄올을 초기 농도 10%에서 18분까지 64%로 증가하는 방향으로 설정하고 22분까지 100%로 증가시키며 30분까지 다시 처음 농도인 10%로 감소하는 방향으로 조건을 설정하였다. 코스모실 팩킹 칼럼(Cosmosil packed column)을 사용했을 경우, 0.025% H3PO4를 함유한 메탄올을 초기 10%에서 18분까지 64%로 증가시키고, 22분까지 100%로 증가시킨 후 27분까지 동일 용매인 메탄올만을 흘려 보내었다. 율피의 수용액상을 분석할 때는 이동상 조건은 μ-Bondapak C18역상 컬럼을 적용하여 실시하였다. 코스모실 팩킹 칼럼(Cosmosil packed column) 조건은 유기 용매로 분획한 시료의 분석과 칼럼 크로마토그라피 처리 후 나온 분획을 분석하였다. 실험결과, 도 2에 나타낸 바와 같이 탄닌의 일종인 갈릭산, 엘라긱산 및 카테킨 등이 확인되었고 폴리페놀화합물인 플라보놀, 나린게닌, 쿠에르세틴 등도 확인되었다. 즉, 각 분획별로 나온 분획물을 메탄올 용매에 녹여 희석시킨 후 구해 놓은 표준품과 HPLC 데이타는 일치하는 피크들을 찾아내어서 간접적으로나마 분획별 탄닌 성분과 폴리페놀 화합물의 확인을 거쳤다. 우선, 페트. 에테르 추출물(Pet. ether ext.)에서는 엘라긱산(ellagic acid)과 쿠에르세틴(quercetin)이 확인되었고 다른 폴리페놀(polyphenol) 화합물인 플라보놀(Flavonol)이나 모린(Morin) 등이 나타났다. 에테르 추출물(Ether ext.)에서는 과량의 엘라긱산(ellagic acid)이 확인되었고 다른 폴리페놀 화합물도 찾을 수 있었다. 에틸아세테이트 추출물에서는 갈릭산의 양이 지배적으로 많았고 엘라긱산이나 카테킨 등과 다른 폴리페놀 화합물이 나타났다. 극성이 제일 큰 부탄올 추출물에서도 갈릭산(gallic acid)과 엘라긱산의 존재를 확인했고 특히 나린게닌이 다른 물질에 비해 양이 많았다. 율피는 갈릭산과 엘라긱산을 많이 갖고 있었다. 그 중 주탄닌성분은 엘라긱산임을 확인하였으며 표 1에 나타낸 바와 같이 율피 500g중에는 엘리긱산(Ellagic acid)이 82.5g 함유되어 있었고, 기타 다른 폴리페놀성분으로 쿠에르세틴(quercetin) 32.5g, 모린(morin) 21.3g, 나린게닌(naringenin) 13.8g, 갈릭산(Gallic acid) 5g, 카테킨(catechin) 3.8g이 존재하였다. 따라서 상기 제 1단계에서 유기용매 (Pet. ether, Ether, Ethyl acetate, BuOH)로 추출한 율피의 각 탄닌성분의 수율은 표 2에 나타낸 바와 같았다.The HPLC analyzer was a DIONEX system and the detector chose 254nm because most tannins had aromatic rings. The solvent condition of the mobile phase was a concentration gradient, and the sample to be separated was completely dissolved in methanol and injected. The concentration gradient of the mobile phase solvent increased the methanol content of 0.025% H 3 PO 4 to 64% from 10% to 18 minutes using the μ-Bondapak C 18 reverse-phase column. The condition was set to increase to 100% until 22 minutes and to decrease to 10% of the initial concentration again by 30 minutes. When using a Cosmosil packed column, methanol containing 0.025% H 3 PO 4 was increased from 10% to 18% to 64%, up to 22 minutes to 100% and then to 27 minutes Only methanol which was the same solvent was sent out. When analyzing the aqueous phase of Yulpi, mobile phase conditions were performed by applying a μ-Bondapak C 18 reversed phase column. Cosmosil packed column conditions were analyzed by the analysis of the sample fractionated with an organic solvent and the fraction after column chromatography treatment. As a result, as shown in Fig. 2, tannins, such as gallic acid, ellagic acid and catechin, were identified, and polyphenol compounds flavonol, naringenin, and quercetin were also identified. That is, the standard and HPLC data obtained after diluting the fractions from each fraction in methanol solvent were found to match the peaks and indirectly confirmed the tannin components and polyphenol compounds by fractions. First of all, pet. In ether extracts, ellagic acid and quercetin were identified, and other polyphenol compounds such as flavonol and morin were found. In the ether extract, excess ellagic acid was identified and other polyphenol compounds could be found. In ethyl acetate extract, the amount of gallic acid was dominant, and polyphenol compounds such as ellagic acid and catechin were found. Butanol extract, which has the highest polarity, confirmed the presence of gallic acid and ellagic acid, especially naringenin was higher than other substances. Yulpi had a lot of garlic and ellagic acid. Among them, jutanin was found to be ellagic acid, and as shown in Table 1, 500g of yelp contained eligic acid (82.5g), and other polyphenols were quercetin (32.5g) and moline. There were 21.3 g of morin, 13.8 g of naringenin, 5 g of gallic acid, and 3.8 g of catechin. Therefore, the yield of each tannin component of Yulpi extracted with the organic solvent (Pet. Ether, Ether, Ethyl acetate, BuOH) in the first step was as shown in Table 2.

율피에 함유된 탄닌 및 기타 폴리페놀화합물의 양 ( g/ 500g )The amount of tannins and other polyphenolic compounds in yulpi (g / 500g) 엘라긱산Ellagic acid 82.50g82.50 g 쿠에르세틴Quercetin 32.50g32.50 g 모린Maureen 21.30g21.30 g 나린게닌Naringenin 13.80g13.80 g 갈릭산Garlic acid 5.00g5.00 g 카테킨Catechin 3.80g3.80 g

율피의 유기용매 추출수율Yield Yield of Organic Solvents 샘플Sample 수율(g/0.5L)Yield (g / 0.5L) 페트 에테르 분획PET ether fraction 7.0g7.0 g 에테르 분획Ether fraction 3.8g3.8 g 에틸아세테이트 분획Ethyl acetate fraction 4.3g4.3 g 부탄올 분획Butanol fraction 3.5g3.5 g

제 4단계: 구조분석Step 4: Structural Analysis

상기 3단계의 HPLC에서 분석한 성분들 중 엘라긱산과 쿠에르세틴은 반복된 젤 여과 크로마토그라피(Gel filtration Chromatography)와 재결정에 의해 단일성분으로 분리하였으며,1H NMR 과13C NMR, 그리고 분자량 분광광도계로 그 구조를 확인하였다. 실험결과, 쿠에르세틴은 황색분말로 얻어졌으며, FeCl3시험에서 초록색, Zn-HCl 시험에서 홍색을 나타냈다.1H-NMR(DMSO-d6)에서 δ 6.10 (1H, d, J = 1Hz, H-6), δ 6.40 (1H, d, J = 1Hz, H-8), δ 6.9 (1H, d, J = 4.3Hz, H-6'), δ 7.55 (1H, dd, J = 4.2, 1.1Hz, H-5'), δ 7.6 (1H, d, J = 1.0Hz, H-2'), δ 9.35 (1H, d, J = 6.6Hz, 4'-OH), δ 12.5 (1H, s, 5-OH)이 관찰되었다. 엘라긱산 (4,4',5,5',6,6'-Hexahydroxydiphenic acid dilactone)는1H NMR 에서δ 7.4 (4H, S, 4,4',5,5'-OH)이 관찰되었다.13C NMR에서 112.8 δ112.8 ( C-1 ),δ115.4 ( C-5 ), δ117.5 ( C-6 ), δ144.7 ( C-2 ), δ152.9 ( C-4 ), δ153.2 ( C-3 ), δ164.3 ( C-7 )이 관찰되었다.Of the components analyzed by the HPLC of step 3, ellagic acid and quercetin were separated into single components by repeated gel filtration chromatography and recrystallization, 1 H NMR, 13 C NMR, and molecular weight spectroscopy. The structure was confirmed with a photometer. As a result, quercetin was obtained as a yellow powder, green in the FeCl 3 test, and red in the Zn-HCl test. Δ 6.10 (1H, d, J = 1 Hz, H-6), δ 6.40 (1H, d, J = 1 Hz, H-8), δ 6.9 (1H, d, in 1 H-NMR (DMSO-d 6 ) J = 4.3 Hz, H-6 '), δ 7.55 (1H, dd, J = 4.2, 1.1 Hz, H-5'), δ 7.6 (1H, d, J = 1.0 Hz, H-2 '), δ 9.35 (1H, d, J = 6.6 Hz, 4'-OH), δ 12.5 (1H, s, 5-OH) were observed. Elacic acid (4,4 ', 5,5', 6,6'-Hexahydroxydiphenic acid dilactone) was found to be 7.4 (4H, S, 4,4 ', 5,5'-OH) in 1 H NMR. 112.8 δ112.8 (C-1), δ115.4 (C-5), δ117.5 (C-6), δ144.7 (C-2), δ152.9 (C-4), at 13 C NMR, δ 153.2 (C-3) and δ 164.3 (C-7) were observed.

실시예 2: 감의 탄닌성분 및 폴리페놀성분 추출, 분리, 정제 및 구조분석Example 2 Extraction, Separation, Purification and Structural Analysis of Tannin and Polyphenol Components of Persimmon

제 1단계: 추출 및 분리Step 1: Extract and Separate

본 단계에서 사용한 감(Diospyros kaki Thunberg)은 성숙되기 전인 9월경에 채집한 것으로 직접 맛을 보아 떫음을 확인하였고, -70 ℃의 냉동고에 넣어 보관하여 사용하였다. 감 5 ㎏을 세절한후 70% 아세톤으로 각 3주씩 실온에서 2회 반복 추출하고 여과지로 여과하였다. 이때 감의 추출물은 당(sugar)를 다량 함유하므로 점도가 높아 여과하는데 많은 시간이 소요되었다. 아세톤을 감압하에서 제거하고, TLC로 (n-BuOH : Acetic acid : H2O = 4 : 1 : 1 , Ethyl acetate : Hexane = 1 : 1) 조추출물의 성분을 조사하였다. 수용액 층을 둥근 플라스크(round bottom flask)에 넣고 물을 모두 제거하여 고체 형태의 물질을 얻었고 이때 어느 용매에도 녹지 않는 불용성 물질로 변형되어 더 이상 물을 날려 보낼 수 없었으므로 수용액층을 그대로 분액 깔때기에 취하여 유기용매로서 추출분리 하였다. 이를 도 3에 나타냈다.Persimmon used in this step (Diospyros kaki Thunberg) was collected in September before maturation was confirmed to taste directly, and stored in -70 ℃ freezer was used. After cutting 5 kg of persimmon and extracting twice at room temperature for 3 weeks each with 70% acetone and filtered with filter paper. At this time, since the extract of persimmon contains a large amount of sugar (sugar), the high viscosity took a long time to filter. Acetone was removed under reduced pressure, and the crude extracts were examined by TLC (n-BuOH: Acetic acid: H 2 O = 4: 1: 1, Ethyl acetate: Hexane = 1: 1). The aqueous layer was placed in a round bottom flask to remove all the water to obtain a solid material, which was transformed into an insoluble material that was insoluble in any solvent and could not be blown out anymore. The extract was extracted and separated as an organic solvent. This is shown in FIG. 3.

제 2단계: 칼럼 크로마토그라피에 의한 정제Second Step: Purification by Column Chromatography

상기 실시예 1의 2단계와 동일한 방법으로 감의 유기용매 추출물을 칼럼 크로마토그라피로 정제하였다.The organic solvent extract of persimmon was purified by column chromatography in the same manner as in step 2 of Example 1.

제 3단계: HPLC 분석Step 3: HPLC Analysis

상기 실시예 1의 3단계와 동일한 방법으로 감의 유기 용매 추출 분리물을 HPLC로 분석하였다. 실험결과, 도 4에 나타낸 바와 같이 감의 주탄닌성분이 갈릭산임을 알아내었다. 특히 상기 2단계의 여러 유기용매 중에서 주로 에틸아세테이트층에서 다량의 갈릭산이 발견되었으며 모린도 또한 다량 발견되었다. C18-역상 HPLC로 표준품과 비교분석한 결과 감 5kg당 갈릭산 7.6g과 모린 4.5g이 검출되었다. 이를 표 3에 정리하였다. 따라서 상기 제 1단계에서 유기용매로 추출한 감의 탄닌성분 및 폴리페놀성분이 확인되어 하기 표 4에 극성의 차이에 따라 Pet. ether, Ether, EtOAc, BuOH로 순차적으로 분획해서 나온 분획물들의 수득율을 정리하였고 이는 아세톤을 날려 보낸 후 남은 수용층 1ℓ당 분획되어 나온 분획물들의 양을 나타낸 것이다. 분획물들중, 에틸 아세테이트 층에서는 탄닌의 일종인 갈릭산이 다량 들어 있는 반면, 폴리페놀화합물은 소량 들어 있었다. 에테르 분획에서는 양은 적지만 플라보놀, 모린, 나린게닌, 쿠에르세틴 등의 다수의 폴리페놀화합물과 갈릭산, 에라긱산, 카테킨 등의 탄닌이 검출되었다.In the same manner as in step 3 of Example 1, the organic solvent extract of persimmon was analyzed by HPLC. As a result, as shown in Figure 4 it was found that the jutannin component of persimmon is gallic acid. In particular, a large amount of gallic acid was found in the ethyl acetate layer among the various organic solvents of the second step, and also a large amount of moline was found. Comparison of the standard with C 18 -reversed phase HPLC showed that 7.6 g of gallic acid and 4.5 g of murine were detected per 5 kg of persimmon. This is summarized in Table 3. Therefore, the tannin component and the polyphenol component of the persimmons extracted with the organic solvent in the first step were confirmed. The yields of the fractions obtained by sequential fractionation with ether, Ether, EtOAc, and BuOH were summarized, which shows the amount of fractions fractionated per liter of aqueous layer remaining after acetone was blown off. Among the fractions, the ethyl acetate layer contained a large amount of tannic gallic acid, while a small amount of polyphenolic compounds. Although small in the ether fraction, a number of polyphenol compounds such as flavonol, morphine, naringenin, and quercetin, and tannins such as gallic acid, erragic acid, and catechin were detected.

감에 함유된 탄닌 및 기타 폴리페놀화합물의 양(g/500g)The amount of tannins and other polyphenol compounds in persimmon (g / 500g) 갈릭산Garlic acid 7.60g7.60 g 모린Maureen 4.50g4.50 g 플라보놀Flavonol 3.72g3.72g 나린게닌Naringenin 2.84g2.84 g 엘라긱산Ellagic acid 2.44g2.44 g 쿠에르세틴Quercetin 2.40g2.40 g 카테킨Catechin 1.12g1.12 g

감의 유기용매 추출수율Organic Solvent Extraction Yield of Persimmon 샘플Sample 수율(g/L)Yield (g / L) 페트. 에테르 분획Pet. Ether fraction 0.6g0.6g 에테르 분획Ether fraction 1.6g1.6 g 에틸아세테이트 분획Ethyl acetate fraction 3.0g3.0 g 부탄올 분획Butanol fraction 1.0g1.0 g

제 4단계: 구조분석Step 4: Structural Analysis

상기 실시예 1의 4단계와 동일한 방법으로 HPLC에서 분석한 성분들 중 갈릭산을 반복된 젤 여과 크로마토그라피(Gel filtration Chromatography)와 재결정에 의해 단일성분으로 분리하였으며, IR spectrum과1H NMR 과13C NMR로 그 구조를 확인하였다. 실험결과, 갈릭산은 무색침상결정으로 FeCl3시험에서 청색을 나타내었고, IR spectrum에서 3496cm-1에서 OH기, 1668cm-1에서 COO에 의한 흡수대를 보여 페놀산임을 알 수 있었고1H-NMR 스펙트럼에서는 δ7.05 ppm에서 수소적분치 2H에 해당하는 갈로일기(galloyl)에 의한 singlet 신호를 나타내었으며,13C-NMR spectrum에서는 δ110.3에서 C-3, δ146.4에서 C-4, δ170.4에서 COOH기에 의한 카보닐 신호가 관찰되었다.Among the components analyzed by HPLC in the same manner as in step 4 of Example 1, gallic acid was separated into single components by repeated gel filtration chromatography and recrystallization, IR spectrum, 1 H NMR, and 13 The structure was confirmed by C NMR. Experimental results, gallic acid showed a blue color in the FeCl 3 Test as colorless needle-like crystals, from 3496cm -1 in the IR spectrum was found phenol sanim show the absorption band due to OH groups in the COO, 1668cm -1 1 H-NMR spectrum in Singlet signal by galloyl corresponding to hydrogen integration value 2H at δ7.05 ppm was shown.In 13 C-NMR spectrum, C-3 at δ110.3, C-4 at δ146.4, δ170.4 Carbonyl signal by COOH group was observed at.

실시예 3: 솔잎의 탄닌성분 및 폴리페놀성분 추출, 분리, 정제 및 구조분석Example 3: Extraction, Separation, Purification and Structural Analysis of Tannin and Polyphenol Components of Pine Needles

제 1단계: 추출 및 분리Step 1: Extract and Separate

솔잎(Pinus densiflora Sieb. et Zucc.) 2 Kg을 70% 아세톤으로 실온에서 3주씩 2회 반복 추출한 후, 여과지로 여과하였다. 여과 후 유기용매로의 분획은 실시예 1의 제 1단계와 동일하게 실시하였다. 이를 도 5에 나타냈다.2 Kg of pine needles (Pinus densiflora Sieb. Et Zucc.) Were extracted twice with 70% acetone for 3 weeks at room temperature, and then filtered through a filter paper. After filtration, fractionation with an organic solvent was carried out in the same manner as in the first step of Example 1. This is shown in FIG. 5.

제 2단계: 칼럼 크로마토그라피에 의한 정제Second Step: Purification by Column Chromatography

상기 실시예 1의 2단계와 동일한 방법으로 솔잎의 유기용매 추출물을 칼럼 크로마토그라피로 정제하였다.The organic solvent extract of pine needles was purified by column chromatography in the same manner as in step 2 of Example 1.

제 3단계: HPLC 분석Step 3: HPLC Analysis

상기 실시예 1의 3단계와 동일한 방법으로 솔잎의 유기 용매 추출 분리물을 HPLC로 분석하였다. 실험결과, 도 6에 나타낸 바와 같이 카테킨, 엘라긱산, 쿠에르세틴, 플라보놀 등이 확인되었다. 이외에도 용출시간 3.5분, 8분, 12분, 13분, 13.5분, 16.5분, 18.5분에서 표준품과 일치하지 않는 다수의 피크가 나타났다. 솔잎 2 Kg을 70% 수성아세톤으로 추출하여 조추출물 65 g을 얻었으며 이를 유기용매층으로 분획한 후 반복된 크로마토그라피와 재결정을 통하여 카테킨, 모린, 플라보놀 등을 단일성분으로 분리할 수 있었다. 솔잎에 함유된 탄닌 및 폴리페놀화합물은 표 5에 정리하였고 수율은 표 6에 나타냈다.In the same manner as in Example 3, Example 1, the organic solvent extract of pine needles was analyzed by HPLC. As a result, as shown in Figure 6, catechin, ellagic acid, quercetin, flavonol and the like were confirmed. In addition, many peaks that did not match the standard were found at elution time 3.5 minutes, 8 minutes, 12 minutes, 13 minutes, 13.5 minutes, 16.5 minutes, and 18.5 minutes. After extracting 2 Kg of pine needles with 70% aqueous acetone, 65 g of crude extract was obtained. The catechin, morine, and flavonol could be separated into single components through repeated chromatography and recrystallization. Tannins and polyphenol compounds contained in pine needles are summarized in Table 5 and the yields are shown in Table 6.

솔잎에 함유된 탄닌 및 기타 폴리페놀화합물의 양(g/1kg)The amount of tannin and other polyphenol compounds in pine needles (g / 1kg) 플라보놀Flavonol 12.40g12.40 g 엘라긱산Ellagic acid 3.20g3.20 g 카테킨Catechin 1.80g1.80 g 쿠에르세틴Quercetin 1.70g1.70 g 모린Maureen 650mg650 mg

솔잎의 유기용매 추출수율Yield of Organic Solvents from Pine Needles 샘플Sample 수율(g/L)Yield (g / L) 페트, 에테르 분획PET, ether fraction 0.75g0.75 g 에테르 분획Ether fraction 0.45g0.45 g 에텔아세테이트 분획Etel acetate fraction 1.08g1.08g 부탄올 분획Butanol fraction 0.35g0.35 g

제 4단계: 구조분석Step 4: Structural Analysis

상기 실시예 1의 4단계와 동일한 방법으로 HPLC에서 분석한 성분들 중 모린과 플라보놀을 반복된 젤 여과 크로마토그라피(Gel filtration Chromatography)와 재결정에 의해 단일성분으로 분리되었으며,1H NMR 과13C NMR로 그 구조를 확인하였다. 실험결과, 모린은1H - NMR에서 δ 6.15 (1H, d, J = 1Hz, H-6), δ 6.35 (1H, d, J = 1Hz, H-8), δ 6.45 (1H, m, H-3'), δ 6.5 (1H, d, J = 1.1Hz, H-5'), δ 7.45 (1H, d, J = 4.3Hz, H-6')이 관찰되었다.13C-NMR에서는 δ94.6 ( C-8 ), δ99.3 ( C-6 ), δ104.6 ( C-10 ), δ105.1 ( C-5' ), δ109.3 ( C-3' ), δ111.4 ( C-6' ), δ132.2 ( C- 1' ), δ136.4 ( C-3' ), δ150 ( C-2' ), δ157.5 ( C-4' ), δ159.0 ( C-9 ), δ 162.5 ( C-2 ), δ162.8 ( C-5 ), δ165.5 ( C-7 ), δ177.7 ( C-4 )이 관찰되었다. 플라보놀의1H - NMR에서는 δ 7.55 (4H, m, H-5, H-6, H-7, H-8), δ 7.70 (2H, m, H-3', H-4'), δ 8.10 (1H, dd, J = 4.0, 0.7Hz, H-5'), δ 8.25 (2H, dd, J = 5.6, 1.4Hz, H-2', H-6'), δ 9.65 (1H, S, 2-OH)이 관찰되었고13C-NMR에서는 δ118.6 ( C-8 ), δ121.5 ( C-7 ), δ124.8 ( C-6 ), δ125.0 ( C-5 ), δ126.5 ( C-10 ), δ127.4( C-4' ), δ127.9( C-3' ), δ128.7( C-5' ), δ130.1( C-2' ), δ131.5( C-6' ), δ134.0( C-1' ), δ139.3( C-3 ), δ145.4( C-9 ), δ154.8( C-2 ), δ173.2( C-4 )이 관찰되었다.Among the components analyzed in HPLC in the same manner as in step 4 of Example 1, the morphine and flavonol were separated into single components by repeated gel filtration chromatography and recrystallization, 1 H NMR and 13 C. The structure was confirmed by NMR. Experimental results, Maureen 1 H - δ 6.15 in the NMR (1H, d, J = 1Hz, H-6), δ 6.35 (1H, d, J = 1Hz, H-8), δ 6.45 (1H, m, H -3 '), δ 6.5 (1H, d, J = 1.1 Hz, H-5'), δ 7.45 (1H, d, J = 4.3 Hz, H-6 '). 13 C-NMR, δ94.6 (C-8), δ99.3 (C-6), δ104.6 (C-10), δ105.1 (C-5 '), δ109.3 (C-3' ), δ111.4 (C-6 '), δ132.2 (C-1'), δ136.4 (C-3 '), δ150 (C-2'), δ157.5 (C-4 '), δ 159.0 (C-9), δ 162.5 (C-2), δ 162.8 (C-5), δ 165.5 (C-7), and δ 177.7 (C-4) were observed. In 1 H-NMR of flavonols, δ 7.55 (4H, m, H-5, H-6, H-7, H-8), δ 7.70 (2H, m, H-3 ', H-4'), δ 8.10 (1H, dd, J = 4.0, 0.7 Hz, H-5 '), δ 8.25 (2H, dd, J = 5.6, 1.4 Hz, H-2', H-6 '), δ 9.65 (1H, S, 2-OH) and 13 C-NMR showed δ118.6 (C-8), δ121.5 (C-7), δ124.8 (C-6), δ125.0 (C-5), δ126.5 (C-10), δ127.4 (C-4 '), δ127.9 (C-3'), δ128.7 (C-5 '), δ130.1 (C-2'), δ131 .5 (C-6 '), δ 134.0 (C-1'), δ 139.3 (C-3), δ 145.4 (C-9), δ 154.8 (C-2), δ 173.2 ( C-4) was observed.

실시예 4: 호프의 탄닌성분 및 폴리페놀성분 추출, 분리, 정제 및 구조분석Example 4 Extraction, Separation, Purification and Structural Analysis of Hope and Tannin and Polyphenol Components

제 1단계: 추출 및 분리Step 1: Extract and Separate

호프분(Humulus Lupulus) 2 Kg을 70% 수성 아세톤으로 각 3주씩 실온에서 2회 반복추출하여 여과후 감압하에서 아세톤을 완전히 제거하였다. 로터리 증발기(Rotatory evaporator)를 사용하여 아세톤과 물을 제거할 때 플라스크에서 거품이 다량으로 발생하여 곤란하였는바 여기에 부탄올을 소량씩 가하면서 거품을 제거하면서 용매를 제거하였다. 여기서 얻은 수층추출물를 여과하여 크로로필(chlorophyll) 등 불용물을 여별한 후 여액을 그대로 이용하였다. 여과후 유기용매로의 분획은 상기 실시예 1의 율피와 실시예 2의 감의 방법에 준하여 시행하였다. 이를 도 7에 나타냈다.Hopbun (Humulus Lupulus) 2 Kg with 70% aqueous acetone was repeatedly extracted twice at room temperature for 3 weeks, and then filtered and completely removed acetone under reduced pressure. When removing acetone and water by using a rotary evaporator, it was difficult to generate a large amount of bubbles in the flask. Thus, a small amount of butanol was added thereto to remove solvent while removing bubbles. The aqueous extract obtained here was filtered to filter out insoluble matters such as chlorophyll and the filtrate was used as it was. After filtration, fractionation with an organic solvent was carried out in accordance with the yeolpi of Example 1 and the method of persimmon of Example 2. This is shown in FIG.

제 2단계: 칼럼 크로마토그라피에 의한 정제Second Step: Purification by Column Chromatography

상기 실시예 1의 율피와 동일한 방법으로 호프의 유기용매 추출물을 칼럼 크로마토그라피로 정제하였다.The organic solvent extract of Hope was purified by column chromatography in the same manner as in Yule of Example 1.

제 3단계: HPLC 분석Step 3: HPLC Analysis

상기 실시예 1의 3단계와 동일한 방법으로 호프의 유기 용매 추출 분리물을 HPLC로 분석하였다. 실험결과, 도 8에 나타낸 바와 같이 엘라긱산, 나린게닌 및 쿠에르세틴이 함유되어 있음을 알 수 있었다. 그리고 수성아세톤 추출물을 BuOH으로 재추출한 후, Sephadex LH-220 크로마토그라피와 MCI gel CHP20 크로마토크라피를 반복실시하여 쿠에르세틴 및 쿠에르세틴-3-람노시드를 분리 확인하였다. 호프에 함유된 탄닌 및 기타 폴리페놀화합물의 양은 표 7에 나타냈고 유기용매 추출수율은 표 8에 나타냈다. 호프의 각 분획별 탄닌 및 폴리페놀 성분에는 헥산추출 분획 0.5g 중에 엘라긱산, 모린, 쿠에르세틴, 마린게닌, 플라보놀이 들어있고, 에틸아세테이트 추출 분획 1.2g 중에는 엘라긱산, 나린게닌, 플라보놀이 있으며 부탄올 추출 분획 2.3g 중에는 갈릭산, 엘라긱산, 모린, 쿠에르세틴, 나린게닌, 플라보놀이 들어있는 것으로 나타났다.In the same manner as in step 3 of Example 1, the organic solvent extract isolate of Hope was analyzed by HPLC. As a result of the experiment, it was found that ellagic acid, naringenin, and quercetin were contained as shown in FIG. 8. After re-extracting the aqueous acetone extract with BuOH, Sephadex LH-220 chromatography and MCI gel CHP20 chromatography were repeatedly performed to isolate and confirm quercetin and quercetin-3-rhamnoside. The amounts of tannins and other polyphenol compounds contained in the hops are shown in Table 7 and the organic solvent extraction yields are shown in Table 8. Tannins and polyphenol components of hops contained ellagic acid, morine, quercetin, marinegenin, and flavonol in 0.5 g of hexane extraction fraction, and ellagic acid, naringenine, and flabo in 1.2 g ethyl acetate extract fraction. Among the 2.3g butanol extract fractions, it was found that there were gallic acid, ellagic acid, maline, quercetin, naringenin, and flavonol.

호프에 함유된 탄닌 및 기타 폴리페놀화합물의 양(g/1kg)The amount of tannin and other polyphenolic compounds in hops (g / 1kg) 엘라긱산Ellagic acid 3.21g3.21 g 나린게닌Naringenin 2.90g2.90 g 쿠에르세틴Quercetin 2.63g2.63 g 모린Maureen 1.63g1.63 g 플라보놀Flavonol 1.56g1.56 g 갈릭산Garlic acid 1.12g1.12 g

호프의 유기용매 추출수율Hope of Organic Solvent Extraction 샘플Sample 수율(g/L)Yield (g / L) 페트.에테르 분획PET ether ether fraction 1.65g1.65 g 에테르 분획Ether fraction 3.73g3.73 g 에틸아세테이트 분획Ethyl acetate fraction 3.96g3.96 g 부탄올 분획Butanol fraction 7.59g7.59 g

제 4단계: 구조분석Step 4: Structural Analysis

상기 실시예 1의 4단계와 동일한 방법으로 HPLC에서 분석한 성분들 중 쿠에르세틴과 쿠에르세틴-3-람모시드을 반복된 젤 여과 크로마토그라피(Gel filtration Chromatography)와 재결정에 의해 단일성분으로 분리되었으며,1H NMR과13C NMR로 그 구조를 확인하였다. 실험결과, 쿠에르세틴과 쿠에르세틴-3-람노시드는 황색분말로 얻어졌으며, 두 성분이 모두 FeCl3시험에서 초록색, Zn-HCl 시험에서 홍색을 나타냈다. 쿠에르세틴은1H-NMR(DMSO-d6)에서 δ: 6.10(1H, d, J=1Hz, H-6), 6.40(1H, d, J=1Hz, H-8), 6.9(1H, d, J=4.3Hz, H-6'), 7.55 (1H, dd, J=4.2, 1.1Hz, H-5'), 7.6(1H, d, J=1.0Hz, H-2'), δ9.35 (1H, d, J=6.6Hz, 4'-OH), 12.5(1H, s, 5-OH) 그리고13C-NMR(DMSO-d6)에서 δ: 93.5( C-8 ), 98.4( C-6 ), 103.2( C-10 ), 115.2( C-2' ), 115.8( C-5' ), 120.2( C-6' ), 122.1( C-1' ), 135.9( C-3 ), 145.2( C-3' ), 147.8( C-4' ), 147.9( C-9 ), 156.3( C-2 ), 160.9( C-5 ), 164.1( C-7 ), 176.0( C-4 )이 관찰되었고 쿠에르세틴-3-람노시드는1H-NMR(acetone-d6+ D2O)에서 δ: 0.81(3H, d, J=6Hz), 5.25 (1H, s), 6.19 (1H, d, J=2Hz), 6.38 (1H, d=2Hz), 6.86 (1H, d, J=8Hz), 7.22 (1H, d, J=2Hz), 7.28 (1H, dd, J=2, 8Hz), 12.63 (1H, s):13C-NMR (acetone-d6) δ: 17.6, 70.1, 70.4, 70.7, 71.3, 93.8, 98.8, 101.9, 104.1, 115.6, 115.7, 120.8, 121.0, 134.3, 145.4, 148.6, 156.5, 157.4, 161.4, 164.5, 177.8이였다.Among the components analyzed by HPLC in the same manner as in step 4 of Example 1, quercetin and quercetin-3-lammoside were separated into single components by repeated gel filtration chromatography and recrystallization. The structure was confirmed by 1 H NMR and 13 C NMR. As a result, quercetin and quercetin-3-rhamnoside were obtained as yellow powder, and both components were green in the FeCl 3 test and red in the Zn-HCl test. Quercetin is δ: 6.10 (1H, d, J = 1 Hz, H-6), 6.40 (1H, d, J = 1 Hz, H-8), 6.9 (1H) in 1 H-NMR (DMSO-d 6 ). , d, J = 4.3 Hz, H-6 '), 7.55 (1H, dd, J = 4.2, 1.1 Hz, H-5'), 7.6 (1H, d, J = 1.0 Hz, H-2 '), δ9.35 (1H, d, J = 6.6 Hz, 4′-OH), 12.5 (1H, s, 5-OH) and 13 C-NMR (DMSO-d 6 ) at δ: 93.5 (C-8), 98.4 (C-6), 103.2 (C-10), 115.2 (C-2 '), 115.8 (C-5'), 120.2 (C-6 '), 122.1 (C-1'), 135.9 (C- 3), 145.2 (C-3 '), 147.8 (C-4'), 147.9 (C-9), 156.3 (C-2), 160.9 (C-5), 164.1 (C-7), 176.0 (C -4) was observed and quercetin-3-rhamnoside was found at 1 H-NMR (acetone-d 6 + D 2 O) at δ: 0.81 (3H, d, J = 6 Hz), 5.25 (1H, s), 6.19 (1H, d, J = 2 Hz), 6.38 (1H, d = 2 Hz), 6.86 (1H, d, J = 8 Hz), 7.22 (1H, d, J = 2 Hz), 7.28 (1H, dd, J = 2, 8 Hz), 12.63 (1H, s): 13 C-NMR (acetone-d 6 ) δ: 17.6, 70.1, 70.4, 70.7, 71.3, 93.8, 98.8, 101.9, 104.1, 115.6, 115.7, 120.8, 121.0, 134.3, 145.4, 148.6, 156.5, 157.4, 161.4, 164.5, 177.8.

실시예 5: 갈릭산 유도체의 합성Example 5: Synthesis of Gallic Acid Derivatives

본 실시예에서는 상기 실시예 2에서 감으로부터 추출분리, 정제 및 구조분석하여 비교적 안정하고 구조가 간단하여 기능기의 변환이 가능한 갈릭산을 대상으로 분자수식을 통하여 지용성 유도체를 설계하고 합성하였다. 즉, 하기 식(I)으로 표시되는 신규 갈릭산 유도체를 제조하였다.In the present Example, a lipid-soluble derivative was designed and synthesized by molecular formula targeting gallic acid, which is relatively stable and simple in structure, and converts functional groups by extracting separation, purification and structural analysis from persimmon in Example 2. That is, the novel gallic acid derivative represented by following formula (I) was manufactured.

(상기 식에서 R은 일반적으로 C1~C5까지의 탄소기를 갖는 저급알킬기와 C6~ C18까지의 탄소기를 갖는 고급알킬기를 나타낸다)(In the above formula, R generally represents a lower alkyl group having a C 1 to C 5 carbon group and a higher alkyl group having a C 6 to C 18 carbon group.)

식(I)으로 표시된 상기 갈릭산 유도체는 갈릭산의 알코올을 선택적으로 보호하기 위하여 벤질클로라이드와 탄산칼륨을 이용하여 반응시킨 후 수산화나트륨을 사용하여 카르복시산을 제조하였다. 그 후 다양한 에스테르기를 도입하기 위하여 메틸요오드, 헥실토실레이트 및 스테아릴토실레이트와 반응시켰다. 팔라디윰 촉매를 이용한 수소화 반응을 통해 벤질기를 효과적으로 탈회하였다. 이를 하기 식(Ⅱ)에 나타냈다.The gallic acid derivative represented by Formula (I) was reacted with benzyl chloride and potassium carbonate to selectively protect the alcohol of gallic acid, and then carboxylic acid was prepared using sodium hydroxide. It was then reacted with methyliodine, hexyltosylate and stearyltosylate to introduce various ester groups. Benzyl groups were effectively demineralized by hydrogenation using a palladium catalyst. This is shown in the following formula (II).

(상기 식중 R은 식(I)과 동일하다)(Wherein R is the same as formula (I))

메틸갈레이트를 합성하고자 할 때는 상기 트리벤질 칼레이트에 요도메탄과 K2CO3를 가하여 메틸에스테르(methyl ester)를 합성하였다. 이는 하기 식(Ⅲ)에 나타냈다.To synthesize methyl gallate, methyl ester was synthesized by adding iodomethane and K 2 CO 3 to the tribenzyl calate. This is shown in the following formula (III).

헥실 갈레이트의 합성은 헥실알콜토실레이트(Hexyl alcohol tosylate)를 합성한 후 DMF에 녹이고 트리벤질 갈레이트(Tribenzyl gallate)와 CsCO3를 가하고 55℃에서 반 응시켰다. 이는 하기 식(Ⅳ)에 나타낸 바와 같다.Hexyl gallate was synthesized after the synthesis of hexyl alcohol tosylate (Hexyl alcohol tosylate) and dissolved in DMF and tribenzyl gallate (Tribenzyl gallate) and CsCO 3 and reacted at 55 ℃. This is as shown in following formula (IV).

갈릭산 스테아릴 에스테르(Gallic acid stearyl ester)의 합성은 스테아릴 알콜 토실레이트(Stearyl alcohol tosylate)를 합성한후 DMF에 녹이고 트리아세틸 갈릭산( Triacetyl gallic acid)과 CsCO3를 가하고 55℃에서 반응시켰다. 이는 하기 식(Ⅴ)에 나타낸 바와 같다.In the synthesis of gallic acid stearyl ester, stearyl alcohol tosylate was synthesized, dissolved in DMF, and triacetyl gallic acid and CsCO 3 were added and reacted at 55 ° C. . This is as shown in the following formula (V).

실시예 6: 카테킨 유도체의 합성Example 6: Synthesis of Catechin Derivatives

본 실시예에서는 하기 식(Ⅵ)으로 표시되는 카테킨 유도체, 카테킨(2-(3,4-디하이드록시페닐크로만-3,5,7-트리올)을 제조하였다.In this example, a catechin derivative represented by the following formula (VI) and catechin (2- (3,4-dihydroxyphenylchroman-3,5,7-triol) were prepared.

(상기식에서 R은 일반적으로 C1 ~ C5까지의 탄소기를 갖는 저급아실기와 C6 ~ C18까지의 탄소기를 갖는 고급 아실기를 나타낸다)(In the formula, R generally represents a lower acyl group having a carbon group of C1 to C5 and a higher acyl group having a carbon group of C6 to C18.)

카테킨의 알코올 보호를 위하여 먼저 벤질기를 이용하여 반응한 후 아실기를 도입하기 위하여 무수초산을 반응시켰다. 최종적으로 파라디움을 촉매로 사용하여 수소화 반응을 진행시켰다. 이 과정은 하기 식(Ⅶ)에 나타낸 바와 같다.In order to protect the alcohol of catechin, the first reaction was carried out using a benzyl group, and then acetic anhydride was reacted to introduce an acyl group. Finally, the hydrogenation reaction was performed using paradium as a catalyst. This process is as shown to the following formula (i).

(상기 식중, R은 식(Ⅵ)과 같다)(Wherein R is the same as formula (VI))

실시예 7: 엘라긱산 유도체 합성Example 7: Synthesis of Ellagic Acid Derivatives

본 실시예에서는 하기 식(Ⅹ)으로 표시되는 엘라긱산 유도체, 2-(2-카복시-4,5,6-트리하이드록시페닐)-3,4,5-트리하이드록시메틸벤조네이트)를 제조하였다.In this example, the ellagic acid derivative represented by the following formula (i), 2- (2-carboxy-4,5,6-trihydroxyphenyl) -3,4,5-trihydroxymethylbenzoate), are prepared It was.

(상기 식중, R은 일반적으로 C1~C5까지의 탄소기를 갖는 저급알킬기와 C6~C18까지의 탄소기를 갖는 고급알킬기를 나타낸다)(In the above formula, R generally represents a lower alkyl group having a C 1 to C 5 carbon group and a higher alkyl group having a C 6 to C 18 carbon group.)

엘라긱산 유도체는 알코올을 벤질기를 이용하여 보호한 후 링오픈과 보호를 위하여 염기와 브롬화 벤질을 동시에 반응시킨 후 최종적으로 메틸요오드와 반응시켰다. 이를 식(ⅩI)에 나타냈다.The ellagic acid derivative was protected with alcohol using a benzyl group, and then reacted with methyl iodine after reacting base and benzyl bromide simultaneously for ring-opening and protection. This is shown in Formula (XI).

(상기 식중, R은 식(Ⅹ)과 같다)(Wherein R is the same as formula (i))

이상 상기 실시예를 들어 설명한 바와 같이 본 발명은 율피, 감, 솔잎, 호프로부터 탄닌 성분과 폴리페놀 성분을 추출분리 및 정제하여 이들의 구조를 분석하고 상기 분리된 탄닌성분중 피부미백, 박테리아 독소제거, 활성산소 유리기 소거, 종양억제 및 DNA 절단작용에 효과가 있는 엘라긱산 유도체, 갈릭산 유도체 및 카테킨 유도체를 합성하여 제공하는 뛰어난 효과가 있으므로 생물자원 산업상 매우 유용한 발명인 것이다.As described above with reference to the above examples, the present invention extracts, separates and purifies tannin and polyphenol components from yulpi, persimmon, pine needles, and hops to analyze their structure and remove skin whitening and bacterial toxins from the separated tannin components. It is a very useful invention in the biomass industry because it has an excellent effect of synthesizing and providing ellagic acid derivatives, gallic acid derivatives and catechin derivatives which are effective in free radical scavenging, tumor suppression and DNA cleavage.

Claims (6)

율피, 감, 솔잎 및 호프 각각으로부터 추출분리한 탄닌화합물.Tannin compounds extracted from jujupi, persimmon, pine needles and hops, respectively. 제 1항에 있어서, 상기 탄닌성분이 갈릭산, 엘라긱산, 카테킨임을 특징으로 하는 탄닌화합물.The tannin compound according to claim 1, wherein the tannin component is gallic acid, ellagic acid, or catechin. 율피, 감, 솔잎 및 호프 각각을 아세톤으로 반복추출 및 여과한 후 아세톤을 제거하여 얻은 조추출물의 물을 모두 제거한 다음 페트로레움 에테르, 에테르, 에틸아세테이트 및 부탄올과 같은 극성이 낮은 유기용매에서 높은 용매순으로 차례로 탄닌성분을 분리함을 특징으로 하는 율피, 감, 솔잎 및 호프로부터 탄닌의 추출분리방법.After extracting and filtering each of Yulpi, persimmon, pine needles, and hops with acetone, all of the crude extract obtained by removing acetone was removed. Extraction and separation method of tannins from yulpi, persimmon, pine needles and hops, characterized in that the tannin component is sequentially separated in order. 하기 식(I)으로 표시되는 갈릭산 유도체.Gallic acid derivative represented by following formula (I). (상기 식중, R은 C1~ C5까지의 탄소기를 갖는 저급알킬기와 C6~ C18까지의 탄소기를 갖는고급알킬기를 나타낸다)(Wherein R represents a lower alkyl group having a C 1 to C 5 carbon group and a higher alkyl group having a C 6 to C 18 carbon group) 하기 식(Ⅵ)로 표시되는 카테킨 유도체.The catechin derivative represented by following formula (VI). (상기 식중, R은 C1~ C5까지의 탄소기를 갖는 저급알킬기와 C6~ C18까지의 탄소기를 갖는고급알킬기를 나타낸다)(Wherein R represents a lower alkyl group having a C 1 to C 5 carbon group and a higher alkyl group having a C 6 to C 18 carbon group) 하기 식(Ⅹ)으로 표시되는 엘라긱산 유도체.Elagic acid derivative represented by following formula (i). (상기 식중, R은 C1~ C5까지의 탄소기를 갖는 저급알킬기와 C6~ C18까지의 탄소기를 갖는고급알킬기를 나타낸다)(Wherein R represents a lower alkyl group having a C 1 to C 5 carbon group and a higher alkyl group having a C 6 to C 18 carbon group)
KR1019990004505A 1999-02-09 1999-02-09 tannin isolated from plant and process for making the derivative thereof KR20000055727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990004505A KR20000055727A (en) 1999-02-09 1999-02-09 tannin isolated from plant and process for making the derivative thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990004505A KR20000055727A (en) 1999-02-09 1999-02-09 tannin isolated from plant and process for making the derivative thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
KR1020010001433A Division KR20010034930A (en) 2001-01-10 2001-01-10 ellagic acid, derivative of tannin isolated from plant and process for synthesizing it
KR1020010001431A Division KR20010034929A (en) 2001-01-10 2001-01-10 Gallic acid, derivative of tannin isolated from plant and process for synthesizing it

Publications (1)

Publication Number Publication Date
KR20000055727A true KR20000055727A (en) 2000-09-15

Family

ID=19573904

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990004505A KR20000055727A (en) 1999-02-09 1999-02-09 tannin isolated from plant and process for making the derivative thereof

Country Status (1)

Country Link
KR (1) KR20000055727A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030067082A (en) * 2002-02-06 2003-08-14 김고정 Method of tannin manufacture from unripe persimmon
KR100758236B1 (en) * 2006-03-21 2007-09-12 인제대학교 산학협력단 Separation method of persimmon tannin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030067082A (en) * 2002-02-06 2003-08-14 김고정 Method of tannin manufacture from unripe persimmon
KR100758236B1 (en) * 2006-03-21 2007-09-12 인제대학교 산학협력단 Separation method of persimmon tannin

Similar Documents

Publication Publication Date Title
Osawa et al. Identification of cariostatic substances in the cacao bean husk: their anti-glucosyltransferase and antibacterial activities
KR101366187B1 (en) Method of producing proanthocyanid in oligomer
Hatano et al. Phenolic constituents of licorice. II.: structures of Licopyranocoumarin, Licoarylcoumarin and Glisoflavone, and inhibitory effects of licorice Phenolics on xanthine oxidase
Okuda et al. Pharmacologically active tannins isolated from medicinal plants
JPH03170495A (en) Method for producing isoflavones
WO2012055010A1 (en) Maple tree-derived products and uses thereof
US20150196498A1 (en) Hydroxytrosol containing extract obtained from olives and solids containing residues of olive oil extraction
KR102137593B1 (en) Composition for preventing, improving or treating diabetic complications comprising fraction of sesame meal extract or compound isolated from the fraction as effective component
WO2009107959A2 (en) Method for separating valuable flavonoid-containing fraction and novel flavonoid substance from above-ground part of the tree named sageretia theezans
JP2001299305A (en) Composition for scavenging active oxygen, and method for producing the same
KR100439012B1 (en) Antioxidants comprising extracts from the leaves and stems of hovenia dulcis thunb and process for separating extracts thereof
KR20000055727A (en) tannin isolated from plant and process for making the derivative thereof
KR20010034929A (en) Gallic acid, derivative of tannin isolated from plant and process for synthesizing it
KR20010034930A (en) ellagic acid, derivative of tannin isolated from plant and process for synthesizing it
KR100512482B1 (en) Composition comprising phlorotannins isolated from the extract of Ecklonia stolonifera Okamura having anti-oxidative activity
KR101316132B1 (en) A method for separating and purifying cosmetic effective compounds comprising p-coumaric acid from Sasa querlpaertensis Nakai
Kozawa et al. Chemical studies of Coelopleurum gmelinii (DC) LEDEB. I. constituents of the root
Lemoine et al. A characterization of biological activities and bioactive phenolics from the non-volatile fraction of the edible and medicinal Halophyte Sea Fennel (Crithmum maritimum L.)
KR20100057460A (en) The camellia japonica extracts by anti-corpulence effect and the application method
FR2950532A1 (en) PROCESS FOR THE PREPARATION OF AN EXTRACT OF PLANTS OF THE GENUS SCLEROLOBIUM, COSMETIC AND PHARMACEUTICAL COMPOSITION COMPRISING THIS EXTRACT AND THE USE OF SAID EXTRACT
WO1996040182A1 (en) Identification of a potent antioxidant from aloe barbadensis
KR100388357B1 (en) Antimicrobial Active Compound Isolated from the Leaves and Stems of Hovenia dulcis Thunb and Isolation Method Thereof
KR100966837B1 (en) Cumaroyl compounds having depigmenting and decolorizing activities
Verotta et al. Complete characterization of extracts of Onopordum illyricum L.(Asteraceae) by HPLC/PDA/ESIMS and NMR
Metoyer et al. Isolation of Hydrolyzable Tannins from Castanea sativa Using Centrifugal Partition Chromatography

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19990209

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19990308

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19990209

Comment text: Patent Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20001121

Patent event code: PE09021S01D

A107 Divisional application of patent
PA0107 Divisional application

Comment text: Divisional Application of Patent

Patent event date: 20010110

Patent event code: PA01071R01D

N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20010425

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20011019

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20020627

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20011019

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20001121

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I