JP2001235716A - Optical-electric mixture substrate - Google Patents

Optical-electric mixture substrate

Info

Publication number
JP2001235716A
JP2001235716A JP2000048199A JP2000048199A JP2001235716A JP 2001235716 A JP2001235716 A JP 2001235716A JP 2000048199 A JP2000048199 A JP 2000048199A JP 2000048199 A JP2000048199 A JP 2000048199A JP 2001235716 A JP2001235716 A JP 2001235716A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
temperature
optical
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000048199A
Other languages
Japanese (ja)
Inventor
Takeshi Nakai
剛 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000048199A priority Critical patent/JP2001235716A/en
Publication of JP2001235716A publication Critical patent/JP2001235716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems of a conventional optical-electric mixture substrate that the temperature difference between the core of the optical waveguide and the temperature detector disposed on the substrate is large and the measurement of the temperature of the optical waveguide with good accuracy is difficult. SOLUTION: A mount for optical parts and electronic parts, an optical waveguide to which optical parts are to be connected, a resistor 12 as a temperature sensor which consists of a metal or semiconductor to detect the temperature of the optical waveguide and which is disposed near under the optical waveguide are formed on a substrate 11. The product (A) of the reciprocal of the thermal conductivity of the optical waveguide and the distance from the center of the core 13 of the optical waveguide to the surface of the substrate 11, and the product (B) of the reciprocal of the thermal conductivity of the substrate 11 and the thickness of the substrate 11 are controlled to satisfy A/B>=19. Since a gentle temperature gradient is generated in the optical waveguide and the temperature difference between the core 13 and the resistor 12 for the temperature sensor is decreased, the temperature of the core 13 of the optical waveguide can be measured and detected with good accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光通信システムやコ
ンピュータ等の電子部品基板間における光通信接続部分
あるいは電子部品基板内の素子間における光信号変換領
域に使用される、光導波路の温度管理が必要な光電気混
在基板に関し、特に光導波路の温度検出精度を改善した
光電気混在基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the temperature of an optical waveguide used in an optical communication connection portion between electronic component substrates such as an optical communication system and a computer or an optical signal conversion region between elements in an electronic component substrate. The present invention relates to a required opto-electric mixed board, and more particularly to an opto-electric mixed board with improved temperature detection accuracy of an optical waveguide.

【0002】[0002]

【従来の技術】光通信システムやコンピュータ・交換機
等で用いられる光信号伝送システムにおいては、その特
性が温度に依存するデバイスや材料あるいは温度変化を
利用した光部品や電子部品が混載された光電子混在基板
が多く用いられている。例えば、光部品の中でもレーザ
ダイオードは温度により発光のしきい値電流が変化す
る。また、石英系や有機系の光導波路は温度により屈折
率・密度が変化し、これを積極的に利用した光スイッチ
等も存在する。このように温度は光部品の特性を左右す
る重要な因子の一つであることから、光電子混在基板に
おいて、その温度を検出し温度制御することは安定な光
部品の動作のために必要な技術である。
2. Description of the Related Art In an optical signal transmission system used in an optical communication system, a computer, an exchange, or the like, a device or material whose characteristics depend on temperature, or an optical / electronic mixed device in which optical components or electronic components utilizing temperature change are mixed. Substrates are often used. For example, among optical components, the threshold current of light emission of a laser diode changes depending on the temperature. In addition, the refractive index and the density of a quartz or organic optical waveguide change depending on the temperature, and there are optical switches and the like that positively use the refractive index and density. As described above, temperature is one of the important factors that affect the characteristics of optical components, so detecting and controlling the temperature of a board with mixed optoelectronics is a necessary technology for stable operation of optical components. It is.

【0003】光導波路に対する温度センサを具備した従
来の光電子混在基板の例として、図3に熱光学効果(T
O効果)を用いた光遅延装置の断面図を示す。この光遅
延装置においては、熱伝導板21の上面に熱伝導性グリス
のような熱伝導性媒体22を介して光導波路23の形成され
た光導波路基板24を取り付け、熱伝導板21の下面にペル
チェ素子等の温度制御素子25を設けて熱伝導板21を加熱
・冷却できるようにし、熱伝導板21に取り付けた温度セ
ンサ26で熱伝導板21の温度を測定し、温度制御回路27で
温度調節を行なうものである。
[0003] As an example of a conventional photoelectron mixed substrate provided with a temperature sensor for an optical waveguide, FIG.
2 is a cross-sectional view of an optical delay device using the O effect. In this optical delay device, an optical waveguide substrate 24 on which an optical waveguide 23 is formed is attached to the upper surface of a heat conductive plate 21 via a heat conductive medium 22 such as heat conductive grease, and A temperature control element 25 such as a Peltier element is provided so that the heat conduction plate 21 can be heated and cooled.The temperature of the heat conduction plate 21 is measured by a temperature sensor 26 attached to the heat conduction plate 21, and the temperature is controlled by a temperature control circuit 27. The adjustment is performed.

【0004】このような光遅延装置に用いられる光導波
路の断面図を図4に示す。図4において31は光導波路基
板であり、この上にシリカまたは有機系光学材料から成
る、コア部32とクラッド部33とで構成される光導波路が
形成される。そして、クラッド部33の上面にはヒータ34
が密着して設けられ、通電によってヒータ34により光導
波路、特にコア部32を加熱して、光導波路の光路長を増
加させることによって光遅延を行なわせる。
FIG. 4 is a sectional view of an optical waveguide used in such an optical delay device. In FIG. 4, reference numeral 31 denotes an optical waveguide substrate, on which an optical waveguide composed of a core part 32 and a clad part 33 made of silica or an organic optical material is formed. A heater 34 is provided on the upper surface of the cladding 33.
Are provided in close contact with each other, and the optical waveguide, particularly the core portion 32, is heated by the heater 34 by energization to increase the optical path length of the optical waveguide, thereby causing an optical delay.

【0005】通常は、このような温度管理が必要な光部
品の支持基板にはシリコンが一般的に用いられている。
これは、シリコンはV溝の加工性に優れ、耐熱性に優れ
ており、熱伝導率が比較的高いため放熱性が良いからで
ある。また、光部品である光導波路の材料には石英系と
有機系の光学材料が一般的に用いられているが、いずれ
の光学材料も熱伝導性は低い。
[0005] Normally, silicon is generally used for a support substrate of an optical component requiring such temperature control.
This is because silicon has excellent workability of the V-groove, excellent heat resistance, and has a relatively high thermal conductivity, and thus has good heat dissipation. In addition, quartz and organic optical materials are generally used as the material of the optical waveguide as an optical component, and both optical materials have low thermal conductivity.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ような温度センサ26により温度検出を行なって温度管理
を行なう光導波路23において、光信号の遅延特性に影響
する箇所はヒータ34の直下に位置するコア部32付近であ
って、この範囲の温度を精確に測定することが高精度の
光遅延装置に求められるのに対し、図3のような光導波
路23から光導波路基板24と熱伝導性媒体22を介した熱伝
導板21に設けた温度センサ26の位置では、光導波路基板
24と熱伝導板21の熱伝導性が良いためにこれら2つの範
囲の平均的な温度しか検出できないという問題点があっ
た。
However, in the optical waveguide 23 in which the temperature is detected by the temperature sensor 26 and the temperature is controlled, the portion which affects the delay characteristic of the optical signal is located immediately below the heater 34. In the vicinity of the core portion 32, accurate measurement of the temperature in this range is required for a high-precision optical delay device. On the other hand, the optical waveguide 23 to the optical waveguide substrate 24 and the heat conductive medium as shown in FIG. At the position of the temperature sensor 26 provided on the heat conducting plate 21 via
Since the heat conductivity of the heat conductive plate 24 and the heat conductive plate 21 is good, there is a problem that only an average temperature in these two ranges can be detected.

【0007】この対策としては、光導波路の温度を精確
に検出するためには温度センサを測定したい箇所である
光導波路にできるだけ近づけることが考えられ、本発明
者は特願平11−277555号において温度検出素子を光導波
路に近接配置させた光電子混在基板を提案した。この光
電子混在基板によれば、光導波路の温度に対する測定精
度はかなり向上するものとなる。
As a countermeasure, in order to accurately detect the temperature of the optical waveguide, it is conceivable to bring the temperature sensor as close as possible to the optical waveguide where the temperature is to be measured, and the present inventor has disclosed in Japanese Patent Application No. 11-277555. A photo-electron mixed substrate in which the temperature sensing element is arranged close to the optical waveguide was proposed. According to this photoelectron mixed substrate, the measurement accuracy for the temperature of the optical waveguide is considerably improved.

【0008】しかしながら、温度検出素子を光導波路に
近接配置させる場合であっても、光導波路のコア部から
の光のしみ出し等の影響があるため、温度検出素子はコ
ア部の中心から7.5μm程度は離れた位置に配置する必
要がある。このため、光導波路基板の熱伝導性が良く、
光導波路の熱伝導性が悪い場合には、光導波路基板の熱
抵抗が光導波路の熱抵抗に対して小さくなるために、光
導波路内部に急峻な温度勾配が生じることとなって、光
導波路のコア部と温度検出素子が配置された光導波路基
板上面部の温度差が大きくなって、精度良く温度が測定
できなくなる傾向が見られることがあった。
However, even when the temperature detecting element is disposed close to the optical waveguide, the temperature detecting element is 7.5 μm from the center of the core due to the influence of light seeping out from the core of the optical waveguide. The degree needs to be placed at a distance. For this reason, the thermal conductivity of the optical waveguide substrate is good,
If the thermal conductivity of the optical waveguide is poor, the thermal resistance of the optical waveguide substrate becomes smaller than the thermal resistance of the optical waveguide, so that a steep temperature gradient occurs inside the optical waveguide, and the In some cases, the temperature difference between the core portion and the upper surface portion of the optical waveguide substrate on which the temperature detecting element is arranged becomes large, and there is a tendency that the temperature cannot be measured accurately.

【0009】本発明は上記事情に鑑みてなされたもので
あり、その目的は、光導波路の温度を精度良く測定する
ことができ、それにより光導波路の良好な温度管理を行
なうことができる光電子混在基板を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a photoelectron mixed device capable of accurately measuring the temperature of an optical waveguide and thereby performing good temperature control of the optical waveguide. It is to provide a substrate.

【0010】[0010]

【課題を解決するための手段】本発明の光電気混在基板
は、基板上に、光部品および電子部品の搭載部と、前記
光部品が接続される光導波路と、この光導波路の一部に
近接配置された、該光導波路の温度を検出するための金
属または半導体からなる温度検出素子とが形成されてお
り、前記光導波路の熱伝導率の逆数と光導波路のコア部
の中心から前記基板表面までの距離との積Aを前記基板
の熱伝導率の逆数と基板の厚さとの積Bに対してA/B
≧19としたことを特徴とするものである。
According to the present invention, there is provided an optical / electrical mixed substrate comprising: a mounting portion for an optical component and an electronic component; an optical waveguide to which the optical component is connected; and a part of the optical waveguide. A temperature detecting element made of a metal or a semiconductor for detecting the temperature of the optical waveguide, which is disposed in proximity to the substrate, is formed from the reciprocal of the thermal conductivity of the optical waveguide and the center of the core of the optical waveguide. The product A of the distance to the surface is A / B with the product B of the reciprocal of the thermal conductivity of the substrate and the thickness of the substrate.
≧ 19.

【0011】また、本発明の電気混在基板は、前記構成
において、前記基板の熱伝導率の逆数と基板の厚さとの
積Bが2.85×10-4-1・m2・K以上であることを特徴
とするものである。
Further, in the electric mixed board of the present invention, in the above structure, the product B of the reciprocal of the thermal conductivity of the board and the thickness of the board is at least 2.85 × 10 -4 W -1 · m 2 · K. It is characterized by the following.

【0012】[0012]

【発明の実施の形態】本発明の光電子混在基板によれ
ば、光導波路の熱伝導率の逆数と光導波路のコア部の中
心からその下部の温度検出素子が配置された基板表面ま
での距離との積Aをその基板の熱伝導率の逆数と基板の
厚さとの積Bに対して上記のような所定範囲すなわちA
/B≧19に設定したことにより、光導波路の熱抵抗が基
板の熱抵抗よりも相対的に小さくなり、基板上面の温度
が基板下面の温度よりも光導波路のコア部中心の温度に
近くなるので、光導波路内部に緩やかな温度勾配を生
じ、光導波路のコア部と温度検出素子が配置された基板
表面と温度差が小さくなることから、光導波路の温度を
精度良く測定することができる。
According to the photoelectron-mixed substrate of the present invention, the reciprocal of the thermal conductivity of the optical waveguide and the distance from the center of the core portion of the optical waveguide to the surface of the substrate below which the temperature detecting element is disposed are described. Is a predetermined range as described above, that is, A is a product of the product B of the reciprocal of the thermal conductivity of the substrate and the thickness of the substrate.
By setting / B ≧ 19, the thermal resistance of the optical waveguide is relatively smaller than the thermal resistance of the substrate, and the temperature of the upper surface of the substrate is closer to the temperature of the center of the core of the optical waveguide than the temperature of the lower surface of the substrate. Therefore, a gentle temperature gradient is generated inside the optical waveguide, and the temperature difference between the core portion of the optical waveguide and the surface of the substrate on which the temperature detecting element is arranged becomes small, so that the temperature of the optical waveguide can be accurately measured.

【0013】また、その基板の熱伝導率の逆数と基板の
厚さの積Bを2.85×10-4-1・m2・K以上としたとき
には、熱光学(TO)効果に敏感な有機系の光導波路材
料に対しても上記A/Bを19以上に設定することができ
るので、光導波路の温度をより精度良く測定することが
できる光電子混在基板となる。
When the product B of the reciprocal of the thermal conductivity of the substrate and the thickness of the substrate is set to 2.85 × 10 −4 W −1 · m 2 · K or more, an organic material sensitive to the thermo-optic (TO) effect is obtained. Since the above A / B can be set to 19 or more even for the optical waveguide material of the system, a photo-electron mixed substrate that can measure the temperature of the optical waveguide more accurately can be obtained.

【0014】以下、本発明の光電子混在基板について図
面を参照しつつ説明する。
Hereinafter, the photoelectric mixed substrate of the present invention will be described with reference to the drawings.

【0015】図1は本発明の光電子混在基板の実施の形
態の一例を示す斜視図であり、図2は図1のA−A’線
断面図である。これら図1および図2に示す光電子混在
基板においては、支持基板11上に金属または半導体から
成る温度検出素子である薄膜の温度センサ用抵抗体12が
形成されており、その上に信号光を伝送するためのコア
部13およびクラッド部14から成る光導波路が、そしてそ
の上に温度制御用抵抗体15が形成されている。この例で
は、熱光学効果により光導波路のコア部13の光路長を変
化させてスイッチングを行なうものである。
FIG. 1 is a perspective view showing an example of an embodiment of a photoelectron-mixed substrate according to the present invention, and FIG. 2 is a sectional view taken along the line AA 'of FIG. In the photoelectric mixed substrate shown in FIGS. 1 and 2, a thin-film temperature sensor resistor 12 which is a temperature detecting element made of metal or semiconductor is formed on a support substrate 11, and a signal light is transmitted thereon. An optical waveguide comprising a core portion 13 and a cladding portion 14 for controlling the temperature, and a temperature control resistor 15 is formed thereon. In this example, switching is performed by changing the optical path length of the core portion 13 of the optical waveguide by the thermo-optic effect.

【0016】なお、光部品および電子部品、ならびにこ
れらの搭載部については、図示を省略している。
The optical components, the electronic components, and their mounting portions are not shown.

【0017】ここで、温度検出素子で温度を測定し検出
すべき箇所は温度制御用抵抗体15の下に位置する光導波
路の部分であって、その下の基板11上に温度検出素子で
ある温度センサ用抵抗体12が光導波路に近接されて形成
されている。これにより、被測定物であるコア部13の非
常に近い箇所において温度に対する温度センサ用抵抗体
12の抵抗値の変化を測定することによって光導波路のコ
ア部13の温度を検出することができるようになってい
る。
Here, the portion where the temperature is to be measured and detected by the temperature detecting element is a portion of the optical waveguide located below the temperature control resistor 15, and the temperature detecting element is provided on the substrate 11 therebelow. A temperature sensor resistor 12 is formed close to the optical waveguide. Thereby, the temperature sensor resistor with respect to the temperature is very close to the core 13 which is the object to be measured.
The temperature of the core portion 13 of the optical waveguide can be detected by measuring the change in the resistance value of the optical waveguide 12.

【0018】しかしながら、光導波路のコア部13に温度
センサ用抵抗体12を近接させることにも所定の限界があ
る。これは、具体的には、コア部13から温度センサ用抵
抗体12までの距離を7.5μm程度離しておかなければ、
コア部13により伝送される光信号のクラッド部14へのし
み出しに対して、金属等から成る温度センサ用抵抗体12
が光学的に良好な特性を持たないことから、光導波路の
光学特性が著しく悪化する結果をもたらす場合があるか
らである。このようにコア部13と温度センサ用抵抗体12
との間で所定の距離を確保しなければならない条件の下
では、光導波路のコア部13およびクラッド部14を形成す
る光学材料の熱伝導率が基板11の材料の熱伝導率に対し
て一般的には低いために、光導波路内部での温度勾配が
大きくなり、被温度測定部であるコア部13と温度センサ
用抵抗体12との間に温度差が生じて、温度の測定精度が
低下することになる。
However, there is a certain limit to the proximity of the temperature sensor resistor 12 to the core 13 of the optical waveguide. This is, specifically, unless the distance from the core 13 to the temperature sensor resistor 12 is about 7.5 μm,
The exudation of the optical signal transmitted by the core portion 13 to the cladding portion 14 prevents the temperature sensor resistor 12 made of a metal or the like.
Does not have optically good characteristics, which may result in a significant deterioration in the optical characteristics of the optical waveguide. Thus, the core 13 and the temperature sensor resistor 12
Under a condition that a predetermined distance must be secured between the optical waveguide and the substrate 11, the thermal conductivity of the optical material forming the core portion 13 and the cladding portion 14 is generally smaller than the thermal conductivity of the material of the substrate 11. Temperature, the temperature gradient inside the optical waveguide becomes large, and a temperature difference occurs between the core 13 as the temperature measuring part and the resistor 12 for the temperature sensor, thereby lowering the temperature measurement accuracy. Will do.

【0019】ここで、例えばマッハツェンダ型の光スイ
ッチにおいては、スイッチング時には4℃の温度差によ
り光の位相をπだけシフトさせる必要があり、スイッチ
ング特性として消光比を例えば20dB以上とするために
はシフト量の制御を0.05π以下である5%以下の精度で
行なうことが必要となる。
Here, for example, in an Mach-Zehnder type optical switch, it is necessary to shift the phase of light by π due to a temperature difference of 4 ° C. at the time of switching. It is necessary to control the amount with an accuracy of 5% or less, which is 0.05π or less.

【0020】これに対し、有機系光学材料の1つである
シロキサン系ポリマからなる光導波路の場合、温度によ
る光路長の変化が石英系の光導波路に比べて非常に大き
く、長さ1.5mmの範囲で加熱して4℃の温度差をつけ
たとき、約πの位相のずれが発生する。その時には0.05
πの位相ずれがあると消光比が20dBよりも小さくなる
ため、測定精度の誤差を5%である0.2℃までの範囲内
で温度制御する必要がある。
On the other hand, in the case of an optical waveguide made of a siloxane-based polymer, which is one of the organic optical materials, the change in the optical path length due to temperature is much larger than that of a quartz-based optical waveguide. When a temperature difference of 4 ° C. is applied by heating in the range, a phase shift of about π occurs. Then 0.05
If there is a phase shift of π, the extinction ratio becomes smaller than 20 dB. Therefore, it is necessary to control the temperature within a range of 5%, that is, 0.2 ° C., which is 5%.

【0021】被温度測定部であるコア部13と温度検出素
子である温度センサ用抵抗体12との温度差には、基板11
および光導波路のそれぞれの厚さと熱伝導率が大きく影
響する。基板11および光導波路の厚さが十分に薄いとき
には、コア部13からの放熱の方向は基板11側へほぼ真下
に流れるため、コア部13と温度センサ用抵抗体12との温
度差は基板の厚さに比例し、熱伝導率に反比例すること
となる。4℃の温度差に対して誤差が0.2℃以下になる
には、光導波路のコア部13の中心から基板11の表面(上
面)までの熱伝導率の逆数と厚さとの積が、光導波路の
コア部13から基板11の下面までの厚さと熱伝導率の逆数
との積の5%以下となる必要がある。
The temperature difference between the core portion 13 as the temperature measuring portion and the temperature sensor resistor 12 as the temperature detecting element is determined by the substrate 11
And the thickness and thermal conductivity of each of the optical waveguides have a great influence. When the thickness of the substrate 11 and the optical waveguide is sufficiently small, the direction of heat radiation from the core 13 flows almost directly to the substrate 11 side, so that the temperature difference between the core 13 and the temperature sensor resistor 12 is It is proportional to the thickness and inversely proportional to the thermal conductivity. In order for the error to be 0.2 ° C. or less for a temperature difference of 4 ° C., the product of the reciprocal of thermal conductivity from the center of the core portion 13 of the optical waveguide to the surface (upper surface) of the substrate 11 and the thickness is the core of the optical waveguide It is necessary to be 5% or less of the product of the thickness from the portion 13 to the lower surface of the substrate 11 and the reciprocal of the thermal conductivity.

【0022】ここで、光導波路のコア部13の中心から基
板11の上面までの間について考えると、有機系の光導波
路の熱伝導率は高いもので0.5W・m-1・K-1で、コア
部13から基板11の上面までの距離が最小の7.5μmであ
るときには、1.5×10-5-1・m2・Kの厚さと熱伝導率
の逆数との積Aとなる。従って、光導波路のコア部13か
ら基板11の下面までの厚さと熱伝導率の逆数との積で
は、光導波路部分の積Aの20倍である3.0×10-4-1
2・K以上、基板の厚さと熱伝導率の逆数との積Bは
光導波路部分の積Aの19倍である2.85×10-4-1・m2
・K以上となる必要がある。
Here, considering the distance from the center of the core portion 13 of the optical waveguide to the upper surface of the substrate 11, the thermal conductivity of the organic optical waveguide is as high as 0.5 W · m −1 · K −1 . When the distance from the core portion 13 to the upper surface of the substrate 11 is the minimum of 7.5 μm, the product A of the thickness of 1.5 × 10 −5 W −1 · m 2 · K and the reciprocal of the thermal conductivity is obtained. Therefore, the product of the thickness of the optical waveguide from the core 13 to the lower surface of the substrate 11 and the reciprocal of the thermal conductivity is 3.0 × 10 −4 W −1 ·, which is 20 times the product A of the optical waveguide.
m 2 · K or more, the product B of the reciprocal of the thickness and thermal conductivity of the substrate is 19 times the product A of the optical waveguide portion 2.85 × 10 -4 W -1 · m 2
-It must be K or more.

【0023】基板11の厚さと熱伝導率の逆数との積Bが
1.5×10-2W・m-1・K-1以上のときには、基板11表面
から7.5μm離れたコア部13の位置では0.001℃よりも小
さい測定値のずれを得ることができる。これより小さい
測定誤差は、通常の光部品の温度測定において必要とさ
れるものではなく、光学特性への影響も無視できるもの
である。
The product B of the thickness of the substrate 11 and the inverse of the thermal conductivity is
When the value is 1.5 × 10 −2 W · m −1 · K −1 or more, a deviation of the measured value smaller than 0.001 ° C. can be obtained at the position of the core 13 which is 7.5 μm away from the surface of the substrate 11. A measurement error smaller than this is not required in ordinary temperature measurement of an optical component, and its influence on optical characteristics is negligible.

【0024】また、実用的には、熱抵抗が高くなると冷
却のための吸熱が困難となるため、基板11の厚さと熱伝
導率の逆数との積Bは2.85×10-4-1・m2・K以
上、7×10-4-1・m2・K以下であることが好適であ
る。
In practice, if the thermal resistance is high, it becomes difficult to absorb heat for cooling. Therefore, the product B of the thickness of the substrate 11 and the reciprocal of the thermal conductivity is 2.85 × 10 −4 W −. It is preferable that it is not less than 1 · m 2 · K and not more than 7 × 10 −4 W −1 · m 2 · K.

【0025】基板11には、上記の厚さと熱伝導率との関
係を満たすものであって、光導波路の基板として機能す
るものであり、光集積回路基板や光電子混在基板等の光
信号を扱う基板として使用される種々の基板、例えばシ
リコン基板や、アルミナあるいは窒化アルミニウム等の
セラミックス基板・ガラスセラミックス基板・ポリイミ
ド基板・エポキシ樹脂基板・PTFE(ポリテトラフル
オロエチレン)基板等のプラスチック電気配線基板など
が使用できる。
The substrate 11 satisfies the above relationship between the thickness and the thermal conductivity, and functions as a substrate for an optical waveguide, and handles optical signals from an optical integrated circuit substrate, a photoelectric mixed substrate, or the like. Various substrates used as substrates, for example, silicon substrates, plastic electric wiring substrates such as ceramic substrates such as alumina or aluminum nitride, glass ceramic substrates, polyimide substrates, epoxy resin substrates, and PTFE (polytetrafluoroethylene) substrates. Can be used.

【0026】温度検出素子である温度センサ用抵抗体12
は、金属または半導体(これらの合金も含む)から成る
もので、温度に応じて抵抗値の変化するものであればよ
く、各種の側温抵抗体やサーミスタが利用できる。ある
いは異種の金属を接続することにより、ゼーベック効果
により起電力を発生させる熱電対を利用することも可能
である。
Temperature sensor resistor 12 as a temperature detecting element
Is made of a metal or a semiconductor (including their alloys), as long as the resistance changes according to the temperature. Various side temperature resistors and thermistors can be used. Alternatively, it is also possible to use a thermocouple that generates electromotive force by the Seebeck effect by connecting different kinds of metals.

【0027】中でも白金は、化学的・熱的に安定で高純
度のものが得られるため、側温抵抗材料として適してい
る。常温において、その抵抗率は1.06×10-7Ωm、抵抗
温度係数は+0.392%/℃である。抵抗値は、配線導体
の抵抗よりも抵抗が高いほど、配線抵抗の温度依存性に
影響を受けにくいため、1.0Ω以上であることが望まし
い。なお、抵抗値が大き過ぎるとき、抵抗値の検出に高
い電圧をかけなければ電流の検出値が小さくなってしま
い、検出感度が低くなるとともに、電流および電圧を高
い状態にすると抵抗体内部での自己発熱が生じるため、
温度センサとしては適さなくなってしまう。従って、抵
抗値は10KΩ以下であることが望ましい。
Among them, platinum is suitable as a side temperature resistance material because it is chemically and thermally stable and has high purity. At room temperature, the resistivity is 1.06 × 10 −7 Ωm, and the temperature coefficient of resistance is + 0.392% / ° C. The resistance value is desirably 1.0 Ω or more, as the resistance is higher than the resistance of the wiring conductor, because the resistance is less affected by the temperature dependence of the wiring resistance. When the resistance value is too large, the detection value of the current becomes small unless a high voltage is applied to the detection of the resistance value, and the detection sensitivity becomes low. Because self-heating occurs,
It is not suitable as a temperature sensor. Therefore, the resistance value is desirably 10 KΩ or less.

【0028】このような温度センサ用抵抗体12は、真空
蒸着法・スパッタリング法・めっき法・スクリーン印刷
法等によって作製し、膜厚は下地となる基板11表面との
高低差が大きいとその上に光導波路を平面状に作製する
ことが困難になることから、薄いほうが好ましく、10μ
m以下であることが好ましい。
Such a resistor 12 for a temperature sensor is manufactured by a vacuum evaporation method, a sputtering method, a plating method, a screen printing method, or the like, and the film thickness is increased when the height difference from the surface of the substrate 11 is large. Since it is difficult to fabricate an optical waveguide in a planar shape, it is preferable that the
m or less.

【0029】光導波路のコア部13ならびにクラッド部14
を形成するための有機系光学材料には、シロキサン系ポ
リマ・ポリイミド・ベンゾシクロブテン・PMMA(ポ
リメチルメタアクリレート)・ポリカーボネート・ノル
ボルネン樹脂・フッ素樹脂等を用いればよく、コア部13
の屈折率がクラッド部14の屈折率よりも大きくなるよう
に選択する。これらの材料を用いて光導波路を形成する
には、スピンコート法・ロールコート法・スプレーコー
ト法等により基板11上に成膜し、コア部13の加工にはフ
ォトリソグラフィ法およびRIE(リアクティブイオン
エッチング)加工を利用すればよい。
The core part 13 and the clad part 14 of the optical waveguide
As the organic optical material for forming the resin, siloxane-based polymer, polyimide, benzocyclobutene, PMMA (polymethyl methacrylate), polycarbonate, norbornene resin, fluororesin, or the like may be used.
Is selected such that the refractive index of the cladding 14 is larger than the refractive index of the cladding 14. In order to form an optical waveguide using these materials, a film is formed on the substrate 11 by a spin coating method, a roll coating method, a spray coating method, or the like, and a photolithography method and RIE (reactive An ion etching) process may be used.

【0030】[0030]

【実施例】次に、本発明の光電気混在基板について具体
例を説明する。
Next, specific examples of the photoelectric mixed substrate of the present invention will be described.

【0031】金属導体膜から成る温度センサ用抵抗体12
を温度検出素子として被測定物であるコア部13の下方の
基板11上面に配設することにより、本発明の光電気混在
基板として、マッハツェンダ型光スイッチを作製した。
これは図1および図2に示すように基板11と温度センサ
用抵抗体12・光導波路層のコア部13・光導波路層のクラ
ッド部14・温度制御用抵抗体15からなる構成となってい
る。また、基板11の下面にはペルチェ素子を当接させて
冷却を行なった。これにより、温度制御用抵抗体15に電
流を流して発熱させて光導波路のコア部13を加熱し、光
導波路の光路長を変化させることによってスイッチング
を行なう。
A temperature sensor resistor 12 made of a metal conductor film
Was disposed on the upper surface of the substrate 11 below the core portion 13 as a temperature detection element, thereby producing a Mach-Zehnder optical switch as the photoelectric mixed substrate of the present invention.
As shown in FIG. 1 and FIG. 2, this is composed of a substrate 11, a resistor 12 for a temperature sensor, a core 13 of an optical waveguide layer, a clad portion 14 of an optical waveguide layer, and a resistor 15 for temperature control. . Further, cooling was performed by bringing a Peltier element into contact with the lower surface of the substrate 11. As a result, a current is caused to flow through the temperature control resistor 15 to generate heat, heat the core portion 13 of the optical waveguide, and perform switching by changing the optical path length of the optical waveguide.

【0032】基板11の寸法は長さを20mm、幅を10mm
とし、厚みは0.5,1.0,1.2,1.5mmの4種類のものを
使用した。基板11の材料にはガラスセラミックス(熱伝
導率:4W・m-1・K-1)を用いた。光導波路は、クラ
ッド部14はシロキサン系ポリマ(熱伝導率:0.5W・m
-1・K-1)の、コア部13はシロキサン系ポリマとテトラ
−n−ブトキシチタンとの混合液を塗布し、85℃/30分
および270℃/60分の熱処理によって形成した。SOA
(半導体光増幅素子)実装部およびその電極は、RIE
法により光導波路材料を除去して形成した。
The dimensions of the substrate 11 are 20 mm in length and 10 mm in width.
And four types having thicknesses of 0.5, 1.0, 1.2, and 1.5 mm were used. Glass ceramic (thermal conductivity: 4 W · m −1 · K −1 ) was used as the material of the substrate 11. In the optical waveguide, the cladding portion 14 is made of a siloxane-based polymer (thermal conductivity: 0.5 W · m).
The core portion 13 of -1 · K -1 ) was formed by applying a mixed solution of a siloxane-based polymer and tetra-n-butoxytitanium and performing heat treatment at 85 ° C./30 minutes and 270 ° C./60 minutes. SOA
(Semiconductor optical amplifying element) The mounting part and its electrode
It was formed by removing the optical waveguide material by the method.

【0033】光導波路のコア部13は5μm×5μm、コ
ア部13から基板11上面までのクラッド部14の厚さは5μ
mとした。従って、コア部13の中心から、温度センサ用
抵抗体12が形成された基板11上面までの距離は7.5μm
となる。
The core 13 of the optical waveguide is 5 μm × 5 μm, and the thickness of the cladding 14 from the core 13 to the upper surface of the substrate 11 is 5 μm.
m. Therefore, the distance from the center of the core portion 13 to the upper surface of the substrate 11 on which the temperature sensor resistor 12 is formed is 7.5 μm.
Becomes

【0034】温度制御用抵抗体15は光導波路のコア部13
の上面に位置するようにAlにより形成した。これに電
流を流すと、発熱して光導波路のコア部13の光路長を変
化させる。
The temperature control resistor 15 is provided at the core 13 of the optical waveguide.
Formed of Al so as to be located on the upper surface of. When an electric current is applied to this, heat is generated and the optical path length of the core portion 13 of the optical waveguide changes.

【0035】温度センサ用抵抗体12は、基板11上の、温
度制御用抵抗体15により加熱される光導波路の下部に配
置し、光導波路のコア部13の下方に位置するのセンサ部
はTi/Pt、センサ部以外はTi/Pt/Auで形成
した。センサ部の抵抗値は100Ω、それ以外は0.2Ωとし
た。また、TiおよびPtの膜厚はそれぞれ0.1μmお
よび0.2μmとした。
The temperature sensor resistor 12 is disposed below the optical waveguide heated by the temperature control resistor 15 on the substrate 11, and the sensor portion located below the core portion 13 of the optical waveguide is Ti. / Pt and Ti / Pt / Au except for the sensor part. The resistance value of the sensor portion was 100Ω, and the other values were 0.2Ω. The thicknesses of Ti and Pt were 0.1 μm and 0.2 μm, respectively.

【0036】そして、これら光電気混在基板について、
パワー10dBm、波長1.3μmのLD(レーザダイオー
ド)からの光をシングルモード光ファイバを通して光導
波路のコア部13に入射し、その中を伝搬させて、他方の
端面にシングルモード光ファイバを光接続して出射する
光の強度を調べた。そして、それぞれの光電子混在基板
において温度センサ用抵抗体12によりコア部13の温度を
測定し,スイッチングにより光の強度が最も強くなる位
相での温度と、最も弱くなる位相での温度の差を求め
た。
Then, for these photoelectric mixed substrates,
Light from an LD (laser diode) having a power of 10 dBm and a wavelength of 1.3 μm is made incident on the core portion 13 of the optical waveguide through a single-mode optical fiber, propagates therethrough, and optically connects the single-mode optical fiber to the other end face. The intensity of the emitted light was examined. Then, the temperature of the core 13 is measured by the temperature sensor resistor 12 on each of the opto-electron mixed substrates, and the difference between the temperature at the phase at which the light intensity is the strongest and the temperature at the phase at the weakest is obtained by switching. Was.

【0037】以上のような光電子混在基板では、光導波
路の熱伝導率の逆数とコア部13の中心から基板11までの
距離との積Aは、7.5(μm)/0.5(W・m-1・K-1
=1.5×10-5(W-1・m2・K)であった。そして、基板
11の厚さ・基板11の熱伝導率・基板厚さ/熱伝導率、す
なわち上記の積B・A/Bに対して、設計値である温度
4℃との差を調べた。その結果を表1に示す。
In the photoelectron mixed substrate as described above, the product A of the reciprocal of the thermal conductivity of the optical waveguide and the distance from the center of the core 13 to the substrate 11 is 7.5 (μm) /0.5 (W · m −1).・ K -1 )
= 1.5 × 10 -5 (W -1 · m 2 · K). And the substrate
The difference between the thickness 11 and the thermal conductivity of the substrate 11, the substrate thickness / thermal conductivity, that is, the above-mentioned product B · A / B from the design value of 4 ° C. was examined. The results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】表1の結果より、光導波路の熱伝導率の逆
数とコア部13の中心から基板11表面までの距離との積A
が、基板11の熱伝導率の逆数と基板11の厚さとの積Bに
対してA/B≧19であって、しかも積Bが2.85×10-4
-1・m2・K以上である、基板厚さが1.2mmおよび1.
5mmの場合では、設計値との温度差が0.2℃より小さく
なっており、コア部13の温度がより精確に測定できてい
ることが分かる。従って、温度測定の精度が4℃に対し
て0.2℃以内、すなわち5%以内であることから、位相
のずれの誤差は0.05π以下におさまり、良好な光学特性
が得られることが解る。
From the results shown in Table 1, the product A of the reciprocal of the thermal conductivity of the optical waveguide and the distance from the center of the core 13 to the surface of the substrate 11 is obtained.
However, A / B ≧ 19 with respect to the product B of the reciprocal of the thermal conductivity of the substrate 11 and the thickness of the substrate 11, and the product B is 2.85 × 10 −4.
W is -1 · m 2 · K or more, the substrate thickness is 1.2mm and 1.
In the case of 5 mm, the temperature difference from the design value is smaller than 0.2 ° C., indicating that the temperature of the core 13 can be measured more accurately. Accordingly, since the accuracy of the temperature measurement is within 0.2 ° C., that is, within 5% with respect to 4 ° C., the error of the phase shift is reduced to 0.05π or less, and it is understood that good optical characteristics can be obtained.

【0040】これにより、本発明の光電気混在基板は、
光導波路についての温度検出精度の高い光電気混在基板
であることが確認できた。
As a result, the photoelectric mixed substrate of the present invention
It was confirmed that the substrate was a photoelectric mixed substrate having high temperature detection accuracy for the optical waveguide.

【0041】なお、以上はあくまで本発明の実施の形態
の例示であって、本発明はこれらに限定されるものでは
なく、本発明の要旨を逸脱しない範囲で種々の変更や改
良を加えることは何ら差し支えない。例えば、熱伝導率
の異なる複数の基板を貼り合わせることにより、基板全
体の熱伝導率の逆数と厚さとの積Bを調整してもよい。
It should be noted that the above is only an example of the embodiment of the present invention, and the present invention is not limited to the embodiment. Various changes and improvements may be made without departing from the gist of the present invention. No problem. For example, the product B of the reciprocal of the thermal conductivity and the thickness of the entire substrate may be adjusted by bonding a plurality of substrates having different thermal conductivity.

【0042】[0042]

【発明の効果】以上のように、本発明の光電子混在基板
によれば、基板上に、光部品および電子部品の搭載部
と、光部品が接続される光導波路と、この光導波路の一
部に近接配置された、この光導波路の温度を検出するた
めの金属または半導体からなる温度検出素子とが形成さ
れており、光導波路の熱伝導率の逆数と光導波路のコア
部の中心から基板表面までの距離との積Aを、基板の熱
伝導率の逆数と基板の厚さとの積Bに対してA/B≧19
としたことにより、光導波路の熱抵抗が基板の熱抵抗よ
りも相対的に小さくなり、基板上面の温度が基板下面の
温度よりも光導波路のコア部中心の温度に近くなるの
で、光導波路内部に緩やかな温度勾配を生じ、光導波路
のコア部と温度検出素子が配置された基板表面と温度差
が小さくなることから、被測定物である光導波路のコア
部の温度を精度良く測定し検出することが可能となっ
た。
As described above, according to the optoelectronic mixed substrate of the present invention, the mounting portion of the optical component and the electronic component, the optical waveguide to which the optical component is connected, and a part of the optical waveguide are provided on the substrate. And a temperature detecting element made of metal or semiconductor for detecting the temperature of the optical waveguide, which is arranged in close proximity to the substrate surface from the reciprocal of the thermal conductivity of the optical waveguide and the center of the core of the optical waveguide. To the product B of the inverse of the thermal conductivity of the substrate and the thickness of the substrate, A / B ≧ 19
As a result, the thermal resistance of the optical waveguide becomes relatively smaller than the thermal resistance of the substrate, and the temperature of the upper surface of the substrate becomes closer to the temperature of the center of the core of the optical waveguide than the temperature of the lower surface of the substrate. The temperature difference between the core of the optical waveguide and the surface of the substrate on which the temperature detection element is placed is reduced, and the temperature of the core of the optical waveguide to be measured is accurately measured and detected. It became possible to do.

【0043】また、本発明の光電子混在基板によれば、
基板の熱伝導率の逆数と基板の厚さとの積Bを2.85×10
-4-1・m2・K以上としたときには、熱光学(TO)
効果に敏感な有機系の光導波路材料に対しても上記A/
Bを19以上に設定することができるので、被測定物であ
る光導波路のコア部の温度をより精度良く測定すること
が可能となった。
According to the photoelectric mixed substrate of the present invention,
The product B of the reciprocal of the thermal conductivity of the substrate and the thickness of the substrate is 2.85 × 10
-4 W -1 · m 2 · K or more, thermo-optic (TO)
Even for organic optical waveguide materials sensitive to the effects, the above A /
Since B can be set to 19 or more, it has become possible to more accurately measure the temperature of the core portion of the optical waveguide as the device under test.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光電子混在基板の実施の形態の一例と
してマッハツェンダ型全光スイッチを形成した光電子混
在基板を示す斜視図である。
FIG. 1 is a perspective view showing a photoelectric mixed substrate on which a Mach-Zehnder type all-optical switch is formed as an example of an embodiment of a photoelectric mixed substrate of the present invention.

【図2】図1に示す光電子混在基板のA−A’線断面図
である。
FIG. 2 is a cross-sectional view taken along line AA ′ of the photoelectric mixed substrate shown in FIG.

【図3】従来の温度センサを具備した光導波路基板の例
として、熱光学効果(TO効果)を用いた光遅延装置を
示す断面図である。
FIG. 3 is a cross-sectional view showing an optical delay device using a thermo-optic effect (TO effect) as an example of an optical waveguide substrate provided with a conventional temperature sensor.

【図4】図3の光遅延装置に用いられる光導波路の断面
図である。
FIG. 4 is a cross-sectional view of an optical waveguide used in the optical delay device of FIG.

【符号の説明】[Explanation of symbols]

11・・・基板 12・・・温度センサ用抵抗体(温度検出素子) 13・・・光導波路のコア部 14・・・光導波路のクラッド部 15・・・温度制御用抵抗体 21・・・基板 11 ... substrate 12 ... resistor for temperature sensor (temperature detecting element) 13 ... core part of optical waveguide 14 ... clad part of optical waveguide 15 ... resistor 21 for temperature control substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、光部品および電子部品の搭載
部と、前記光部品が接続される光導波路と、該光導波路
の下部に近接配置された、該光導波路の温度を検出する
ための金属または半導体からなる温度検出素子とが形成
されており、前記光導波路の熱伝導率の逆数と光導波路
のコア部の中心から前記基板表面までの距離との積Aを
前記基板の熱伝導率の逆数と基板の厚さとの積Bに対し
てA/B≧19としたことを特徴とする光電子混在基
板。
An optical waveguide to which an optical component and an electronic component are mounted on a substrate, an optical waveguide to which the optical component is connected, and a temperature of the optical waveguide disposed close to a lower portion of the optical waveguide. A temperature detecting element made of a metal or a semiconductor is formed, and the product A of the reciprocal of the thermal conductivity of the optical waveguide and the distance from the center of the core portion of the optical waveguide to the surface of the substrate is defined as the thermal conductivity of the substrate. A / E mixed substrate, wherein A / B ≧ 19 with respect to a product B of a reciprocal of the ratio and a thickness of the substrate.
【請求項2】 前記基板の熱伝導率の逆数と基板の厚さ
との積Bが2.85×10-4-1・m2・K以上である
ことを特徴とする請求項1記載の光電子混在基板。
2. The product according to claim 1, wherein the product B of the reciprocal of the thermal conductivity of the substrate and the thickness of the substrate is not less than 2.85 × 10 −4 W −1 · m 2 · K. Photo-electron mixed substrate.
JP2000048199A 2000-02-24 2000-02-24 Optical-electric mixture substrate Pending JP2001235716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000048199A JP2001235716A (en) 2000-02-24 2000-02-24 Optical-electric mixture substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000048199A JP2001235716A (en) 2000-02-24 2000-02-24 Optical-electric mixture substrate

Publications (1)

Publication Number Publication Date
JP2001235716A true JP2001235716A (en) 2001-08-31

Family

ID=18570323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000048199A Pending JP2001235716A (en) 2000-02-24 2000-02-24 Optical-electric mixture substrate

Country Status (1)

Country Link
JP (1) JP2001235716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197627A (en) * 2009-02-24 2010-09-09 Nippon Telegr & Teleph Corp <Ntt> Waveguide-type optical interference circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197627A (en) * 2009-02-24 2010-09-09 Nippon Telegr & Teleph Corp <Ntt> Waveguide-type optical interference circuit

Similar Documents

Publication Publication Date Title
Gagnon et al. Thermally activated variable attenuation of long-range surface plasmon-polariton waves
US9513437B2 (en) Photonic integrated circuit incorporating a bandgap temperature sensor
CN102292665B (en) Integrated optical waveguide interferometric sensor
USRE48654E1 (en) Photonic integrated circuit incorporating a bandgap temperature sensor
US7289197B2 (en) Transmissive optical detector
US20060165340A1 (en) Thermo-optic waveguide device and manufacturing method thereof
US3898605A (en) Integrated optical bolometer for detection of infrared radiation
Heimala et al. Thermally tunable integrated optical ring resonator with poly-Si thermistor
Bozhevolnyi et al. Integrated power monitor for long-range surface plasmon polaritons
Celo et al. Thermo-optic silicon photonics with low power and extreme resilience to over-drive
Gao et al. Comprehensive investigation of thermo-optic phase shifters on a multi-layered SiN-on-SOI platform
JP4899393B2 (en) Waveguide-type variable optical attenuator
JP2001235716A (en) Optical-electric mixture substrate
JP4250272B2 (en) Optoelectronic mixed substrate
Sun et al. Variable optical attenuator based on long-range surface plasmon polariton multimode interference coupler
JP4531103B2 (en) Optoelectronic mixed substrate
JP3539375B2 (en) Optical waveguide device
JPH01170838A (en) Refractive index measuring instrument
KR100322128B1 (en) A measurement apparatus of polymer thermooptic coefficient
Payne et al. A CMOS-compatible heterogeneous interferometer for chip-scale temperature sensing
Breglio et al. Temperature optical sensor based on a silicon bimodal Y branch
JP2000187192A (en) Temperature controlled optical waveguide
KR102611850B1 (en) Temperature-stabilized wavelength tunable optical filter
Nakai et al. A siloxane polymer lightwave circuit on ceramic substrate applicable to ultrafast optoelectronic multi-chip-modules
CN117805967A (en) Hybrid plasma waveguide, temperature sensor and electronic device