KR20000047386A - Method of fabrication acoustic wave device and acoustic wave device using the same - Google Patents

Method of fabrication acoustic wave device and acoustic wave device using the same Download PDF

Info

Publication number
KR20000047386A
KR20000047386A KR1019990013830A KR19990013830A KR20000047386A KR 20000047386 A KR20000047386 A KR 20000047386A KR 1019990013830 A KR1019990013830 A KR 1019990013830A KR 19990013830 A KR19990013830 A KR 19990013830A KR 20000047386 A KR20000047386 A KR 20000047386A
Authority
KR
South Korea
Prior art keywords
film
elastic
bottom electrode
layer
acoustic wave
Prior art date
Application number
KR1019990013830A
Other languages
Korean (ko)
Other versions
KR100323802B1 (en
Inventor
박희대
김형준
김영식
이재빈
Original Assignee
박희대
김형준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박희대, 김형준 filed Critical 박희대
Priority to KR1019990013830A priority Critical patent/KR100323802B1/en
Publication of KR20000047386A publication Critical patent/KR20000047386A/en
Application granted granted Critical
Publication of KR100323802B1 publication Critical patent/KR100323802B1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE: An acoustic element and method therefor are provided to have an acoustic element maintaining a filtering area of wide band and a high electric reflection coefficient regardless of kind of a plate. CONSTITUTION: Method for manufacturing an acoustic element comprises the steps of: forming an acoustic reflecting layer (7) by laminating a silicon dioxide film (4) as much as 0.12 to 0.13 times of acoustic wave thickness having a first acoustic impedance, and a tungsten (W) film (6) as much as 0.2 to 0.3 times of acoustic wave thickness having a second acoustic impedance larger than the first acoustic impedance on a plate (2), a utmost layer being preferably a silicon oxide film; forming a bottom electrode (10) on the acoustic reflecting layer; forming a piezoelectric substance as much as 0.45 to 0.55 times of the whole acoustic reflecting layer on the bottom electrode layer; and forming a top electrode (20) on the piezoelectric substance.

Description

탄성파 소자의 제조방법 및 그에 따라 형성된 탄성파 소자{Method of fabrication acoustic wave device and acoustic wave device using the same}Method of fabricating an acoustic wave device and an acoustic wave device formed according to the method {Method of fabrication acoustic wave device and acoustic wave device using the same}

본 발명은 탄성파 소자에 관한 것으로서, 보다 상세하게는 서로 다른 탄성 임피던스 유전율을 갖는 박막이 순차적으로 반복 적층된 다층막 구조를 갖는 탄성파 소자의 제조방법 및 그에 따라 형성된 탄성파 소자에 관한 것이다.The present invention relates to an acoustic wave device, and more particularly, to a method of manufacturing an acoustic wave device having a multilayered film structure in which thin films having different elastic impedance dielectric constants are sequentially and repeatedly stacked, and the elastic wave devices formed accordingly.

최근 정보처리 장치와 통신기기의 동작속도의 고속화가 요구됨에 따라 신호의 주파수가 고주파(Radio Frequency)대로 높아졌다.Recently, as the speed of the operation of the information processing apparatus and the communication apparatus is required to increase, the frequency of the signal has increased to a radio frequency.

이러한 주파수의 변화에 대응하여, 상기 고주파대에서 동작할 수 있는 필터가 요구되고 있다. 이러한 목적으로 탄성파 소자(Acoustic Wave Device)가 사용된다.In response to such a change in frequency, a filter capable of operating at the high frequency band is required. An acoustic wave device is used for this purpose.

정보시대의 총아라고 할 수 있는 장래의 무선이동통신의 유망성 관점에서 상기 탄성파 소자의 개발은 무한한 가능성을 가지고 있다.In view of the prospect of future wireless mobile communication, which can be regarded as the information age, the development of the acoustic wave device has unlimited possibilities.

상기 탄성파 소자중 FBAR(Film Bulk Acoustic Resonator) 박막형 필터는 반도체 기판인 실리콘(Si) 또는 갈륨비소(GaAs) 기판상에 압전물질(Piezoelectric Material)인 아연산화막(ZnO) 또는 알루미늄나이트라이드(AlN) 박막을 증착하여 압전특성에 의한 공진을 유발시켜 박막형태의 소자를 필터로 구현한 것이다.Among the acoustic wave devices, a FBAR (Film Bulk Acoustic Resonator) thin film filter is a thin film of zinc oxide (ZnO) or aluminum nitride (AlN), which is a piezoelectric material, on a silicon (Si) or gallium arsenide (GaAs) substrate, which is a semiconductor substrate. By depositing to induce the resonance by the piezoelectric properties to implement a thin film element as a filter.

즉, 상기 FBAR은 양 전극 사이에 압전박막을 증착하여 벌크탄성파(Bulk Acoustic Wave)를 유발시켜 공진을 일으키는 원리를 사용한다.That is, the FBAR uses a principle that causes a resonance by generating a bulk acoustic wave by depositing a piezoelectric thin film between both electrodes.

상기 FBAR 제조공정은 실리콘 기판상에 식각정지층인 실리콘산화막(SiO2)을 형성하는 공정; 상기 실리콘산화막상에 하부전극을 위한 알루미늄막, 압전박막인 아연산화막과 상부전극을 위한 알루미늄막을 순차적으로 형성하는 공정; 및 전극과 멤브레인을 형성하는 공정;으로 나눌 수 있다.The FBAR manufacturing process may include forming a silicon oxide film (SiO 2 ) as an etch stop layer on a silicon substrate; Sequentially forming an aluminum film for a lower electrode, a zinc oxide film as a piezoelectric film, and an aluminum film for an upper electrode on the silicon oxide film; And forming a membrane with the electrode.

상기 멤브레인의 형성은 상기 실리콘 기판의 반대면을 이방성 식각(Isotropic Etching)방법으로 식각정지층인 실리콘산화막이 노출되도록하여 식각케비티(Etching Cavity)를 형성하는 것이다.The formation of the membrane is to form an etching cavity by exposing the silicon oxide film, which is an etch stop layer, to an opposite surface of the silicon substrate by an isotropic etching method.

그러나 상기 멤브레인을 이용한 FBAR은 공정의 번거로움과 개별소자의 절단시 상기 멤브레인의 약함으로 인하여 소자가 파손되는 문제점이 있었다. 또한 탄성파(Acoustic Wave)에너지의 손실로 공진 특성이 감소하는 문제점이 있었다.However, the FBAR using the membrane has a problem in that the device is damaged due to the troublesome process and the weakness of the membrane when the individual device is cut. In addition, there is a problem that the resonance characteristics are reduced due to the loss of acoustic wave energy.

본 발명의 목적은, 기판의 종류에 무관하게 높은 전기적 반사계수(Q)를 갖으며, 광대역의 필터링 영역을 갖는 탄성파 소자의 제조방법 및 그에 따라 형성된 탄성파 소자를 제공하는 데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an acoustic wave element having a high electrical reflection coefficient Q and having a wideband filtering region regardless of the type of substrate, and the elastic wave element formed thereby.

도1 내지 도5는 본 발명에 의한 탄성파 소자의 제조방법을 설명하기 위한 공정단면도들이다.1 to 5 are process cross-sectional views illustrating a method of manufacturing an acoustic wave device according to the present invention.

※도면의 주요부분에 대한 부호의 설명※ Explanation of symbols for main parts of drawing

2 ; 실리콘 기판 4 ; 실리콘산화막2 ; Silicon substrate 4; Silicon oxide film

6 ; 텅스텐막 7 : 탄성 반사층6; Tungsten Film 7: Elastic Reflective Layer

8, 18 ; 버퍼막 10 ; 바텀전극8, 18; Buffer film 10; Bottom electrode

12, 16 ; 보호막 14 ; 아연산화막12, 16; Protective film 14; Zinc oxide film

20 ; 탑전극20; Top electrode

상기 목적을 달성하기 위한 본 발명에 따른 탄성파 소자의 제조방법은 기판상에 제 1 탄성 임피던스(First Acoustic Impedence)를 갖으며, 탄성 파장의 0.12 내지 0.13 배의 두께를 갖는 실리콘산화(SiO2)막과 상기 제 1 탄성 임피던스보다 큰 제 2 탄성 임피던스를 갖으며, 탄성 파장의 0.2 내지 0.3 배의 두께를 갖는 텅스텐(W)막을 번갈아 적층하며, 최상부층은 상기 실리콘산화막이 되도록 적층하여 전체적으로 홀수층으로 이루어지는 탄성 반사층(Acoustic Reflecting Layer)을 형성하는 단계; 상기 탄성 반사층상에 바텀전극(Bottom Electrode)을 형성하는 단계; 상기 바텀전극상에 상기 전체 탄성 반사층의 0.45 내지 0.55 배의 두께로 압전물질을 형성하는 단계; 및 상기 압전물질상에 탑전극(Top Electrode)을 형성하는 단계를 구비하여 이루어진다.A method for manufacturing an acoustic wave device according to the present invention for achieving the above object has a first acoustic impedance on the substrate, a silicon oxide (SiO 2 ) film having a thickness of 0.12 to 0.13 times the elastic wavelength And a tungsten (W) film having a second elastic impedance greater than the first elastic impedance and having a thickness of 0.2 to 0.3 times the elastic wavelength, and alternately stacked, and the uppermost layer is laminated so as to be the silicon oxide film. Forming an acoustic reflecting layer; Forming a bottom electrode on the elastic reflective layer; Forming a piezoelectric material on the bottom electrode at a thickness of 0.45 to 0.55 times the total elastic reflection layer; And forming a top electrode on the piezoelectric material.

상기 탄성 반사층은 상기 실리콘산화막과 상기 텅스텐막을 번갈아 7층 내지 11층으로 형성할 수 있다.The elastic reflective layer may be formed of seven to eleven layers of the silicon oxide film and the tungsten film alternately.

상기 바텀전극을 이루는 박막은 금(Au)막, 알루미늄(Al)막, 텅스텐(W)막, 은(Ag)막 및 인듐(In)막중에서 어느 하나일 수 있으며, 상기 탑전극을 이루는 박막은 금(Au)막, 알루미늄(Al)막 및 텅스텐(W)막중에서 어느 하나일 수 있으며, 상기 압전물질은 아연산화막(ZnO) 또는 알루미늄나이트라이드막(AlN)인 것이 바람직하다.The thin film forming the bottom electrode may be any one of a gold (Au) film, an aluminum (Al) film, a tungsten (W) film, a silver (Ag) film, and an indium (In) film. The gold (Au) film, aluminum (Al) film and tungsten (W) film may be any one, and the piezoelectric material is preferably a zinc oxide film (ZnO) or an aluminum nitride film (AlN).

상기 바텀전극으로 금막을 사용하는 경우는 상기 탄성 반사층과 상기 금막사이에 티타늄(Ti)막, 크롬(Cr)막 및 니켈크롬(NiCr)막중에서 어느 하나를 버퍼막으로 더 형성하는 것이 바람직하다.In the case of using the gold film as the bottom electrode, it is preferable to further form any one of a titanium (Ti) film, a chromium (Cr) film and a nickel chromium (NiCr) film as a buffer between the elastic reflective layer and the gold film.

상기 바텀전극과 상기 압전물질 사이 및 상기 압전물질과 탑전극 사이에 외부 온도 변화로부터 소자의 공진 주파수 변동을 방지하기 위한 보호막으로 실리콘산화막(SiO2)을 더 형성하는 것이 바람직하다.It is preferable to further form a silicon oxide film (SiO 2 ) as a protective film for preventing the resonance frequency variation of the device from external temperature change between the bottom electrode and the piezoelectric material and between the piezoelectric material and the top electrode.

상기 목적을 달성하기 위한 본 발명의 탄성파소자 제조방법에 의해 제조된 탄성파소자는 기판; 제 1 탄성 임피던스를 갖으며, 탄성 파장의 0.12 내지 0.13 배의 두께를 갖는 실리콘산화막과 상기 제 1 탄성 임피던스보다 큰 제 2 탄성 임피던스를 갖으며, 탄성 파장의 0.2 내지 0.3 배의 두께를 갖는 텅스텐(W)막이 번갈아 척층되어 있으며, 최상부층은 상기 실리콘산화막으로 이루어져 전체적으로 홀수층을 이루는 탄성 반사층; 상기 탄성 반사층에 형성된 바텀전극; 상기 바텀전극상에 형성되며 상기 전체 탄성 반사층의 0.45 내지 0.55 배의 두께인 압전박막; 및 상기 압전박막상에 형성된 탑전극을 구비하여 이루어진다.An acoustic wave device manufactured by the method for manufacturing the acoustic wave device of the present invention for achieving the above object is a substrate; Tungsten having a first elastic impedance, a silicon oxide film having a thickness of 0.12 to 0.13 times the elastic wavelength, a second elastic impedance greater than the first elastic impedance, and having a thickness of 0.2 to 0.3 times the elastic wavelength. W) the film is alternately chucked layer, the uppermost layer is made of the silicon oxide film, the elastic reflective layer forming an odd layer as a whole; A bottom electrode formed on the elastic reflective layer; A piezoelectric thin film formed on the bottom electrode and having a thickness of 0.45 to 0.55 times the total elastic reflection layer; And a top electrode formed on the piezoelectric thin film.

상기 바텀전극을 이루는 박막은 금(Au)막, 알루미늄(Al)막, 텅스텐(W)막 및 인듐(In)막중에서 어느 하나일 수 있으며, 상기 탑전극을 이루는 박막은 금(Au)막, 알루미늄(Al)막 및 텅스텐(W)막중에서 어느 하나일 수 있으며, 상기 압전물질은 아연산화막(ZnO) 또는 알루미늄나이트라이드막(AlN)인 것이 바람직하다.The thin film forming the bottom electrode may be any one of a gold (Au) film, an aluminum (Al) film, a tungsten (W) film, and an indium (In) film. The thin film forming the top electrode may be a gold (Au) film, It may be any one of an aluminum (Al) film and a tungsten (W) film, and the piezoelectric material is preferably a zinc oxide film (ZnO) or an aluminum nitride film (AlN).

상기 바텀전극이 금막인 경우는 상기 탄성 반사층과 상기 바텀전극사이에 티타늄(Ti)막, 크롬(Cr)막 및 니켈크롬(NiCr)막중에서 어느 하나의 버퍼막, 상기 바텀전극과 압전물질 사이 및 상기 압전물질과 탑전극 사이에는 외부 온도 변화로부터 소자의 공진 주파수 변동을 방지하기 위한 보호막으로 실리콘산화막(SiO2)이 더 형성되어 있는 것이 바람직하다.When the bottom electrode is a gold film, any one of a titanium (Ti) film, a chromium (Cr) film, and a nickel chromium (NiCr) film between the elastic reflective layer and the bottom electrode, between the bottom electrode and the piezoelectric material, and It is preferable that a silicon oxide film (SiO 2 ) is further formed between the piezoelectric material and the top electrode as a protective film to prevent resonance frequency variation of the device from external temperature change.

이하, 본 발명의 구체적인 일 실시예를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings a specific embodiment of the present invention will be described in detail.

도1 내지 도5는 본 발명에 의한 탄성파 소자의 제조방법을 설명하기 위한 공정단면도들이다.1 to 5 are process cross-sectional views illustrating a method of manufacturing an acoustic wave device according to the present invention.

도1을 참조하면, 먼저 실리콘 기판(2)상에 제 1 탄성 임피던스를 갖는 실리콘산화막(4)과 제 2 탄성 임피던스를 갖는 텅스텐막(6)의 순서로 층착한다. 즉, 상기 실리콘산화막(4)과 상기 텅스텐막(6)이 순차적으로 한 쌍(Pair)을 이루도록 증착하며, 최상층은 상기 실리콘산화막(4)을 증착하여 전체적으로 홀수층을 갖는 탄성 반사층(7)를 형성한다. 여기서 탄성 임피던스는 상기 텅스텐막(6)이 더 크다.Referring to FIG. 1, first, a silicon oxide film 4 having a first elastic impedance and a tungsten film 6 having a second elastic impedance are deposited on the silicon substrate 2 in this order. That is, the silicon oxide film 4 and the tungsten film 6 are deposited in a pair in order, and the uppermost layer is formed by depositing the silicon oxide film 4 to form an elastic reflective layer 7 having an odd layer as a whole. Form. In this case, the elastic impedance of the tungsten film 6 is larger.

이때 상기 기판은 본 실시예에와 같이 실리콘 기판(2)에만 한정되는 것을 아니며 갈륨비소(GaAs), 유리(Glass), 석영(Quartz) 및 사파이어(Sapphire) 등 다양한 재질의 기판을 사용할 수 있다.In this case, the substrate is not limited to the silicon substrate 2 as in the present embodiment, and substrates of various materials such as gallium arsenide (GaAs), glass, quartz, sapphire, and the like may be used.

상기 실리콘산화막(4)과 텅스텐막(6)의 증착은 알에프 마그네트론 스퍼터링(Radio Frequency Magnetron Sputtering)방법을 사용한다. 상기 실리콘산화막(4)과 텅스텐막(6)의 공정조건은 각각 알에프 인가전력은 100 W, 60 W이며, 공정챔버의 진공도는 20 mtorr로 동일하다. 물론 화학기상증착방법(Chemical Vapour Deposition)으로 형성할 수 있다.The deposition of the silicon oxide film 4 and the tungsten film 6 uses an RF magnetron sputtering method. The process conditions of the silicon oxide film 4 and the tungsten film 6 are 100W and 60W, respectively, and the vacuum degree of the process chamber is equal to 20 mtorr. Of course, it can be formed by chemical vapor deposition (Chemical Vapor Deposition).

상기 탄성 반사층(7)은 소자 특성에 따라 반복해서 증착하여 7층 내지 11층으로 다양하게 형성할 수 있다. 본 실시예서는 7층구조의 탄성 반사층(7)을 형성한다.The elastic reflective layer 7 may be repeatedly formed according to device characteristics, and may be variously formed in 7 to 11 layers. In this embodiment, the elastic reflective layer 7 having a seven-layer structure is formed.

상기 실리콘산화막(4)의 두께(t1)는 탄성표면파의 탄성파장을 λ라고 하면 (λ×0.125)(t1) = (v0×0.25)/(f0×√ε)의 관계를 만족하도록 한다. 상기 텅스텐막(6)의 두께(t2)는 탄성표면파의 파장을 λ라고 하면 (λ×0.25)(t2) = (v0×0.25)/f0의 관계를 만족하도록 한다. 여기서 상기 v0는 박막의 탄성속도이며, f0는 탄성파 소자의 중심 대역 주파수 및 상기 ε는 그 물질의 유전율을 나타낸다. 여기서 상기 실리콘산화막(4)의 유전율은 3.8 이다.The thickness t 1 of the silicon oxide film 4 satisfies the relationship of (λ × 0.125) (t 1 ) = (v 0 × 0.25) / (f 0 × √ε) when the elastic wavelength of the surface acoustic wave is λ. Do it. The thickness t 2 of the tungsten film 6 satisfies the relationship of (λ × 0.25) (t 2 ) = (v 0 × 0.25) / f 0 when the wavelength of the surface acoustic wave is λ. Where v 0 is the elastic velocity of the thin film, f 0 is the center band frequency of the acoustic wave element, and ε represents the dielectric constant of the material. Here, the dielectric constant of the silicon oxide film 4 is 3.8.

일반적으로 상기 실리콘산화막(4)의 탄성속도는 5970 m/sec 이며, 상기 텅스텐막(6)의 탄성속도는 5180 m/sec 이다. 따라서, 원하는 중심 대역 주파수가 1GHz인 탄성파 소자를 구성하는 경우, 상기 실리콘산화막(4)과 텅스텐막(6)의 두께는 상기 식에 의하면 각각 약 1529 ㎚(t1)과 1295 ㎚(t2)일 수 있다.In general, the elastic velocity of the silicon oxide film 4 is 5970 m / sec, and the elastic velocity of the tungsten film 6 is 5180 m / sec. Therefore, in the case of forming an acoustic wave element having a desired center band frequency of 1 GHz, the thicknesses of the silicon oxide film 4 and the tungsten film 6 are about 1529 nm (t 1 ) and 1295 nm (t 2 ), respectively, according to the above formulas. Can be.

도2를 참조하면, 상기 실리콘산화막(4)상에 버퍼막(8)으로 티타늄막(Ti)을 100 내지 200Å 증착하고, 바텀전극(Bottom Electrode : 10)을 형성하기 위한 금막(Au)막을 1200 내지 1300Å 증착하고, 사진식각공정을 수행하여 소정의 바텀전극(10)을 형성한다. 상기 티타늄막(Ti) 및 알루미늄(Al)막의 증착은 알에프 마그네트론 스퍼터링방법 또는 증발증착(Evaporation Deposition)방법을 이용한다. 여기서 상기 티타늄막과 금막의 총 두께는 1500Å 미만으로 한다.Referring to FIG. 2, a gold film (Au) film for forming a bottom electrode (Bottom Electrode: 10) is formed by depositing a titanium film (Ti) from 100 to 200 Å with a buffer film (8) on the silicon oxide film (4). 1300 Å to 1300 Å deposited and a photolithography process are performed to form a predetermined bottom electrode 10. The titanium film Ti and aluminum film is deposited using an RF magnetron sputtering method or an evaporation deposition method. Here, the total thickness of the titanium film and the gold film is less than 1500 kPa.

또한 상기 버퍼막(8)으로는 크롬막(Cr) 또는 니켈크롬(NiCr)막을 사용할 수 있으며, 상기 바텀전극(10)으로는 상기 금막(Au) 이외에 알루미늄막, 텅스텐막(W), 은막(Ag) 및 인듐막(In)중에서 어느 하나를 사용할 수 있으며, 상기 인듐막을 바텀전극(10)으로 사용할 때는 상기 인듐막 자체도 탄성 반사층의 기능을 한다. 따라서 상기 인듐막의 두께는 탄성 파장의 0.25배를 갖도록한다.In addition, a chromium film (Cr) or a nickel chromium (NiCr) film may be used as the buffer film 8, and as the bottom electrode 10, in addition to the gold film Au, an aluminum film, a tungsten film W, and a silver film ( Any one of Ag) and an indium film (In) can be used. When the indium film is used as the bottom electrode 10, the indium film itself also functions as an elastic reflection layer. Therefore, the thickness of the indium film is 0.25 times the elastic wavelength.

상기 버퍼막(8)은 상기 실리콘산화막(4)과 바텀전극(10)으로 사용되는 금막과의 접착력을 향상시켜준다.The buffer film 8 improves the adhesion between the silicon oxide film 4 and the gold film used as the bottom electrode 10.

도3을 참조하면, 상기 바텀전극(10)상에 외부온도 변화로부터 소자의 공진 주파수 변동을 방지하기 위한 보호막(12)으로 실리콘산화막(12)을 1800 내지 2200Å 형성하고, 상기 실리콘산화막(12)상에 압전박막인 아연산화막(14)을 형성한다. 상기 실리콘산화막(12) 및 아연산화막(14)의 증착은 알에프 마그네트론 스퍼터링방법을 이용한다.Referring to FIG. 3, a silicon oxide film 12 is formed on the bottom electrode 10 as a protective film 12 to prevent resonance frequency variation of the device from a change in external temperature, and the silicon oxide film 12 is formed. A zinc oxide film 14 that is a piezoelectric thin film is formed on the film. The deposition of the silicon oxide film 12 and the zinc oxide film 14 uses an RF magnetron sputtering method.

상기 아연산화막(14)의 두께는 소자특성에 따라 다르며 본 발명에서는 상기 탄성 반사층(7) 전체 두께의 0.5가 되도록 한다. 따라서, 소자의 중심 대역 주파수(f0) 대역을 1GHz라고 할 때 상술한 상기 실리콘산화막(4)과 텅스텐막(6)의 두께에 의해 상기 아연산화막(14)의 두께는 약 10000㎚ 일 수 있다.The thickness of the zinc oxide film 14 varies depending on device characteristics, and in the present invention, the thickness of the elastic reflective layer 7 is 0.5. Accordingly, when the center band frequency f 0 of the device is 1 GHz, the thickness of the zinc oxide film 14 may be about 10000 nm due to the thicknesses of the silicon oxide film 4 and the tungsten film 6. .

도4를 참조하면, 상기 아연산화막(14)상에 도3에서와 동일하게 소자가 외부온도 변화로부터 공진 주파수 변동을 방지하기 위한 보호막(16)으로 실리콘산화막을 1800 내지 2200Å 형성하고, 상기 실리콘산화막의 보호막(16)상에 버퍼막(18)으로 티타늄막을 100 내지 200Å 증착한다.Referring to FIG. 4, a silicon oxide film is formed on the zinc oxide film 14 as a protective film 16 to prevent resonance frequency fluctuations from external temperature changes, as in FIG. 3, and the silicon oxide film is formed on the zinc oxide film 14. 100 to 200 Å of titanium film is deposited on the protective film 16 by the buffer film 18.

도5를 참조하면, 상기 버퍼막(18)상에 탑전극(Top Electrode)을 형성하기 위한 금막을 1000 내지 1300Å 증착한 후, 사진식각공정을 수행하여 소정의 탑전극(20)을 형성하여 탄성파 소자를 완성한다. 상기 탑전극(20)의 박막은 상기 금막 이외에 알루미늄막, 금막 또는 텅스텐막일 수 있다.Referring to FIG. 5, after depositing a gold film for forming a top electrode on the buffer film 18, 1000 to 1300 Å is deposited, a photolithography process is performed to form a predetermined top electrode 20 to form a seismic wave. Complete the device. The thin film of the top electrode 20 may be an aluminum film, a gold film, or a tungsten film in addition to the gold film.

상술한 바와 같이 본 발명은 기판상에 상대적으로 탄성 임피던스가 작은 실리콘산화막과 상대적으로 탄성 임피던스가 큰 텅스텐막을 각각 순차적으로 반복 적층하고, 또한 상기 압전물질을 상기 탄성 반사층 전체 두께의 약 0.5배로 형성하am로서 탄성파 에너지가 효과적으로 전극층사이에 모이도록 하여 공진이 효율적으로 발생토록한다. 그러므로 종래의 인터지디털 변환기(IDT : Inter Digital Transducer)의 미세형성보다는 기판상의 브레그 반사층의 두께를 조정함으로서 원하는 중심 대역 주파수를 얻을 수 있다.As described above, according to the present invention, a silicon oxide film having a relatively small elastic impedance and a tungsten film having a large elastic impedance are sequentially repeatedly stacked on the substrate, and the piezoelectric material is formed at about 0.5 times the total thickness of the elastic reflective layer. As am, the seismic wave energy is effectively collected between the electrode layers so that resonance occurs efficiently. Therefore, the desired center band frequency can be obtained by adjusting the thickness of the Bragg reflective layer on the substrate, rather than the microforming of a conventional Inter Digital Transducer (IDT).

따라서, 기판의 종류를 다양하게 사용할 수 있으며, 높은 전기적 반사계수(Q)를 갖으며, 대량생산 및 공정시간을 단축할 수 있는 효과가 있다.Therefore, it is possible to use a variety of substrates, have a high electrical reflection coefficient (Q), there is an effect that can reduce the mass production and processing time.

이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although the present invention has been described in detail only with respect to the described embodiments, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical scope of the present invention, and such modifications and modifications are within the scope of the appended claims.

Claims (8)

기판상에 제 1 탄성 임피던스(First Acoustic Impedence)를 갖으며, 탄성 파장의 0.12 내지 0.13 배의 두께를 갖는 실리콘산화(SiO2)막과 상기 제 1 탄성 임피던스보다 큰 제 2 탄성 임피던스를 갖으며, 탄성 파장의 0.2 내지 0.3 배의 두께를 갖는 텅스텐(W)막을 번갈아 적층하며, 최상부층은 상기 실리콘산화막이 되도록 적층하여 전체적으로 홀수층으로 이루어지는 탄성 반사층(Acoustic Reflecting Layer)을 형성하는 단계;It has a first elastic impedance (First Acoustic Impedence) on the substrate, a silicon oxide (SiO 2 ) film having a thickness of 0.12 to 0.13 times the elastic wavelength and a second elastic impedance greater than the first elastic impedance, Alternately stacking a tungsten (W) film having a thickness of 0.2 to 0.3 times the elastic wavelength, and stacking an uppermost layer so as to form the silicon oxide film to form an acoustic reflecting layer including an odd numbered layer as a whole; 상기 탄성 반사층상에 바텀전극(Bottom Electrode)을 형성하는 단계;Forming a bottom electrode on the elastic reflective layer; 상기 바텀전극상에 상기 전체 탄성 반사층의 0.45 내지 0.55 배의 두께로 압전물질을 형성하는 단계; 및Forming a piezoelectric material on the bottom electrode at a thickness of 0.45 to 0.55 times the total elastic reflection layer; And 상기 압전물질상에 탑전극(Top Electrode)을 형성하는 단계;Forming a top electrode on the piezoelectric material; 를 구비하여 이루어지는 것을 특징으로 하는 탄성파 소자의 제조방법.A method of manufacturing an acoustic wave element, characterized in that it comprises a. 제 1 항에 있어서,The method of claim 1, 상기 탄성 반사층은 상기 실리콘산화막과 상기 텅스텐막을 번갈아 7층 내지 11층으로 형성하는 것을 특징으로 하는 상기 탄성파 소자의 제조방법.The elastic reflection layer is a method of manufacturing the acoustic wave element, characterized in that formed by alternating the silicon oxide film and the tungsten film to 7 to 11 layers. 제 1 항에 있어서,The method of claim 1, 상기 바텀전극을 이루는 박막은 금(Au)막, 알루미늄(Al)막, 텅스텐(W)막, 은(Ag)막 및 인듐(In)막중에서 어느 하나일 수 있으며, 상기 탑전극을 이루는 박막은 금(Au)막, 알루미늄(Al)막 및 텅스텐(W)막중에서 어느 하나일 수 있으며, 상기 압전물질은 아연산화막(ZnO) 또는 알루미늄나이트라이드막(AlN)인 것을 특징으로 하는 상기 탄성파 소자의 제조방법.The thin film forming the bottom electrode may be any one of a gold (Au) film, an aluminum (Al) film, a tungsten (W) film, a silver (Ag) film, and an indium (In) film. Gold (Au) film, aluminum (Al) film and tungsten (W) film may be any one of the piezoelectric material is a zinc oxide film (ZnO) or aluminum nitride film (AlN), characterized in that Manufacturing method. 제 1 항에 있어서,The method of claim 1, 상기 바텀전극으로 금막을 사용하는 경우는 상기 탄성 반사층과 상기 금막사이에 티타늄(Ti)막, 크롬(Cr)막 및 니켈크롬(NiCr)막중에서 어느 하나를 버퍼막으로 더 형성하는 것을 특징으로 하는 상기 탄성파 소자의 제조방법.In the case of using the gold film as the bottom electrode, any one of a titanium (Ti) film, a chromium (Cr) film, and a nickel chromium (NiCr) film is further formed as a buffer between the elastic reflective layer and the gold film. Method for manufacturing the acoustic wave element. 제 3 항에 있어서,The method of claim 3, wherein 상기 바텀전극과 상기 압전물질 사이 및 상기 압전물질과 탑전극 사이에 외부 온도 변화로부터 소자의 공진 주파수 변동을 방지하기 위한 보호막으로 실리콘산화막(SiO2)을 더 형성하는 것을 특징으로 하는 상기 탄성파 소자의 제조방법.A silicon oxide film (SiO 2 ) is further formed as a protective film for preventing a resonance frequency variation of the device from external temperature changes between the bottom electrode and the piezoelectric material and between the piezoelectric material and the top electrode. Manufacturing method. 기판;Board; 제 1 탄성 임피던스를 갖으며, 탄성 파장의 0.12 내지 0.13 배의 두께를 갖는 실리콘산화막과 상기 제 1 탄성 임피던스보다 큰 제 2 탄성 임피던스를 갖으며, 탄성 파장의 0.2 내지 0.3 배의 두께를 갖는 텅스텐(W)막이 번갈아 척층되어 있으며, 최상부층은 상기 실리콘산화막으로 이루어져 전체적으로 홀수층을 이루는 탄성 반사층;Tungsten having a first elastic impedance, a silicon oxide film having a thickness of 0.12 to 0.13 times the elastic wavelength, a second elastic impedance greater than the first elastic impedance, and having a thickness of 0.2 to 0.3 times the elastic wavelength. W) the film is alternately chucked layer, the uppermost layer is made of the silicon oxide film, the elastic reflective layer forming an odd layer as a whole; 상기 탄성 반사층에 형성된 바텀전극;A bottom electrode formed on the elastic reflective layer; 상기 바텀전극상에 형성되며 상기 전체 탄성 반사층의 0.45 내지 0.55 배의 두께인 압전박막; 및A piezoelectric thin film formed on the bottom electrode and having a thickness of 0.45 to 0.55 times the total elastic reflection layer; And 상기 압전박막상에 형성된 탑전극;A top electrode formed on the piezoelectric thin film; 을 구비하여 이루어지는 것을 특징으로 하는 탄성파 소자.An acoustic wave element comprising a. 제 6 항에 있어서,The method of claim 6, 상기 바텀전극을 이루는 박막은 금(Au)막, 알루미늄(Al)막, 텅스텐(W)막 및 인듐(In)막중에서 어느 하나일 수 있으며, 상기 탑전극을 이루는 박막은 금(Au)막, 알루미늄(Al)막 및 텅스텐(W)막중에서 어느 하나일 수 있으며, 상기 압전물질은 아연산화막(ZnO) 또는 알루미늄나이트라이드막(AlN)인 것을 특징으로 하는 상기 탄성파 소자.The thin film forming the bottom electrode may be any one of a gold (Au) film, an aluminum (Al) film, a tungsten (W) film, and an indium (In) film. The thin film forming the top electrode may be a gold (Au) film, It may be any one of an aluminum (Al) film and a tungsten (W) film, wherein the piezoelectric material is a zinc oxide film (ZnO) or aluminum nitride film (AlN), characterized in that the acoustic wave device. 제 7 항에 있어서,The method of claim 7, wherein 상기 바텀전극이 금막인 경우에는 탄성 반사층과 상기 바텀전극사이에 티타늄(Ti)막, 크롬(Cr)막 및 니켈크롬(NiCr)막중에서 어느 하나의 버퍼막, 상기 바텀전극과 압전물질 사이 및 상기 압전물질과 탑전극 사이에 외부 온도 변화로부터 소자의 공진 주파수 변동을 방지하기 위한 보호막으로 실리콘산화막(SiO2)이 더 형성되어 있는 것을 특징으로 하는 상기 탄성파 소자.When the bottom electrode is a gold film, any one of a titanium (Ti) film, a chromium (Cr) film, and a nickel chromium (NiCr) film between the elastic reflective layer and the bottom electrode, between the bottom electrode and the piezoelectric material, and the The silicon acoustic film (SiO 2 ) is further formed as a protective film for preventing the resonance frequency variation of the device from the external temperature change between the piezoelectric material and the top electrode.
KR1019990013830A 1998-12-07 1999-04-19 Method of fabrication acoustic wave device and acoustic wave device using the same KR100323802B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990013830A KR100323802B1 (en) 1998-12-07 1999-04-19 Method of fabrication acoustic wave device and acoustic wave device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR19980053441 1998-12-07
KR1019980053441 1998-12-07
KR1019990013830A KR100323802B1 (en) 1998-12-07 1999-04-19 Method of fabrication acoustic wave device and acoustic wave device using the same

Publications (2)

Publication Number Publication Date
KR20000047386A true KR20000047386A (en) 2000-07-25
KR100323802B1 KR100323802B1 (en) 2002-02-09

Family

ID=19580826

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990013830A KR100323802B1 (en) 1998-12-07 1999-04-19 Method of fabrication acoustic wave device and acoustic wave device using the same

Country Status (1)

Country Link
KR (1) KR100323802B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020029882A (en) * 2002-03-02 2002-04-20 주식회사 에이엔티 The method of aoustic wave device fabrication using lcmp
KR100483340B1 (en) * 2002-10-22 2005-04-15 쌍신전자통신주식회사 Bulk Acoustic Wave Device and Process of The Same
KR100847528B1 (en) * 2007-02-05 2008-07-22 성균관대학교산학협력단 Film bulk acoustic resonator and method for fabricating the same
KR100857935B1 (en) * 2006-02-24 2008-09-09 인피니언 테크놀로지스 아게 Method of manufacturing an acoustic mirror for a piezoelectric resonator and method of manufacturing a piezoelectric resonator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020029882A (en) * 2002-03-02 2002-04-20 주식회사 에이엔티 The method of aoustic wave device fabrication using lcmp
KR100483340B1 (en) * 2002-10-22 2005-04-15 쌍신전자통신주식회사 Bulk Acoustic Wave Device and Process of The Same
KR100857935B1 (en) * 2006-02-24 2008-09-09 인피니언 테크놀로지스 아게 Method of manufacturing an acoustic mirror for a piezoelectric resonator and method of manufacturing a piezoelectric resonator
KR100847528B1 (en) * 2007-02-05 2008-07-22 성균관대학교산학협력단 Film bulk acoustic resonator and method for fabricating the same

Also Published As

Publication number Publication date
KR100323802B1 (en) 2002-02-09

Similar Documents

Publication Publication Date Title
US6943647B2 (en) Bulk acoustic wave filter with a roughened substrate bottom surface and method of fabricating same
US7939356B2 (en) Method of manufacturing film bulk acoustic resonator using internal stress of metallic film and resonator manufactured thereby
US6107721A (en) Piezoelectric resonators on a differentially offset reflector
US7109826B2 (en) Tapered electrode in an acoustic resonator
KR100506729B1 (en) Film bulk acoustic resonator and method for fabrication thereof
US6420820B1 (en) Acoustic wave resonator and method of operating the same to maintain resonance when subjected to temperature variations
JP3996379B2 (en) Filter structure and configuration including a piezoelectric resonator
US5646583A (en) Acoustic isolator having a high impedance layer of hafnium oxide
KR100622398B1 (en) Film bulk acoustic wave resonator and manufacturing method of it
EP1017170A2 (en) A balanced filter structure
US10658998B2 (en) Piezoelectric film transfer for acoustic resonators and filters
US6388544B1 (en) Method for adjusting the center frequency of a balanced filter and a plurality of balanced filters
KR20040091407A (en) Film bulk acoustic resonator having air gap floating from substrate and method for manufacturing the same
US7109637B2 (en) Thin-film bulk acoustic oscillator and method of manufacturing same
JP4820520B2 (en) Method for manufacturing piezoelectric filter having acoustic resonator in acoustic reflection layer on carrier substrate
KR100323802B1 (en) Method of fabrication acoustic wave device and acoustic wave device using the same
JP2005057707A (en) Thin film bulk acoustic resonator and micro electromechanical system device
JP2002374145A (en) Piezoelectric thin-film resonator
JP2005236338A (en) Piezoelectric thin-film resonator
KR20010029007A (en) Method of fabricating acoustic wave device and a acoustic wave device using the same
JP4693407B2 (en) Piezoelectric thin film device and manufacturing method thereof
JP4693406B2 (en) Piezoelectric thin film device and manufacturing method thereof
KR20220148456A (en) Film Bulk Acoustic Resonator
KR100488491B1 (en) Film Bulk Acoustic Resonator and manufacturing method thereof
KR20020029882A (en) The method of aoustic wave device fabrication using lcmp

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060726

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee