JP4693407B2 - Piezoelectric thin film device and manufacturing method thereof - Google Patents

Piezoelectric thin film device and manufacturing method thereof Download PDF

Info

Publication number
JP4693407B2
JP4693407B2 JP2004380113A JP2004380113A JP4693407B2 JP 4693407 B2 JP4693407 B2 JP 4693407B2 JP 2004380113 A JP2004380113 A JP 2004380113A JP 2004380113 A JP2004380113 A JP 2004380113A JP 4693407 B2 JP4693407 B2 JP 4693407B2
Authority
JP
Japan
Prior art keywords
layer
acoustic reflection
acoustic
thin film
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004380113A
Other languages
Japanese (ja)
Other versions
JP2006186833A (en
Inventor
泰昭 石田
潤 佐々木
新 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2004380113A priority Critical patent/JP4693407B2/en
Publication of JP2006186833A publication Critical patent/JP2006186833A/en
Application granted granted Critical
Publication of JP4693407B2 publication Critical patent/JP4693407B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、圧電薄膜デバイス及びその製造方法に関するものであり、特に多層の音響反射層を用いた音響多層膜型の圧電薄膜デバイス及びその製造方法に関する。   The present invention relates to a piezoelectric thin film device and a manufacturing method thereof, and more particularly to an acoustic multilayer film type piezoelectric thin film device using a multilayer acoustic reflection layer and a manufacturing method thereof.

コンピュータや通信機器などの電子機器は、電子部品の一つである振動子より得られる規則的な信号(高周波信号)に基づいて様々な処理が行われている。また、これらの電子機器においては、振動子の特定の振動モードを利用した周波数フィルタも用いられている。このように電子機器に利用されている振動子(振動素子として圧電材料を使用している場合は圧電振動子という)には、従来より、水晶などの圧電材料を平板状に加工して得られる圧電素板が用いられており、水晶を圧電材料として用いた水晶振動子では、その基本共振周波数を高くするためには、水晶による圧電素板の厚みを薄くすればよい。例えば、水晶において厚みすべり振動モードを励振するATカット水晶素板の場合では、その素板の厚みを25μm程度とすることで、約67MHzの基本波共振周波数が得られる。   In electronic devices such as computers and communication devices, various processes are performed based on regular signals (high-frequency signals) obtained from vibrators that are one of electronic components. In these electronic devices, a frequency filter using a specific vibration mode of the vibrator is also used. As described above, a vibrator (used as a piezoelectric vibrator when a piezoelectric material is used as a vibration element) is obtained by processing a piezoelectric material such as quartz into a flat plate shape. A piezoelectric element plate is used. In a crystal resonator using crystal as a piezoelectric material, the thickness of the piezoelectric element plate made of crystal can be reduced in order to increase the fundamental resonance frequency. For example, in the case of an AT-cut quartz base plate that excites the thickness-shear vibration mode in quartz, a fundamental resonance frequency of about 67 MHz can be obtained by setting the thickness of the base plate to about 25 μm.

しかしながら、これ以上のより高い基本共振周波数(例えば数百MHz以上)を得るためには、更に圧電素板の板厚をより薄くすることになるが、板厚が薄いほど機械加工が困難となり、また、実用的な機械強度が得られない。このような高周波に対応するデバイスとしては弾性表面波を利用したSAWデバイス(Surface Acoustic Wave Device)が用いられているが、これと比較すると、より高周波化(超高周波化)に対応可能である圧電薄膜デバイスが注目されており、そのうち、基板の上に多層の音響反射層を介して圧電層を設けた、音響多層膜(SMR(Solidly Mounted Resonator))型の圧電薄膜デバイスが開発されている(非特許文献1)。   However, in order to obtain a higher fundamental resonance frequency (for example, several hundred MHz or more), the thickness of the piezoelectric element plate is further reduced. However, the thinner the plate thickness is, the more difficult the machining is. Moreover, practical mechanical strength cannot be obtained. A SAW device (Surface Acoustic Wave Device) that uses surface acoustic waves is used as a device that supports such high frequencies. Compared with this, a piezoelectric that can handle higher frequencies (higher frequency). Thin film devices are attracting attention, and among them, an acoustic multilayer film (SMR (Solidly Mounted Resonator)) type piezoelectric thin film device in which a piezoelectric layer is provided on a substrate via a multilayer acoustic reflection layer has been developed ( Non-patent document 1).

近年、通信システムの超高周波帯への移行が進められているなかで、圧電薄膜デバイスのうち例えば圧電薄膜振動子は、超高周波帯で安定に動作させることが可能な超高周波用弾性波素子として注目されている。SMR型の圧電薄膜振動子は、基板の上に音響インピーダンスの異なる2種類の薄膜(λ/4)を交互に積層した音響多層膜の上に、λ/2の厚さの圧電薄膜を形成したものである。   In recent years, with the shift of communication systems to the ultra-high frequency band, among piezoelectric thin film devices, for example, the piezoelectric thin film vibrator is an ultra-high frequency acoustic wave element that can be stably operated in the ultra-high frequency band. Attention has been paid. In the SMR type piezoelectric thin film vibrator, a piezoelectric thin film having a thickness of λ / 2 is formed on an acoustic multilayer film in which two kinds of thin films (λ / 4) having different acoustic impedances are alternately laminated on a substrate. Is.

この構成によれば、圧電薄膜は、多層の音響反射層により基板から音響的に切り離され、Q値の高い共振を得ることが可能になる。また、圧電薄膜の下面全域が音響反射層により固定されているので、安定した動作が可能となる。また、音響多層膜型の圧電薄膜振動子に、SiO2の薄膜を付加して温度特性を改善する技術が提案されている(非特許文献2)。また、新たな膜を付加することなく、温度特性を改善する技術も提案されている。   According to this configuration, the piezoelectric thin film is acoustically separated from the substrate by the multi-layered acoustic reflection layer, and resonance with a high Q value can be obtained. In addition, since the entire lower surface of the piezoelectric thin film is fixed by the acoustic reflection layer, stable operation is possible. Further, a technique for improving temperature characteristics by adding a thin film of SiO2 to an acoustic multilayer film type piezoelectric thin film vibrator has been proposed (Non-Patent Document 2). A technique for improving temperature characteristics without adding a new film has also been proposed.

なお、出願人は、本明細書に記載した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を出願時までに発見するには至らなかった。
K.M.Lakin,et al. Development of Miniature Filters for Wireless Applications. IEEE Transactions on Microwave Theory and Techniques, Vol.43, No.12, p2933, December 1995. K.M.Lakin,et al. Temperature Compensated Bulk Acoustic Thin Film Resonator. IEEE Ultrasonics Symposium paper 3H-2, October 24,2000.
The applicant has not yet found prior art documents related to the present invention by the time of filing other than the prior art documents specified by the prior art document information described in this specification.
KMLakin, et al. Development of Miniature Filters for Wireless Applications.IEEE Transactions on Microwave Theory and Techniques, Vol.43, No.12, p2933, December 1995. KMLakin, et al. Temperature Compensated Bulk Acoustic Thin Film Resonator. IEEE Ultrasonics Symposium paper 3H-2, October 24,2000.

このような音響多層膜型の圧電薄膜デバイスの構造は、従来のダイアフラム型に対して、大気開放のための空隙構造を作成するために立体的な加工が必要ない。また、圧電層、導電層といった薄膜を単独で形成する必要が無く、外的ストレス及び膜内部応力といったデバイスを破壊する外力及び内力に対して強靭な構造を持っている。このように音響多層膜型の圧電薄膜デバイスは、無線通信用のデバイスとして優れた特性を有している。   The structure of such an acoustic multilayer film type piezoelectric thin film device does not require three-dimensional processing in order to create a void structure for opening to the atmosphere, compared to the conventional diaphragm type. Further, it is not necessary to form a thin film such as a piezoelectric layer or a conductive layer, and it has a strong structure against external and internal forces that destroy the device, such as external stress and internal stress. Thus, the acoustic multilayer film type piezoelectric thin film device has excellent characteristics as a device for wireless communication.

このように音響多層膜型の圧電薄膜デバイスは非常にすぐれた特性を有しているが、基板への音響波の漏洩を防止するために、基板と振動部(圧電層と導電層)の間に複数層の音響反射層を形成する必要がある。つまり圧電層と導電層以外に複数の音響反射層が必要となる。   In this way, the acoustic multilayer film type piezoelectric thin film device has very good characteristics, but in order to prevent acoustic waves from leaking to the substrate, the substrate is in contact with the vibration part (piezoelectric layer and conductive layer). It is necessary to form a plurality of acoustic reflection layers. That is, a plurality of acoustic reflection layers are required in addition to the piezoelectric layer and the conductive layer.

通常の薄膜形成装置を用いて圧電薄膜デバイスを形成する場合、異なる層材料を同一装置で形成することは、薄膜層の安定作成上問題があるため行うことができない。そのため異なる材料の薄膜層を形成することは、異なる層の種類分の必要な設備を増加させる事になる。また、異なる薄膜層の成膜条件を管理するため、必要な管理項目を増大させる事になる。   When a piezoelectric thin film device is formed by using a normal thin film forming apparatus, it is impossible to form different layer materials with the same apparatus because there is a problem in the stable production of a thin film layer. Therefore, forming thin film layers of different materials increases the necessary facilities for the different layer types. Further, since the film forming conditions for different thin film layers are managed, necessary management items are increased.

そこで、発明者は、圧電層と音響反射層の少なくとも一層を同一の材料で構成する音響多層膜型の圧電薄膜デバイスの開発を行った。しかし、単に圧電層と音響反射層を同一材料とすることでは種々の問題が生じ、優れた共振特性を得ることが困難であった。例えばZnOなど圧電層と同じ材料を、音響反射層を構成する高音響インピーダンス層に用いた場合、音響振動が加わると高音響インピーダンス層においても圧電効果が生じ、そのために電荷を発生してしまい損失となる。   Therefore, the inventor has developed an acoustic multilayer film type piezoelectric thin film device in which at least one of the piezoelectric layer and the acoustic reflection layer is made of the same material. However, simply using the same material for the piezoelectric layer and the acoustic reflection layer causes various problems, making it difficult to obtain excellent resonance characteristics. For example, when the same material as the piezoelectric layer, such as ZnO, is used for the high acoustic impedance layer constituting the acoustic reflection layer, the piezoelectric effect also occurs in the high acoustic impedance layer when acoustic vibration is applied, which generates charges and loss. It becomes.

そこで、製造条件、製造手段又は層の物性等を圧電層と音響反射層とで異ならせることによって、圧電層と音響反射層を同一材料で作製でき、且つ高性能な共振特性を有する音響多層膜型の圧電薄膜デバイスを作製することが本発明の目的である。   Therefore, by making the manufacturing conditions, the manufacturing means or the physical properties of the layers different between the piezoelectric layer and the acoustic reflection layer, the piezoelectric layer and the acoustic reflection layer can be made of the same material, and the acoustic multilayer film has high-performance resonance characteristics. It is an object of the present invention to produce a type of piezoelectric thin film device.

本発明に係る圧電薄膜デバイスは、基板と、この基板上に形成された酸化亜鉛又は酸化亜鉛を主成分とする材料からなる少なくとも一層以上の圧電層と、この圧電層の上下に複数の導電層を有し、基板と圧電層の間に、複数の音響反射層により形成される音響反射層群を有する圧電薄膜デバイスにおいて、音響反射層群は、第一の音響反射層と第二の音響反射層が交互に複数積層して構成されており、この第一の音響反射層は、酸化亜鉛又は酸化亜鉛を主成分とする材料で形成される高音響インピーダンス層であり、第二の音響反射層は、二酸化珪素又は二酸化珪素を主成分とする材料で形成される低音響インピーダンス層であり、第一の音響反射層の表面形態が任意の算術表面粗さ(Ra1)であり、且つ第二の音響反射膜の表面形態が、第一の音響反射層の算術表面粗さ(Ra1)より小さな算術表面粗さ(Ra2)で形成してあることを特徴とする。 A piezoelectric thin film device according to the present invention includes a substrate, at least one piezoelectric layer made of zinc oxide or a material mainly composed of zinc oxide formed on the substrate, and a plurality of conductive layers above and below the piezoelectric layer. A piezoelectric thin film device having an acoustic reflection layer group formed by a plurality of acoustic reflection layers between the substrate and the piezoelectric layer, wherein the acoustic reflection layer group includes the first acoustic reflection layer and the second acoustic reflection layer. The first acoustic reflection layer is a high acoustic impedance layer formed of zinc oxide or a material mainly composed of zinc oxide, and the second acoustic reflection layer. Is a low acoustic impedance layer formed of silicon dioxide or a material mainly composed of silicon dioxide, the surface form of the first acoustic reflection layer is an arbitrary arithmetic surface roughness (Ra1), and the second The surface form of the acoustic reflection film is Characterized in that is formed by the arithmetic surface roughness of one acoustic reflection layer (Ra1) smaller arithmetic surface roughness (Ra2).

更に、第二の音響反射層が、RFスパッタ方式を用いて、0.9Pa以下の真空度及び/又は300℃以上の温度環境下で、且つパワー密度が10.0W/cm2以上の条件で形成されたものであることを特徴とする、段落0012に記載の圧電薄膜デバイスでもある。 Further, the second acoustic reflection layer is formed by using an RF sputtering method under a vacuum degree of 0.9 Pa or less and / or a temperature environment of 300 ° C. or more and a power density of 10.0 W / cm 2 or more. The piezoelectric thin film device according to paragraph 0012 , wherein the piezoelectric thin film device is manufactured.

本発明に係る圧電薄膜デバイスの製造方法は、基板と、この基板上に形成された酸化亜鉛又は酸化亜鉛を主成分とする材料からなる少なくとも一層以上の圧電層と、この圧電層に電圧を印加するための複数の導電層を有し、基板と圧電層の間に、音響波の漏洩を防止するための複数の音響反射層からなる音響反射層群を有する圧電薄膜デバイスの製造方法において、酸化亜鉛又は酸化亜鉛を主成分とする材料で形成される高音響インピーダンス層である第一の音響反射層を、その表面形態が任意の算術表面粗さ(Ra1)となるように形成し、二酸化珪素又は二酸化珪素を主成分とする材料で形成される低音響インピーダンス層である第二の音響反射層を、その表面形態が該第一の音響反射層の算術表面粗さ(Ra1)より小さな算術表面粗さ(Ra2)となるように形成し、該第一の音響反射層と該第二の音響反射層とを交互に複数積層して該音響反射層群を形成することを特徴とする。 A method of manufacturing a piezoelectric thin film device according to the present invention includes a substrate, at least one piezoelectric layer made of zinc oxide or a material mainly composed of zinc oxide formed on the substrate, and applying a voltage to the piezoelectric layer. a plurality of conductive layers for, between the substrate and the piezoelectric layer, in the manufacturing method of the piezoelectric thin film device having an acoustic reflective layer group including a plurality of acoustic reflection layer for preventing the acoustic wave leakage, oxidation A first acoustic reflection layer, which is a high acoustic impedance layer made of zinc or zinc oxide as a main component, is formed so that its surface form has an arbitrary arithmetic surface roughness (Ra1), and silicon dioxide Alternatively, the second acoustic reflection layer, which is a low acoustic impedance layer formed of a material mainly composed of silicon dioxide, has an arithmetic surface whose surface morphology is smaller than the arithmetic surface roughness (Ra1) of the first acoustic reflection layer. Coarse Formed to have a (Ra2), by stacking a plurality of the said first acoustic reflection layer and said second acoustic reflection layer are alternately and forming the acoustic reflective layer group.

この第二の音響反射層を、RFスパッタ方式を用いて、0.9Pa以下の真空度及び/又は300℃以上の温度環境下で、且つパワー密度が10.0W/cm2以上で形成することを特徴とする、段落0018に記載の圧電薄膜デバイスの製造方法でもある。 The second acoustic reflection layer, by an RF sputtering method, that under the following vacuum degree and / or 300 ° C. or higher temperature environment 0.9 Pa, where and power density to form at 10.0 W / cm @ 2 or more It is also a method for manufacturing a piezoelectric thin film device according to paragraph 0018 .

以上、本発明に係る圧電薄膜デバイス及びその製造方法によれば、酸化亜鉛又は酸化亜鉛を主成分とする材料で作成された少なくとも一つの圧電層と、酸化亜鉛又は酸化亜鉛を主成分とする材料で作成された少なくとも一つの音響反射層とにおいて、圧電層と音響反射層の物性又は製造手段を異ならせることにより、圧電薄膜デバイスの電気的特性が著しく向上する。更に、圧電層と音響反射層を同一材料で作製できるため、製造設備、及び製造コストを抑えることが可能となり、且つ、高性能な共振特性を有する音響多層膜型の圧電薄膜デバイスを提供することが可能となる効果を奏する。 As described above, according to the piezoelectric thin film device and a manufacturing method thereof according to the present invention, as a main component and at least one piezoelectric layer is made of a material whose main component is zinc oxide or zinc oxide, zinc oxide or zinc oxide material The electrical properties of the piezoelectric thin film device are remarkably improved by making the physical properties or manufacturing means of the piezoelectric layer and the acoustic reflection layer different from each other in at least one acoustic reflection layer prepared in (1). Furthermore, since the piezoelectric layer and the acoustic reflection layer can be made of the same material, it is possible to reduce manufacturing equipment and manufacturing cost, and to provide an acoustic multilayer type piezoelectric thin film device having high-performance resonance characteristics. There is an effect that makes possible.

以下、添付した各図面に従って本発明の実施形態を説明する。なお、各図において説明を明りょうにするため図面の一部を図示していない。又、図面内の各寸法も一部誇張して図示しており、各図において同一の符号は同様の対象を示すものとする。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, in order to clarify the description in each drawing, a part of the drawing is not shown. In addition, each dimension in the drawings is partially exaggerated, and the same reference numerals denote the same objects in each figure.

図1に本発明の圧電薄膜デバイスの一つである圧電薄膜振動子1の模式図を示す。この図1を使用して順を追って本発明の実施の形態を、実施例を元に説明する。   FIG. 1 shows a schematic diagram of a piezoelectric thin film vibrator 1 which is one of the piezoelectric thin film devices of the present invention. The embodiment of the present invention will be described in order based on the example with reference to FIG.

最初に圧電薄膜振動子1を形成するための基板2を準備する。本実施例においては、Si(111)基板を使用する。また、このSiの基板2は高抵抗基板を用い、その比抵抗は1000Ω/cm以上の抵抗値を持つ基板であり、その表面にはSi熱酸化膜が目標とする共振周波数に応じた厚さで形成されている。尚、その他の基板の条件は、通常の半導体用Si基板と同一とする。しかし、基板の材料としてはSiに限定されるものでは無く、他に水晶基板、ガラス基板等の材料を用いることができる。好ましくは、絶縁材料が望まれるが、適切な絶縁処理を施すことにより、低抵抗Si等の導電性のある基板も使用可能である。   First, a substrate 2 for forming the piezoelectric thin film vibrator 1 is prepared. In this embodiment, a Si (111) substrate is used. The Si substrate 2 is a substrate having a high resistance and a specific resistance of 1000 Ω / cm or more. The surface of the Si substrate 2 has a thickness corresponding to the target resonance frequency of the Si thermal oxide film. It is formed with. The other substrate conditions are the same as those of a normal semiconductor Si substrate. However, the material of the substrate is not limited to Si, and other materials such as a quartz substrate and a glass substrate can be used. Preferably, an insulating material is desired, but a conductive substrate such as low-resistance Si can be used by performing an appropriate insulating treatment.

この基板2を通常の半導体プロセスで用いるような洗浄工程を施す。その後、音響反射層群3を構成する各音響反射層3a及び3bを形成する。この音響反射層3a及び3bは、材料の密度と硬さにより決定される音響インピーダンスの異なる材料で構成されている。図2に音響反射層群3を開示した模式図を示す。図2のように、音響インピーダンスが異なる音響反射層3a及び3bを交互に規則正しく形成することで、音響波の反射と透過の条件を満たすことにより、後述する圧電層4で発生した音響エネルギーが、基板2へ漏洩することなく、音響反射層群3と圧電層4最上面の間に、エネルギーが閉じ込められ、高性能な圧電薄膜デバイスを作製することができる。   The substrate 2 is subjected to a cleaning process as used in a normal semiconductor process. Then, each acoustic reflection layer 3a and 3b which comprises the acoustic reflection layer group 3 is formed. The acoustic reflection layers 3a and 3b are made of materials having different acoustic impedances determined by the density and hardness of the material. FIG. 2 shows a schematic diagram disclosing the acoustic reflection layer group 3. As shown in FIG. 2, the acoustic energy generated in the piezoelectric layer 4 to be described later is satisfied by satisfying the acoustic wave reflection and transmission conditions by alternately and regularly forming the acoustic reflection layers 3 a and 3 b having different acoustic impedances. Without leaking to the substrate 2, energy is confined between the acoustic reflection layer group 3 and the uppermost surface of the piezoelectric layer 4, and a high-performance piezoelectric thin film device can be manufactured.

本発明において、音響反射層群3の構造は図2の通り、音響反射層として高音響インピーダンス層3bと低音響インピーダンス層3aの2層を用いた。構成は、基板2側から低音響インピーダンス層3aを形成し、その上に高音響インピーダンス層3bを形成する。この組み合わせを3〜4セット形成し、最後に低音響インピーダンス層3aを形成し、音響反射層群3を完成させた。   In the present invention, the structure of the acoustic reflection layer group 3 is, as shown in FIG. 2, two layers of a high acoustic impedance layer 3b and a low acoustic impedance layer 3a are used as the acoustic reflection layer. In the configuration, the low acoustic impedance layer 3a is formed from the substrate 2 side, and the high acoustic impedance layer 3b is formed thereon. Three to four sets of this combination were formed, and finally the low acoustic impedance layer 3a was formed to complete the acoustic reflection layer group 3.

本実施例においては、高音響インピーダンス層3bの少なくとも一層に酸化亜鉛を使用し、低音響インピーダンス層3aとして二酸化珪素を使用した。酸化亜鉛は、二酸化珪素の約2.5倍の音響インピーダンスを持っているため、この2種類の材料は、音響反射層を形成する物質として使用可能である。また、酸化亜鉛は、水晶等の圧電材料と比較すると大きな電気機械結合係数を持つ優れた圧電材料である。この酸化亜鉛を圧電層と高音響インピーダンス層3bに使用できれば、製造設備の削減及び管理コストの低減が可能となる。   In this example, zinc oxide was used for at least one layer of the high acoustic impedance layer 3b, and silicon dioxide was used as the low acoustic impedance layer 3a. Since zinc oxide has an acoustic impedance approximately 2.5 times that of silicon dioxide, these two types of materials can be used as substances for forming an acoustic reflection layer. Zinc oxide is an excellent piezoelectric material having a large electromechanical coupling coefficient compared to a piezoelectric material such as quartz. If this zinc oxide can be used for the piezoelectric layer and the high acoustic impedance layer 3b, it is possible to reduce manufacturing equipment and management costs.

この音響反射層群3の上に、圧電層4に電圧を印加するための下部導電層5を形成する。本発明においては、Au層5bとTi層5aを積層して形成した下部導電層5を用いた。Tiは二酸化珪素とAu層5bの接着力を向上させるために用いた。尚、下部導電層5の形成方法はリフトオフ方式を用い、導電層金属の成膜方法はエレクトロンビームを用いた蒸着法を用いた。本実施例では、以上の方法で下部導電層5を作成したが、エッチング法及びスパッタを始めとする既知の方法を使用しても構わない。   A lower conductive layer 5 for applying a voltage to the piezoelectric layer 4 is formed on the acoustic reflection layer group 3. In the present invention, the lower conductive layer 5 formed by laminating the Au layer 5b and the Ti layer 5a is used. Ti was used to improve the adhesion between silicon dioxide and Au layer 5b. The lower conductive layer 5 was formed by a lift-off method, and the conductive layer metal was formed by an evaporation method using an electron beam. In this embodiment, the lower conductive layer 5 is formed by the above method, but a known method such as an etching method or sputtering may be used.

この下部導電層5を覆うように圧電層4を形成する。本実施例では、音響反射層を構成する高音響インピーダンス層3bの少なくとも一層と同一の材料である酸化亜鉛を圧電層4として使用した。圧電層4を作成に用いる製法は、音響反射層3a又は3bを作成する方法と同様とした。   The piezoelectric layer 4 is formed so as to cover the lower conductive layer 5. In this embodiment, zinc oxide, which is the same material as at least one of the high acoustic impedance layers 3b constituting the acoustic reflection layer, is used as the piezoelectric layer 4. The manufacturing method used to create the piezoelectric layer 4 was the same as the method of creating the acoustic reflection layer 3a or 3b.

この圧電層4の上に、先に作成した下部導電層5と対になる上部導電層6を作成する。本実施例では、下部導電層5と同様の製法で作成した。また上部導電層6の作成方法も、下部導電層5と同様に、既知の作成方法の使用を制限するものでは無い。また必要に応じて、下部導電層5をデバイス外部の端子に接続する必要がある場合や、下部導電層5と上部導電層6を電気的に接続する必要がある場合には、上部導電層6を形成する前に、圧電層4の一部を取り除くことがある。   On the piezoelectric layer 4, an upper conductive layer 6 that is paired with the previously formed lower conductive layer 5 is formed. In this embodiment, the manufacturing method is the same as that for the lower conductive layer 5. Also, the method for forming the upper conductive layer 6 is not limited to the use of a known method for forming, similarly to the lower conductive layer 5. If necessary, if the lower conductive layer 5 needs to be connected to a terminal outside the device, or if the lower conductive layer 5 and the upper conductive layer 6 need to be electrically connected, the upper conductive layer 6 Before forming, a part of the piezoelectric layer 4 may be removed.

また、酸化亜鉛は、負の周波数温度係数を持っているため周波数の温度特性が0ではない。それに対して二酸化珪素は酸化亜鉛とは逆に正の周波数温度係数を有している。そのため、酸化亜鉛と二酸化珪素とを組み合わせることで、所望の周波数温度係数を持つ圧電薄膜デバイスを作成することが可能である。本実施例では、上部導電層6の上側、もしくは上部導電層6と圧電層4の間等に二酸化珪素の層を追加して形成する事により、周波数温度係数を調整している。   In addition, since zinc oxide has a negative frequency temperature coefficient, the temperature characteristic of the frequency is not zero. On the other hand, silicon dioxide has a positive frequency temperature coefficient contrary to zinc oxide. Therefore, it is possible to create a piezoelectric thin film device having a desired frequency temperature coefficient by combining zinc oxide and silicon dioxide. In this embodiment, the frequency temperature coefficient is adjusted by forming an additional silicon dioxide layer on the upper conductive layer 6 or between the upper conductive layer 6 and the piezoelectric layer 4.

図3に、従来の方法で作成した音響多層膜型の圧電薄膜振動子の電気特性を示す。図3に示すとおり、所望の周波数に共振特性を僅かに得ているものの、その性能は十分ではなく、振動子としての実用に耐え得るものではない。   FIG. 3 shows the electrical characteristics of an acoustic multilayer film type piezoelectric thin film vibrator produced by a conventional method. As shown in FIG. 3, although a slight resonance characteristic is obtained at a desired frequency, its performance is not sufficient and it cannot withstand practical use as a vibrator.

この特性劣化の要因の一部として、音響反射層群3の低音響インピーダンス層3aとして使用した二酸化珪素の形成条件がある。即ち、音響反射層群3の低音響インピーダンス層3aとして使用した二酸化珪素の形成条件が異なった2種類の音響反射層の上に、同一条件で作製したAu/Ti下部導電層5及び同一条件で作製し、次に下部導電層5上に同一条件で圧電層4としての酸化亜鉛を形成した。更にこの圧電層4の上に同一条件で上部導電層6を作製し特性を比較した。この二種類の圧電薄膜振動子の電気特性を測定した結果が図4である。図4は二酸化珪素で形成した音響反射層を使用した圧電薄膜振動子の共振特性を図示しており、図4(a)は二酸化珪素層の成膜時における基板2の温度が300℃の場合、図4(b)は二酸化珪素層の成膜時における基板2の温度が350℃の場合の圧電薄膜振動子の共振特性を示している。この測定値からも明らかなように、図4(b)の方が優れた共振特性を示している。   Part of the cause of this characteristic deterioration is the formation conditions of silicon dioxide used as the low acoustic impedance layer 3a of the acoustic reflection layer group 3. That is, the Au / Ti lower conductive layer 5 manufactured under the same conditions and the same conditions on the two types of acoustic reflection layers with different formation conditions of silicon dioxide used as the low acoustic impedance layer 3a of the acoustic reflection layer group 3 and under the same conditions. Next, zinc oxide as the piezoelectric layer 4 was formed on the lower conductive layer 5 under the same conditions. Further, the upper conductive layer 6 was produced on the piezoelectric layer 4 under the same conditions, and the characteristics were compared. FIG. 4 shows the results of measuring the electrical characteristics of these two types of piezoelectric thin film vibrators. FIG. 4 shows the resonance characteristics of a piezoelectric thin film vibrator using an acoustic reflection layer formed of silicon dioxide. FIG. 4A shows the case where the temperature of the substrate 2 is 300 ° C. during the formation of the silicon dioxide layer. FIG. 4B shows the resonance characteristics of the piezoelectric thin film vibrator when the temperature of the substrate 2 is 350 ° C. during the formation of the silicon dioxide layer. As is clear from this measured value, FIG. 4B shows an excellent resonance characteristic.

従来、圧電層用の酸化亜鉛についての報告は数多くあり、圧電層の形成条件によりその結晶性や圧電性の変化についての報告も数多く存在している。また、ダイアフラム型の圧電薄膜デバイスでその保持層としての二酸化珪素の文献も存在している。しかし、音響多層膜型の圧電薄膜デバイスにおいて高音響インピーダンス層3b及び低音響インピーダンス層3aの2種類の音響反射層の相互作用を開示した文献等ない。   Conventionally, there are many reports on zinc oxide for piezoelectric layers, and there are also many reports on changes in crystallinity and piezoelectricity depending on the formation conditions of the piezoelectric layer. There is also a literature on silicon dioxide as a holding layer in a diaphragm type piezoelectric thin film device. However, there is no document disclosing the interaction of two types of acoustic reflection layers, the high acoustic impedance layer 3b and the low acoustic impedance layer 3a, in the acoustic multilayer film type piezoelectric thin film device.

そこで本実施例では、高音響インピーダンス層3bのうち少なくとも一層(第一の音響反射層)として酸化亜鉛を使用し、その上の低音響インピーダンス層3a(第二の音響反射層)として二酸化珪素を使用した。そして、この二つの音響反射層の形成条件について種々検討を重ねた。その結果、算術表面粗さ(Ra1)=1.913nmを有する高音響インピーダンス層3bの少なくとも一層の上に、低音響インピーダンス層3aである二酸化珪素をある特定な条件で作製することにより、低音響インピーダンス層3aの算術表面粗さ(Ra2)は1.020nmとなり、高音響インピーダンス層3bの算術表面粗さ(Ra1)より小さくすることができる。この低音響インピーダンス層3aの算術表面粗さ(Ra2)、高音響インピーダンス層3bの算術表面粗さ(Ra1)の相違による作用が、その圧電薄膜デバイスの電気特性にも多大な影響を与え、この相違が大きいほど圧電薄膜デバイスの電気特性は良好になる効果を奏する。   Therefore, in this embodiment, zinc oxide is used as at least one layer (first acoustic reflection layer) of the high acoustic impedance layer 3b, and silicon dioxide is used as the low acoustic impedance layer 3a (second acoustic reflection layer) thereon. used. And various examinations were repeated about the formation conditions of these two acoustic reflection layers. As a result, by producing silicon dioxide, which is the low acoustic impedance layer 3a, on at least one layer of the high acoustic impedance layer 3b having the arithmetic surface roughness (Ra1) = 1.913 nm, a low acoustic impedance is achieved. The arithmetic surface roughness (Ra2) of the impedance layer 3a is 1.020 nm, which can be made smaller than the arithmetic surface roughness (Ra1) of the high acoustic impedance layer 3b. The effect of the arithmetic surface roughness (Ra2) of the low acoustic impedance layer 3a and the arithmetic surface roughness (Ra1) of the high acoustic impedance layer 3b has a great influence on the electrical characteristics of the piezoelectric thin film device. The greater the difference, the better the electrical characteristics of the piezoelectric thin film device.

また、この相違による作用は低音響インピーダンス層3aの形成条件に大きく影響されていることが確認された。即ち、高音響インピーダンス層3bの少なくとも一層に酸化亜鉛を使用し、低音響インピーダンス層3bに二酸化珪素を使用し、例えばRFマグネトロンスパッタ装置でこの酸化珪素を形成する場合には、その形成中の真空度に層物性更に圧電薄膜デバイスとしての特性は大きく影響される。真空度が1Pa以下で良好な算術表面粗さの相違作用が得られ、0.9Pa以下で更に良好な相違作用が得られた。また同時に形成時の温度もこの相違作用に大きな影響を与えることを見出した。それによると、形成時の温度は高温にするほど良好な算術表面粗さの相違作用が得られた。実用的な相違作用を得るためには、250℃以上の温度で形成する必要があり、更に300℃以上の温度環境下で形成することが望ましい。   Moreover, it was confirmed that the effect | action by this difference is greatly influenced by the formation conditions of the low acoustic impedance layer 3a. That is, when zinc oxide is used for at least one layer of the high acoustic impedance layer 3b and silicon dioxide is used for the low acoustic impedance layer 3b, for example, when this silicon oxide is formed by an RF magnetron sputtering apparatus, the vacuum during the formation is formed. The physical properties of the layer and the characteristics of the piezoelectric thin film device are greatly affected each time. When the degree of vacuum was 1 Pa or less, good arithmetic surface roughness difference action was obtained, and when 0.9 Pa or less, even better difference action was obtained. At the same time, it was found that the temperature at the time of formation has a great influence on this different action. According to this, the difference in arithmetic surface roughness was better as the temperature during formation was higher. In order to obtain a practical different action, it is necessary to form at a temperature of 250 ° C. or higher, and it is desirable to form it in a temperature environment of 300 ° C. or higher.

更に、高音響インピーダンス層3bの少なくとも一層に酸化亜鉛を使用し、低音響インピーダンス層3aに二酸化珪素を使用し、RFマグネトロンスパッタ装置で前記に二酸化珪素を形成する場合には、その成膜中のRF出力に算術表面粗さの相違作用は大きく影響されることが判明した。9.0W/cm以上で良好な相違作用が得られ、10.0W/cm以上で更に良好な相違作用が得られた。 Furthermore, when zinc oxide is used for at least one layer of the high acoustic impedance layer 3b, silicon dioxide is used for the low acoustic impedance layer 3a, and silicon dioxide is formed by the RF magnetron sputtering apparatus, It has been found that the difference in arithmetic surface roughness is greatly influenced by the RF output. A good different action was obtained at 9.0 W / cm 2 or more, and a better different action was obtained at 10.0 W / cm 2 or more.

尚、圧電層4に酸化亜鉛を使用する場合でも、低音響インピーダンス層3aとして、酸化アルミニウム等の材料を選択するなど、本発明開示の作用効果を奏するのであればその組み合わせに制限は無い。また、上部及び下部導電層を構成する金属についても本実施例では少なくとも一層がAu及びTiで形成された導電層を用いたが、他の導電層にはAl,Mo,W又はPt等の使用が可能であり材料を限定するものではない。また同様に本実施例では、酸化亜鉛、二酸化珪素は、いずれもRFマグネトロンスパッタ装置を使用し、一般に知られている成膜条件を用いて作製した。このRFマグネトロンスパッタ方式以外に、ECRスパッタ方式、CVD方式等の使用が可能であり、作製方式、成膜条件等を制限するものでは無い。   Even when zinc oxide is used for the piezoelectric layer 4, there is no limitation on the combination as long as the low acoustic impedance layer 3 a has a function and effect of the present disclosure, such as selecting a material such as aluminum oxide. In addition, in the present embodiment, a conductive layer formed of at least one layer of Au and Ti was used for the metal constituting the upper and lower conductive layers, but Al, Mo, W, Pt, or the like was used for the other conductive layers. However, the material is not limited. Similarly, in this example, both zinc oxide and silicon dioxide were produced using generally known film forming conditions using an RF magnetron sputtering apparatus. In addition to this RF magnetron sputtering method, an ECR sputtering method, a CVD method, or the like can be used, and the manufacturing method, film forming conditions, and the like are not limited.

図1は、本発明における圧電薄膜デバイス(SMR型の圧電薄膜振動子)の一実施形態の構成例を概略的に示す模式的な斜視図である。FIG. 1 is a schematic perspective view schematically showing a configuration example of an embodiment of a piezoelectric thin film device (SMR type piezoelectric thin film vibrator) according to the present invention. 図2は、本発明における圧電薄膜デバイス(SMR型の圧電薄膜振動子)の一実施形態の構成例を概略的に示す模式的な部分断面図である。FIG. 2 is a schematic partial cross-sectional view schematically showing a configuration example of an embodiment of a piezoelectric thin film device (SMR type piezoelectric thin film vibrator) according to the present invention. 図3は、従来の方法で作成した音響多層膜型の圧電薄膜振動子の電気特性を示す。FIG. 3 shows the electrical characteristics of an acoustic multilayer film type piezoelectric thin film vibrator produced by a conventional method. 図4は、二酸化珪素で形成した音響反射層を使用した圧電薄膜振動子の共振特性を図示しており、図4(a)は二酸化珪素層の成膜時温度が300℃の場合、図4(b)は二酸化珪素層の成膜時温度が350℃の場合の圧電薄膜振動子の共振特性を示している。FIG. 4 illustrates the resonance characteristics of a piezoelectric thin film vibrator using an acoustic reflection layer formed of silicon dioxide. FIG. 4A illustrates the case where the temperature during film formation of the silicon dioxide layer is 300 ° C. (B) shows the resonance characteristics of the piezoelectric thin film vibrator when the temperature during the formation of the silicon dioxide layer is 350.degree.

符号の説明Explanation of symbols

1・・・圧電薄膜デバイス(圧電薄膜振動子)
2・・・基板
3・・・音響反射膜群
3a・・・音響反射層(低音響インピーダンス層)
3b・・・音響反射層(高音響インピーダンス層)
4・・・圧電層
5・・・下部導電層
5a・・・Ti層
5b・・・Au層
1. Piezoelectric thin film device (piezoelectric thin film vibrator)
2 ... Substrate 3 ... Acoustic reflective film group 3a ... Acoustic reflective layer (low acoustic impedance layer)
3b ... Acoustic reflection layer (high acoustic impedance layer)
4 ... Piezoelectric layer 5 ... Lower conductive layer 5a ... Ti layer 5b ... Au layer

Claims (4)

基板と、該基板上に形成された酸化亜鉛又は酸化亜鉛を主成分とする材料からなる少なくとも一層以上の圧電層と、該圧電層の上下に複数の導電層を有し、該基板と該圧電層の間に、複数の音響反射層により形成される音響反射層群を有する圧電薄膜デバイスにおいて、
該音響反射層群は、第一の音響反射層と第二の音響反射層が交互に複数積層して構成されており、
該第一の音響反射層は、酸化亜鉛又は酸化亜鉛を主成分とする材料で形成される高音響インピーダンス層であり、
該第二の音響反射層は、二酸化珪素又は二酸化珪素を主成分とする材料で形成される低音響インピーダンス層であり、
該第一の音響反射層の表面形態が任意の算術表面粗さ(Ra1)であり、且つ第二の音響反射層の表面形態が該第一の音響反射層の算術表面粗さ(Ra1)より小さな算術表面粗さ(Ra2)であることを特徴とする圧電薄膜デバイス。
A substrate, at least one piezoelectric layer made of zinc oxide or a material mainly composed of zinc oxide formed on the substrate, and a plurality of conductive layers above and below the piezoelectric layer, the substrate and the piezoelectric In a piezoelectric thin film device having an acoustic reflection layer group formed by a plurality of acoustic reflection layers between layers,
The acoustic reflection layer group is configured by alternately laminating a plurality of first acoustic reflection layers and second acoustic reflection layers,
The first acoustic reflection layer is a high acoustic impedance layer formed of zinc oxide or a material mainly composed of zinc oxide,
The second acoustic reflection layer is a low acoustic impedance layer formed of silicon dioxide or a material mainly composed of silicon dioxide,
The surface configuration of the first acoustic reflection layer is an arbitrary arithmetic surface roughness (Ra1), and the surface configuration of the second acoustic reflection layer is based on the arithmetic surface roughness (Ra1) of the first acoustic reflection layer. A piezoelectric thin film device having a small arithmetic surface roughness (Ra2).
該第二の音響反射層が、RFスパッタ方式を用いて、0.9Pa以下の真空度及び/又は300℃以上の温度環境下で、且つパワー密度が10.0W/cm2以上の条件で形成されたものであることを特徴とする請求項1に記載の圧電薄膜デバイス。 The second acoustic reflection layer is formed using an RF sputtering method under a vacuum degree of 0.9 Pa or less and / or a temperature environment of 300 ° C. or more and a power density of 10.0 W / cm 2 or more. the piezoelectric thin film device according to claim 1, characterized in that the. 基板と、前記基板上に形成された酸化亜鉛又は酸化亜鉛を主成分とする材料からなる少なくとも一層以上の圧電層と、前記圧電層に電圧を印加するための複数の導電層を有し、前記基板と前記圧電層の間に、複数の音響反射層からなる音響反射層群を有する圧電薄膜デバイスの製造方法において、A substrate, at least one piezoelectric layer made of zinc oxide or a material mainly composed of zinc oxide formed on the substrate, and a plurality of conductive layers for applying a voltage to the piezoelectric layer, In the method of manufacturing a piezoelectric thin film device having an acoustic reflection layer group composed of a plurality of acoustic reflection layers between a substrate and the piezoelectric layer,
酸化亜鉛又は酸化亜鉛を主成分とする材料で形成される高音響インピーダンス層である第一の音響反射層を、その表面形態が任意の算術表面粗さ(Ra1)となるように形成し、Forming a first acoustic reflection layer, which is a high acoustic impedance layer formed of zinc oxide or a material containing zinc oxide as a main component, so that its surface form has an arbitrary arithmetic surface roughness (Ra1);
二酸化珪素又は二酸化珪素を主成分とする材料で形成される低音響インピーダンス層である第二の音響反射層を、その表面形態が該第一の音響反射層の算術表面粗さ(Ra1)より小さな算術表面粗さ(Ra2)となるように形成し、The second acoustic reflection layer, which is a low acoustic impedance layer formed of silicon dioxide or a material mainly composed of silicon dioxide, has a surface form smaller than the arithmetic surface roughness (Ra1) of the first acoustic reflection layer. Formed to have an arithmetic surface roughness (Ra2),
該第一の音響反射層と該第二の音響反射層とを交互に複数積層して該音響反射層群を形成するA plurality of the first acoustic reflection layers and the second acoustic reflection layers are alternately stacked to form the acoustic reflection layer group.
ことを特徴とする圧電薄膜デバイスの製造方法。A method for manufacturing a piezoelectric thin film device.
該第二の音響反射層を、RFスパッタ方式を用いて、0.9Pa以下の真空度及び/又は300℃以上の温度環境下で、且つパワー密度が10.0W/cm2以上で形成することを特徴とする請求項3に記載の圧電薄膜デバイスの製造方法 The second acoustic reflection layer is formed using an RF sputtering method in a vacuum degree of 0.9 Pa or less and / or a temperature environment of 300 ° C. or more and a power density of 10.0 W / cm 2 or more. The method of manufacturing a piezoelectric thin film device according to claim 3.
JP2004380113A 2004-12-28 2004-12-28 Piezoelectric thin film device and manufacturing method thereof Expired - Fee Related JP4693407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004380113A JP4693407B2 (en) 2004-12-28 2004-12-28 Piezoelectric thin film device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004380113A JP4693407B2 (en) 2004-12-28 2004-12-28 Piezoelectric thin film device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006186833A JP2006186833A (en) 2006-07-13
JP4693407B2 true JP4693407B2 (en) 2011-06-01

Family

ID=36739579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004380113A Expired - Fee Related JP4693407B2 (en) 2004-12-28 2004-12-28 Piezoelectric thin film device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4693407B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201714646D0 (en) * 2017-09-12 2017-10-25 Spts Technologies Ltd Saw device and method of manufacture
CN112511125B (en) * 2020-09-23 2024-01-26 广东广纳芯科技有限公司 Method for manufacturing surface acoustic wave device
WO2023171715A1 (en) * 2022-03-09 2023-09-14 京セラ株式会社 Elastic wave device, branching filter, communication device, and method for manufacturing elastic wave device
WO2023190677A1 (en) * 2022-03-31 2023-10-05 日東電工株式会社 Acoustic multilayer film, high frequency filter device, and bulk acoustic wave filter device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313535A (en) * 2000-02-11 2001-11-09 Lucent Technol Inc Method for manufacturing electronic device with piezoelectric material layer deposited on metallic layer
JP2002324926A (en) * 2001-04-25 2002-11-08 Matsushita Electric Ind Co Ltd Piezoelectric thin film forming method and application device of piezoelectric thin film
JP2004221622A (en) * 2002-01-08 2004-08-05 Murata Mfg Co Ltd Piezoelectric resonator, piezoelectric filter, duplexer, communication apparatus, and manufacturing method of piezoelectric resonator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313535A (en) * 2000-02-11 2001-11-09 Lucent Technol Inc Method for manufacturing electronic device with piezoelectric material layer deposited on metallic layer
JP2002324926A (en) * 2001-04-25 2002-11-08 Matsushita Electric Ind Co Ltd Piezoelectric thin film forming method and application device of piezoelectric thin film
JP2004221622A (en) * 2002-01-08 2004-08-05 Murata Mfg Co Ltd Piezoelectric resonator, piezoelectric filter, duplexer, communication apparatus, and manufacturing method of piezoelectric resonator

Also Published As

Publication number Publication date
JP2006186833A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
KR100804407B1 (en) Boundary acoustic wave device manufacturing method
JP4784815B2 (en) High-order mode thin film resonator, piezoelectric thin film, and method for manufacturing piezoelectric thin film
US5446330A (en) Surface acoustic wave device having a lamination structure
US5873154A (en) Method for fabricating a resonator having an acoustic mirror
JPWO2018198654A1 (en) Elastic wave device
JP6371518B2 (en) Piezoelectric thin film resonator, method for manufacturing the same, filter, and duplexer
WO2007052370A1 (en) Piezoelectric thin film resonator
KR20040051539A (en) Piezoelectric resonant filter and duplexer
KR20110058704A (en) Hybrid bulk acoustic wave resonator
JP7098453B2 (en) Elastic wave resonators, filters and multiplexers
JP2008182543A (en) Thin film piezoelectric resonator and thin film piezoelectric filter using the same
JP2008113061A (en) Bulk acoustic wave resonator, filter device, and communication device
JP2008211392A (en) Resonator and manufacturing method thereof
JP3860695B2 (en) Piezoelectric resonator and filter
JP4693407B2 (en) Piezoelectric thin film device and manufacturing method thereof
JP4797772B2 (en) BAW resonator
JP2005057707A (en) Thin film bulk acoustic resonator and micro electromechanical system device
JP4339604B2 (en) Piezoelectric thin film element
JP2005303573A (en) Thin film piezoelectric resonator and its manufacturing method
JP4693406B2 (en) Piezoelectric thin film device and manufacturing method thereof
JP2006211589A (en) Piezoelectric thin film device and its manufacturing method
JP2005236338A (en) Piezoelectric thin-film resonator
JP2006186831A (en) Piezoelectric thin film device and its manufacturing method
JP2000341077A (en) Piezoelectric resonator
JP2007036914A (en) Thin film resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350