KR20000051031A - A measurement apparatus of polymer thermooptic coefficient - Google Patents

A measurement apparatus of polymer thermooptic coefficient Download PDF

Info

Publication number
KR20000051031A
KR20000051031A KR1019990001263A KR19990001263A KR20000051031A KR 20000051031 A KR20000051031 A KR 20000051031A KR 1019990001263 A KR1019990001263 A KR 1019990001263A KR 19990001263 A KR19990001263 A KR 19990001263A KR 20000051031 A KR20000051031 A KR 20000051031A
Authority
KR
South Korea
Prior art keywords
thin film
temperature
polymer thin
thermo
conductive plate
Prior art date
Application number
KR1019990001263A
Other languages
Korean (ko)
Other versions
KR100322128B1 (en
Inventor
김은지
이영규
장우혁
이태형
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사 filed Critical 윤종용
Priority to KR1019990001263A priority Critical patent/KR100322128B1/en
Publication of KR20000051031A publication Critical patent/KR20000051031A/en
Application granted granted Critical
Publication of KR100322128B1 publication Critical patent/KR100322128B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/1219Polymerisation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: An apparatus for measuring a thermooptic coefficient of a thin film is provided to precisely achieve a thermooptic coefficient of a polymer thin film with relation to a real temperature of the film and simplify substitution of the film in a short time so that a plurality of polymer thin films is analyzed repeatedly. CONSTITUTION: A thermal conductive plate(110) is formed rectangular with an aluminium plate to transmit heat to a polymer thin film(120) for maintaining a temperature of the film uniformly. A thermistor is adopted as a temperature measuring element(130) and attached to the thermal conductive plate for measuring a temperature of the thermal conductive plate. A thermoionic cooler thermoionic(TEC) is adopted as an element(140) and attached to the other side of the thermal conductive plate for transmitting heat to the thermal conductive plate. A prism coupler measures the index of refraction of the polymer thin film.

Description

폴리머 박막의 열광학 계수 측정장치 {A measurement apparatus of polymer thermooptic coefficient}{A measurement apparatus of polymer thermooptic coefficient}

본 발명은 폴리머의 열광학 특성을 이용한 광도파로 소자에 관한 것으로, 특히 폴리머 박막의 열광학 계수를 측정하는 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optical waveguide devices utilizing the thermo-optical properties of polymers, and more particularly, to an apparatus for measuring thermo-optic coefficients of polymer thin films.

폴리머의 열광학 특성을 이용한 광도파로 소자를 제작함에 있어서 가장 기본이 되는 것은 광도파로의 클래드, 코아를 구성하는 폴리머 박막의 열광학적 특성이다.In manufacturing an optical waveguide device using the thermo-optical properties of the polymer, the most fundamental is the thermo-optical properties of the polymer thin film constituting the clad and core of the optical waveguide.

일반적으로 폴리머막은 온도가 증가함에 따라 굴절율이 감소하여 음의 열광학 계수를 갖는다. 폴리머의 열광학 특성을 이용한 광도파로 소자로는 디지털 열광학 스위치, 파장 가변 필터, 광파워 감쇄기, 광합파기/분파기등 열광학 효과를 이용한 모든 소자를 들 수 있다. 예를 들어 디지털 열광학 스위치의 경우를 보면, 이 열광학 스위치는 분기형 구조의 광도파로와 그 위에 있는 스위칭 전극으로 이루어져 있다. 각 분기 위에 있는 스위칭 전극에 흐르는 전류에 의해 발생한 열이 광도파로의 굴절율을 낮추게 되어 광도파로에 입력된 광은 전류가 흐르지 않는 반대편 분기로 모두 전달되게 된다. 전극의 활성여부에 따라 입력광의 스위칭 동작을 하게된다. 따라서 폴리머 열광학 스위치를 제작하기 위해서는 광도파로의 클래드, 코아 폴리머 박막의 온도에 따른 광학적특성의 변화, 즉 굴절율의 변화를 나타내는 열광학 계수를 정확히 아는 것이 필수적이다.In general, the polymer film has a negative thermo-optic coefficient due to a decrease in refractive index with increasing temperature. Optical waveguide devices using the thermo-optical properties of polymers include all devices using thermo-optic effects such as digital thermo-optic switches, tunable filters, optical power attenuators, optical combiners and splitters. For example, in the case of a digital thermo-optic switch, the thermo-optic switch consists of an optical waveguide with a branched structure and a switching electrode above it. The heat generated by the current flowing through the switching electrodes above each branch lowers the refractive index of the optical waveguide so that the light input to the optical waveguide is transferred to the opposite branch where no current flows. The input light is switched according to whether the electrode is activated. Therefore, in order to fabricate a polymer thermo-optic switch, it is essential to accurately know the thermo-optic coefficient representing the change in optical properties, that is, the change in refractive index, with the temperature of the cladding of the optical waveguide and the core polymer thin film.

폴리머 박막의 열광학계수를 측정하는 종래의 방법은 폴리머 마하젠더 열광학 간섭계를 제작하여 위상차가 π가 되는 전압을 측정하고 폴리머의 열전도도를 추정하여 전극패턴 크기등을 대입한 이론식으로부터 계산하여 구한다. 이 방법으로는 제작, 측정에 시간이 많이 소요될 뿐 아니라 정확도면에서도 문제가 발생한다.The conventional method of measuring the thermo-optic coefficient of a polymer thin film is made by measuring a voltage of which the phase difference is π by fabricating a polymer Mach-Zehnder thermo-optic interferometer, calculating the thermal conductivity of the polymer, and calculating it from a theoretical formula substituted with the electrode pattern size. . This method is not only time-consuming to manufacture and measure, but also problematic in accuracy.

본 발명이 이루고자하는 기술적 과제는 폴리머 박막의 정확한 열광학 계수를 측정하기 위해서 특별한 소자 제작이나 복잡한 계산없이 열전자 냉각기를 이용하여 폴리머 박막에 직접 온도 변화를 주면서 굴절율 변화를 측정하는 폴리머 박막의 열광학 계수 측정장치를 제공함에 있다.The technical problem to be achieved by the present invention is to measure the thermo-optic coefficient of the polymer thin film to measure the refractive index change while giving a direct temperature change to the polymer thin film using a thermo-electronic cooler without special device fabrication or complicated calculations to measure the accurate thermo-optic coefficient of the polymer thin film To provide a measuring device.

도 1은 본 발명에 의한 폴리머 박막의 열광학 계수 측정장치를 도시한 것이다.1 illustrates an apparatus for measuring thermo-optic coefficients of a polymer thin film according to the present invention.

도 2a 내지 도 2b는 본 발명에 의한 폴리머 박막의 열광학 계수 측정장치의 열전도판을 도시한 것이다.2A to 2B illustrate a heat conduction plate of a thermo-optic coefficient measuring device of a polymer thin film according to the present invention.

상기 기술적 과제를 해결하기 위한 본 발명에 위한 폴리머 박막의 열광학 계수 측정장치는 폴리머 박막의 온도를 일정하게 유지하기 위하여 상기 폴리머 박막에 열을 전달하는 열전도판; 상기 열전도판에 의해 가열된 폴리머 박막의 온도를 측정하는 온도측정소자; 상기 열전도판에 열을 가열하는 열전자소자; 상기 온도측정소자에 의해 측정된 온도를 입력받아 상기 열전자소자의 온도를 조절하는 온도조절기; 및 상기 상기 온도조절기에 의해 폴리머 박막의 온도가 일정하게 유지된 상태에서 폴리머 박막의 굴절율을 측정하는 프리즘 커플러를 포함함을 특징으로 한다.The thermo-optic coefficient measuring device of the polymer thin film according to the present invention for solving the technical problem is a heat conductive plate for transferring heat to the polymer thin film to maintain a constant temperature of the polymer thin film; A temperature measuring element measuring a temperature of the polymer thin film heated by the thermal conductive plate; A thermal electronic device for heating heat on the thermal conductive plate; A temperature controller configured to adjust the temperature of the thermoelectronic device by receiving the temperature measured by the temperature measuring device; And a prism coupler measuring the refractive index of the polymer thin film in a state where the temperature of the polymer thin film is kept constant by the temperature controller.

상기 기술적 과제를 해결하기 위한 본 발명에 위한 폴리머 박막의 열광학 계수 측정장치는 중심부에 관통공과 일측의 중심라인에 요홈을 구비하는 열전도판; 상기 열전도판의 요홈에 부착하는 온도측정소자; 상기 열전도판의 타측에 부착하는 열전자소자; 및 상기 열전도판의 관통공을 통해 프리즘과 박막을 밀착시켜 박막의 굴절율을 측정하는 프리즘 커플러를 포함함을 특징으로 한다.The thermo-optic coefficient measuring device of the polymer thin film according to the present invention for solving the technical problem is a heat conduction plate having a through-hole in the center and a groove in the center line of one side; A temperature measuring element attached to the groove of the thermal conductive plate; A thermal electronic device attached to the other side of the thermal conductive plate; And a prism coupler for closely contacting the prism and the thin film through the through-holes of the heat conductive plate to measure the refractive index of the thin film.

이하 도면을 참조하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 의한 폴리머 박막 열광학 계수 측정장치로서, 열전도판(110), 폴리머 박막(120), 온도측정소자(130), 열전자소자(140) 및 프리즘 커플러(도면에 도시되지 않음)로 이루어진다.1 is a polymer thin film thermo-optic coefficient measuring device according to the present invention, a thermal conductive plate 110, a polymer thin film 120, a temperature measuring device 130, a thermal electronic device 140 and a prism coupler (not shown) Is made of.

열전도판(110)은 직사각형의 알루미늄판으로 폴리머 박막(120)의 온도를 일정하게 유지한다. 온도측정소자(130)는 열전도판(110)에 부착되어 열전도판(110)의 온도를 측정하는 것이다. 온도측정소자(130)로는 서미스터가 사용된다. 열전자소자(140)는 온도측정소자(130)가 부착된 열전도판(110)의 타측에 부착되어 열전도판(110)에 열을 전달한다. 열전자소자(140)로는 열전자 냉각기(TEC)를 사용한다. 프리즘 커플러(도면에 도시되지 않음)는 폴리머 박막(120)의 굴절율을 측정한다.The thermal conductive plate 110 is a rectangular aluminum plate to maintain a constant temperature of the polymer thin film 120. The temperature measuring element 130 is attached to the heat conduction plate 110 to measure the temperature of the heat conduction plate 110. Thermistor is used as the temperature measuring element 130. The thermal electronic device 140 is attached to the other side of the heat conduction plate 110 to which the temperature measuring device 130 is attached to transfer heat to the heat conduction plate 110. A thermoelectronic cooler (TEC) is used as the thermoelectronic device 140. A prism coupler (not shown) measures the refractive index of the polymer thin film 120.

온도측정소자(130)와 열전자소자(140)를 부착하여 상기 프리즘 커플러로 폴리머 박막(120)의 굴절율을 측정하기 위해 도 2a 내지 도 2b와 같은 열전도판을 사용한다.A thermal conductive plate as shown in FIGS. 2A to 2B is used to attach the temperature measuring element 130 and the thermoelectronic element 140 to measure the refractive index of the polymer thin film 120 using the prism coupler.

열전도판(110)은 열전도도가 좋은 알루미늄판으로 제작된 것으로 열전자소자(140)에 의해 가해진 열이 폴리머 박막(120)에 전도되도록 하고 온도측정소자(130)인 서미스터를 폴리머 박막(120) 밑에 고정시킴과 동시에 프리즘 커플러로 굴절율을 측정할 수 있도록 하는 장치이다.The heat conduction plate 110 is made of an aluminum plate having good thermal conductivity, so that the heat applied by the thermal electronic device 140 is conducted to the polymer thin film 120, and the thermistor, which is a temperature measuring element 130, is placed under the polymer thin film 120. It is a device that can fix and measure the refractive index with the prism coupler.

도 2a 내지 도 2b는 본 발명에 의한 폴리머 박막 열광학 계수 측정장치의 열전도판을 도시한 것이다.2a to 2b shows a heat conduction plate of the polymer thin film thermo-optic coefficient measuring device according to the present invention.

폴리머 박막(120)과 상기 프리즘 커플러의 접촉을 위해 커플링헤드가 통과할 수 있도록 열전도판(110) 중심부에 관통공(211)을 낸다. 관통공(211)의 중심이 프리즘 커플러와 폴리머 박막(120)이 접촉되는 부분으로 굴절율 측정위치가 된다. 그 옆에 각각 온도측정소자(130)가 양쪽으로 삽입되어 고정될 수 있도록 중심라인에 요홈(213)을 낸다. 요홈(213)에 온도측정소자(130)를 넣고 제1 고정부재(215)로 조인 뒤 그 위에 측정하고자하는 폴리머 박막(120)을 잘라 올려놓고 제2 고정부재(217)로 고정한다. 이때 폴리머 박막(120)이 위로 들뜨지 않기 위해서 온도측정소자(130)가 완전히 요홈(213)속에 들어가서 평평한 상태가 되어 폴리머 박막(120)과 접촉되도록 하거나 온도측정소자(130)가 안쪽으로 완전히 들어가도록 하고 열전도도가 좋은 에폭시(epoxy)로 채워서 폴리머 박막(120)의 온도를 온도측정소자(130)가 반영할 수 있도록 한다. 온도측정소자(130)는 굴절율 측정위치와 최대한 근접하도록 관통공(211)에 가까이 위치하게 한다. 열전자소자(140)는 온도측정소자(130)가 부착된 열전도판(110)의 타단에 2개를 부착하여 폴리머 박막(120)에 열을 가하도록 하고 제3 고정부재(223)로 고정시킨다.A through hole 211 is formed in the center of the heat conduction plate 110 to allow the coupling head to pass through to contact the polymer thin film 120 and the prism coupler. The center of the through hole 211 is a portion where the prism coupler and the polymer thin film 120 are in contact with each other, and thus the refractive index measurement position is performed. The groove 213 is formed in the center line so that the temperature measuring element 130 is inserted into both sides and fixed to each side thereof. The temperature measuring element 130 is inserted into the recess 213, tightened with the first fixing member 215, and then cut and placed on the polymer thin film 120 to be measured thereon and fixed with the second fixing member 217. At this time, in order to prevent the polymer thin film 120 from being lifted up, the temperature measuring device 130 completely enters the recess 213 to be in a flat state so as to be in contact with the polymer thin film 120 or the temperature measuring device 130 completely enters the inside. And the thermal conductivity is filled with good epoxy (epoxy) so that the temperature measuring element 130 can reflect the temperature of the polymer thin film (120). The temperature measuring element 130 is positioned close to the through hole 211 to be as close as possible to the refractive index measurement position. The thermoelectronic device 140 is attached to the other end of the heat conduction plate 110 to which the temperature measuring device 130 is attached to apply heat to the polymer thin film 120 and is fixed by the third fixing member 223.

상술한 바에 의거하여 본 발명의 본 발명에 의한 폴리머 박막 열광학 계수 측정장치를 이용하여 폴리머 박막 열광학 계수를 측정하는 방법에 대하여 설명하기로 한다.Based on the above description, a method of measuring the polymer thin film thermo-optic coefficient by using the polymer thin film thermo-optic coefficient measuring device according to the present invention will be described.

광도파로 클래드, 코아 박막의 온도에 따른 굴절율 변화를 나타내는 열광학 계수에 의해 열광학 소자 설계 및 광도파로조건이 결정되므로 열광학 소자 특성을 구현하기 위해 폴리머 박막의 정밀한 열광학 계수를 측정하는 것이 필수적이다. 일반적으로 폴리머 박막은 온도가 증가함에 따라 굴절율이 감소하여 음의 열광학 계수를 갖는다.The thermo-optic device design and the optical waveguide conditions are determined by the thermo-optic coefficient representing the refractive index change with the temperature of the optical waveguide clad and core thin film. Therefore, it is essential to measure the precise thermo-optic coefficient of the polymer thin film to realize the thermo-optic device characteristics. to be. In general, polymer thin films have a negative thermo-optic coefficient with decreasing refractive index with increasing temperature.

실제 소자제작에 사용되는 폴리머 박막(120)의 열광학 계수를 측정하기 위해서 기판위에 폴리머를 떨어뜨려 스핀 코팅하는 방식으로 박막을 제작한다. 열전도판(110)에 열전자소자(140)를 부착하여 온도제어기로 설정온도를 변화시키면서 동시에 박막의 굴절율을 프리즘 커플러(도면에 도시되지 않음)로 측정한다. 이때 실제 폴리머 박막(120)의 온도를 알기 위해서 폴리머 박막(120)에 온도측정소자(130)를 부착하여 온도제어기로 폴리머 박막(120)의 온도를 피드백 해줌으로써 실제 폴리머 박막(120)의 온도가 설정온도에 정확히 도달할 수 있도록 제어해 준다. 정확한 폴리머 박막(120)의 열광학 계수를 측정하기 위해서는 굴절율을 측정하고자 하는 위치에서의 정확한 온도를 알아야 하므로 온도측정소자(130)와 열전자소자(140)를 측정하고자 하는 위치에 가장근접시켜 부착시키는 것이 중요하다. 실제 폴리머 박막(120)의 온도를 조절하면서 동시에 폴리머 박막(120)의 굴절율을 프리즘 커플러로 측정하면 폴리머 박막(120)의 온도에 따른 굴절율의 변화율, 즉 열광학계수를 구할 수 있다.In order to measure the thermo-optic coefficient of the polymer thin film 120 used in actual device fabrication, a thin film is manufactured by dropping a polymer onto a substrate and spin coating. The thermoelectric element 140 is attached to the heat conduction plate 110, and the refractive index of the thin film is measured with a prism coupler (not shown) while changing the set temperature with a temperature controller. In this case, in order to know the temperature of the actual polymer thin film 120, the temperature measuring element 130 is attached to the polymer thin film 120, and the temperature of the actual polymer thin film 120 is fed back by feeding back the temperature of the polymer thin film 120 with a temperature controller. Control to reach the set temperature accurately. In order to accurately measure the thermo-optic coefficient of the polymer thin film 120, it is necessary to know the exact temperature at the position where the refractive index is to be measured, so that the temperature measuring element 130 and the thermoelectronic element 140 are most closely attached to the position to be measured. It is important. By controlling the temperature of the actual polymer thin film 120 and simultaneously measuring the refractive index of the polymer thin film 120 with a prism coupler, the rate of change of the refractive index according to the temperature of the polymer thin film 120, that is, the thermo-optic coefficient can be obtained.

본 발명에서는 실제 폴리머 박막(120)의 온도를 조절하면서 그에 따른 굴절율을 측정함으로써 폴리머 박막(120)의 열광학계수를 직접 구할 수 있는 방법을 제공한다. 이 방법은 열전자소자(140)와 온도측정소자(130)를 사용하여 온도조절하는 동시에 굴절율을 굴절율을 측정할 수 있는 열전도판(110)을 제작하여 사용한다. 이 열전도판(110)에 온도측정소자(130)와 열전자소자(140)를 부착시키고 그 위에 폴리머 박막(120)을 실장시킨 뒤 프리즘 커플러(도면에 도시되지 않음)에 장착시켜 굴절율을 측정한다.The present invention provides a method of directly obtaining the thermo-optic coefficient of the polymer thin film 120 by measuring the refractive index according to the actual temperature of the polymer thin film 120. In this method, the thermal electronics 140 and the temperature measuring device 130 are used to produce and use a thermally conductive plate 110 capable of measuring the refractive index while adjusting the temperature at the same time. The temperature measuring element 130 and the thermoelectronic element 140 are attached to the thermal conductive plate 110, the polymer thin film 120 is mounted thereon, and mounted on a prism coupler (not shown) to measure the refractive index.

프리즘커플러는 프리즘에 굴절율을 측정하고자 하는 박막을 밀착시켜 프리즘을 통과한 빛이 박막으로 커플링 되도록 하여 굴절율을 측정하는 장비로서 프리즘과 박막의 접촉이 중요하다. 이를 위해 직경 1.4cm의 봉모양의 커플링 헤드가 측정하고자하는 박막을 프리즘쪽으로 밀어 밀착시킨다. 커플링 헤드가 박막을 밀고 있기 때문에 이곳에 직접 열전자소자(140)나 온도측정소자(130)를 부착시키지 못한다. 따라서 굴절율 측정위치의 온도를 최대한 조절하기 위해 측정위치 양쪽에서 열전자소자(140)로 열을 가하고 온도측정소자(130)도 측정위치에 근접한 곳에 각각으로 부착하여 두 개의 온도제어기로 동시에 조절한다.The prism coupler is a device that measures the refractive index by bringing light through the prism into close contact with the thin film to measure the refractive index to the prism, and the contact between the prism and the thin film is important. To this end, a 1.4 cm diameter rod-shaped coupling head pushes the thin film to be measured toward the prism to closely contact the prism. Since the coupling head pushes the thin film, the thermoelectronic device 140 or the temperature measuring device 130 cannot be attached directly thereto. Therefore, in order to adjust the temperature of the refractive index measurement position to the maximum, heat is applied to the thermoelectronic elements 140 at both sides of the measurement position, and the temperature measurement element 130 is also attached to each of the positions close to the measurement position and controlled by two temperature controllers simultaneously.

본 발명에 의하면, 폴리머 박막의 온도를 직접 조절하면서 그에 따른 굴절율을 동시에 측정함으로써 폴리머 박막의 실제 온도에 대한 폴리머 박막의 열광학 계수를 정확하게 구할 수 있다. 또한 폴리머 박막 교체가 용이하여 빠른 시간내에 반복해서 여러샘플의 열광학 특성을 분석할 수 있다.According to the present invention, by directly controlling the temperature of the polymer thin film and simultaneously measuring the refractive index, the thermo-optic coefficient of the polymer thin film with respect to the actual temperature of the polymer thin film can be accurately obtained. In addition, it is easy to replace the polymer thin film so that it is possible to repeatedly analyze the thermo-optic properties of the various samples.

Claims (6)

광도파로의 클래드, 코아를 구성하는 폴리머 박막의 열광학 특성을 측정하는 장치에 있어서,In the device for measuring the thermo-optical characteristics of the polymer thin film constituting the cladding, core of the optical waveguide, 상기 폴리머 박막의 온도를 일정하게 유지하기 위하여 상기 폴리머 박막에 열을 전달하는 열전도판;A heat conduction plate transferring heat to the polymer thin film to maintain a constant temperature of the polymer thin film; 상기 열전도판에 의해 가열된 폴리머 박막의 온도를 측정하는 온도측정소자;A temperature measuring element measuring a temperature of the polymer thin film heated by the thermal conductive plate; 상기 열전도판에 열을 가열하는 열전자소자;A thermal electronic device for heating heat on the thermal conductive plate; 상기 온도측정소자에 의해 측정된 온도를 입력받아 상기 열전자소자의 온도를 조절하는 온도조절기; 및A temperature controller configured to adjust the temperature of the thermoelectronic device by receiving the temperature measured by the temperature measuring device; And 상기 상기 온도조절기에 의해 폴리머 박막의 온도가 일정하게 유지된 상태에서 폴리머 박막의 굴절율을 측정하는 프리즘 커플러를 포함함을 특징으로 하는 폴리머 박막의 열광학 계수 측정장치.And a prism coupler for measuring a refractive index of the polymer thin film in a state where the temperature of the polymer thin film is kept constant by the temperature controller. 제1항에 있어서, 상기 온도측정소자는The method of claim 1, wherein the temperature measuring device 서미스터임을 특징으로 하는 폴리머 박막의 열광학 계수 측정장치.Thermo-optic coefficient measuring device of a polymer thin film, characterized in that the thermistor. 제1항에 있어서, 상기 열전자소자는The method of claim 1, wherein the thermal electronic device 열전자 냉각기(TEC)임을 특징으로 하는 폴리머 박막의 열광학 계수 측정장치.Thermo-optic coefficient measuring device of a polymer thin film, characterized in that the thermoelectric cooler (TEC). 중심부에 관통공과 일측의 중심라인에 요홈을 구비하는 열전도판;A heat conduction plate having a through hole in the center and a recess in the center line of one side; 상기 열전도판의 요홈에 부착하는 온도측정소자;A temperature measuring element attached to the groove of the thermal conductive plate; 상기 열전도판의 타측에 부착하는 열전자소자; 및A thermal electronic device attached to the other side of the thermal conductive plate; And 상기 열전도판의 관통공을 통해 프리즘과 박막을 밀착시켜 박막의 굴절율을 측정하는 프리즘 커플러를 포함함을 특징으로 하는 폴리머 박막의 열광학 계수 측정장치.And a prism coupler for measuring the refractive index of the thin film by closely contacting the prism and the thin film through the through-holes of the thermal conductive plate. 제4항에 있어서,The method of claim 4, wherein 상기 열전자소자의 온도를 조절하는 온도조절기를 더 구비함을 특징으로 하는 폴리머 박막의 열광학 계수 측정장치.Thermo-optic coefficient measuring device of the polymer thin film, characterized in that further comprising a temperature controller for controlling the temperature of the thermo-electronic device. 제4항에 있어서, 상기 열전도판은The method of claim 4, wherein the thermal conductive plate 상기 폴리머 박막, 상기 온도측정소자 및 상기 열전자소자를 고정시키는 고정부재를 더 구비함을 특징으로 하는 폴리머 박막의 열광학 계수 측정장치.And a fixing member for fixing the polymer thin film, the temperature measuring device, and the thermoelectronic device.
KR1019990001263A 1999-01-18 1999-01-18 A measurement apparatus of polymer thermooptic coefficient KR100322128B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990001263A KR100322128B1 (en) 1999-01-18 1999-01-18 A measurement apparatus of polymer thermooptic coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990001263A KR100322128B1 (en) 1999-01-18 1999-01-18 A measurement apparatus of polymer thermooptic coefficient

Publications (2)

Publication Number Publication Date
KR20000051031A true KR20000051031A (en) 2000-08-16
KR100322128B1 KR100322128B1 (en) 2002-02-04

Family

ID=19571581

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990001263A KR100322128B1 (en) 1999-01-18 1999-01-18 A measurement apparatus of polymer thermooptic coefficient

Country Status (1)

Country Link
KR (1) KR100322128B1 (en)

Also Published As

Publication number Publication date
KR100322128B1 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
Gagnon et al. Thermally activated variable attenuation of long-range surface plasmon-polariton waves
US6205280B1 (en) Blockless fiber optic attenuators and attenuation systems employing dispersion controlled polymers
Al-Hetar et al. MMI-MZI polymer thermo-optic switch with a high refractive index contrast
EP0577154B1 (en) Thermally controllable optical devices
US6317526B1 (en) Optical phase controller and optical switch
Heimala et al. Thermally tunable integrated optical ring resonator with poly-Si thermistor
KR100322127B1 (en) AWG multiplexer
EP0867743B1 (en) Optical fiber modulator having an optical fiber having poled portion serving as an electrooptic element and method for making same
CN112747778A (en) Adjustable Mach-Zehnder interferometer based on thermo-optic effect
KR100322128B1 (en) A measurement apparatus of polymer thermooptic coefficient
WO2012157937A2 (en) Method for measuring temperature using a thermistor
EP0881528B1 (en) Method for making a second-order nonlinear optical material, the material obtained by the method, and an optical modulation device comprising the material
US6421483B1 (en) Optical monitoring in optical interferometric modulators
JPH01170838A (en) Refractive index measuring instrument
US6611649B2 (en) Variable optical attenuator with polarization maintaining fiber
Hurvitz et al. Variable optical attenuator based on ion-exchange technology in glass
KR100416993B1 (en) Optical element integrated heat transferring device for plc
JPH03158764A (en) Probe device
KR100416967B1 (en) Planer lightwave circuit module with heat transfer device
JP2001235716A (en) Optical-electric mixture substrate
US6785461B2 (en) Blockless fiber optic attenuators and attenuation systems employing dispersion tailored polymers
JP4250272B2 (en) Optoelectronic mixed substrate
CN117289387A (en) Temperature monitoring method of optical waveguide chip
Vicente et al. Thermo-optic variable attenuator/waveplate based on waveguides patterned on organic-inorganic hybrids
Markatos et al. Optical fibre switch

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20051219

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee