JP4784815B2 - High-order mode thin film resonator, piezoelectric thin film, and method for manufacturing piezoelectric thin film - Google Patents

High-order mode thin film resonator, piezoelectric thin film, and method for manufacturing piezoelectric thin film Download PDF

Info

Publication number
JP4784815B2
JP4784815B2 JP2005219834A JP2005219834A JP4784815B2 JP 4784815 B2 JP4784815 B2 JP 4784815B2 JP 2005219834 A JP2005219834 A JP 2005219834A JP 2005219834 A JP2005219834 A JP 2005219834A JP 4784815 B2 JP4784815 B2 JP 4784815B2
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric
substrate
layer
piezoelectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005219834A
Other languages
Japanese (ja)
Other versions
JP2007036915A (en
Inventor
好章 渡辺
隆彦 柳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha
Original Assignee
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha filed Critical Doshisha
Priority to JP2005219834A priority Critical patent/JP4784815B2/en
Publication of JP2007036915A publication Critical patent/JP2007036915A/en
Application granted granted Critical
Publication of JP4784815B2 publication Critical patent/JP4784815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、広帯域信号から特定の周波数の信号を抽出する等のための薄膜共振器に関する。このような薄膜共振器は殆どの通信機器において用いられるが、特に小型且つ高周波において動作可能な共振器が要求される携帯電話機において多く用いられる。   The present invention relates to a thin film resonator for extracting a signal having a specific frequency from a broadband signal. Such a thin film resonator is used in most communication devices, but is often used particularly in a mobile phone that requires a resonator that can operate at a small size and a high frequency.

携帯電話機や無線LAN送信機・受信機等の通信機器には、特定の周波数帯の信号を抽出するためのRFフィルタが用いられている。RFフィルタでは通常、使用される周波数帯内の周波数で共振する共振器が多数使用される。これらの通信機器において使用される周波数帯は数百MHz〜数GHzと高いため、共振器もそのような高周波数に対応する必要がある。   An RF filter for extracting a signal in a specific frequency band is used in a communication device such as a mobile phone or a wireless LAN transmitter / receiver. In an RF filter, a large number of resonators that resonate at a frequency within a used frequency band are usually used. Since the frequency band used in these communication devices is as high as several hundred MHz to several GHz, the resonator needs to cope with such a high frequency.

近年、高い共振周波数を実現することができる共振器として、FBAR(Film Bulk Acoustic Resonator)と呼ばれる薄膜共振器が注目されている(特許文献1参照)。FBARは空洞を設けた基板の上に圧電体の薄膜を載置し、その圧電体薄膜を挟むように1対の電極を設けた構造を有する。ここで、基板に空洞を設けるのは、圧電体薄膜が基板に拘束されずに自由に振動できるようにするためである。FBARでは共振周波数が圧電体薄膜の厚さに反比例するため、薄膜の厚さを薄くする程、共振周波数を高くすることができる。実際、FBARを用いた周波数フィルタでは数GHzという高周波数においても良好なフィルタ特性が得られることが確認されている。   In recent years, a thin film resonator called FBAR (Film Bulk Acoustic Resonator) has attracted attention as a resonator capable of realizing a high resonance frequency (see Patent Document 1). The FBAR has a structure in which a piezoelectric thin film is placed on a substrate having a cavity, and a pair of electrodes is provided so as to sandwich the piezoelectric thin film. Here, the cavity is provided in the substrate so that the piezoelectric thin film can freely vibrate without being constrained by the substrate. In FBAR, since the resonance frequency is inversely proportional to the thickness of the piezoelectric thin film, the resonance frequency can be increased as the thickness of the thin film is reduced. In fact, it has been confirmed that a frequency filter using FBAR can obtain good filter characteristics even at a high frequency of several GHz.

また、他の薄膜共振器としてSMR(Solidly Mounted Resonator)が知られている(特許文献2参照)。SMRは、圧電体薄膜を電極で挟んだ共振部の下に、音響インピーダンスの異なる材料から成る高インピーダンス層と低インピーダンス層が交互に積層した音響多層膜を配置した構造を有する。高インピーダンス層及び低インピーダンス層はそれぞれ、共振部の共振周波数と同じ周波数を有する超音波の、その層内における波長の1/4倍の厚さを有する。このような構造を用いれば、圧電体薄膜から基板に向けて放射される音波は各音響多層膜境界で反射され、それら反射波は互いに同位相になり打ち消し合わない。これにより、薄膜共振器の振動が基板に漏れることが抑えられ、振動エネルギーの損失が防止される。また、SMRはFBARと同様に圧電体薄膜を薄くすることにより数GHzという高い共振周波数を得ることができる。   Further, SMR (Solidly Mounted Resonator) is known as another thin film resonator (see Patent Document 2). The SMR has a structure in which an acoustic multilayer film in which high impedance layers and low impedance layers made of materials having different acoustic impedances are alternately stacked is disposed under a resonance part in which a piezoelectric thin film is sandwiched between electrodes. Each of the high-impedance layer and the low-impedance layer has a thickness that is 1/4 times the wavelength of the ultrasonic wave having the same frequency as the resonance frequency of the resonance part. If such a structure is used, the sound wave radiated from the piezoelectric thin film toward the substrate is reflected at the boundary of each acoustic multilayer film, and the reflected waves are in phase with each other and do not cancel each other. Thereby, the vibration of the thin film resonator is prevented from leaking to the substrate, and the loss of vibration energy is prevented. SMR, like FBAR, can obtain a high resonance frequency of several GHz by thinning the piezoelectric thin film.

従来のFBAR及びSMRでは、圧電体薄膜に酸化亜鉛(ZnO)又は窒化アルミニウム(AlN)がよく用いられていた。ZnOは他の圧電体よりも電気機械変換効率が高いという利点を有する。一方、AlNは他の圧電体よりも内部を伝播する超音波の音速が速く、共振周波数を高くしやすいという利点を有する。   In conventional FBAR and SMR, zinc oxide (ZnO) or aluminum nitride (AlN) is often used for piezoelectric thin films. ZnO has the advantage of higher electromechanical conversion efficiency than other piezoelectric materials. On the other hand, AlN has the advantage that the ultrasonic velocity of the ultrasonic wave propagating inside is faster than other piezoelectric bodies and the resonance frequency can be easily increased.

特開2001-203558号公報([0003]〜[0004], 図1)Japanese Patent Laid-Open No. 2001-203558 ([0003] to [0004], FIG. 1) 特開2004-235886号公報([0010]〜[0011], 図1)Japanese Unexamined Patent Publication No. 2004-235886 ([0010] to [0011], FIG. 1)

前述の通り、圧電体薄膜を薄くすることにより、薄膜共振器の共振周波数を高めることができる。しかし、薄膜の物理的強度を維持するには、あまり薄膜を薄くすることは望ましくない。特にFBARは薄膜が空洞の上に浮いた構造を有するため、ある程度の薄膜の強度が必要となる。そのため、薄膜の厚さのみにより共振周波数を高めることには限界がある。
本発明が解決しようとする課題は、圧電体薄膜を薄くすることなく従来よりも高い共振周波数を得ることができる薄膜共振器、該薄膜共振器に用いる圧電体薄膜、及び該圧電体薄膜の製造方法を提供することにある。
As described above, the resonance frequency of the thin film resonator can be increased by thinning the piezoelectric thin film. However, it is not desirable to make the thin film too thin in order to maintain the physical strength of the thin film. In particular, since FBAR has a structure in which a thin film floats above a cavity, a certain level of thin film strength is required. For this reason, there is a limit to increasing the resonance frequency only by the thickness of the thin film.
The problem to be solved by the present invention is a thin film resonator capable of obtaining a higher resonance frequency than before without thinning the piezoelectric thin film, a piezoelectric thin film used for the thin film resonator, and production of the piezoelectric thin film It is to provide a method .

上記課題を解決するために成された本発明に係る圧電体薄膜の製造方法は、
基板に、該基板の面に平行な1方向に温度勾配を形成し、該基板の表面にZnO及びAlNのいずれかの材料から成る粒子を該基板表面に対して斜めに且つ入射方向の該基板表面への射影の方向が前記温度勾配と同方向になるように入射させることにより第1圧電体層を作製する工程と、
基板に前記方向とは180°異なる方向に温度勾配を形成し、前記第1圧電体層の表面に、前記材料と同じ材料から成る粒子を該基板表面に対して斜めに且つ入射方向の該基板表面への射影の方向が前記第1圧電体層の作製時とは180°異なるように入射させることにより第2圧電体層を作製する工程と、
を有することを特徴とする。
また、本発明に係る高次モード薄膜共振器は、上下電極の間にZnO及びAlNのいずれかから成る圧電体の薄膜を設けて成る薄膜共振器において、
該圧電体薄膜が上記方法により製造されたものであって、[0001]方向が圧電体薄膜の面に略平行な1方向に配向した第1圧電体層の上に、材料及び厚さが第1圧電体層と同じであり[0001]方向が第1圧電体層と180°異なる方向に配向した第2圧電体層が直接形成されていることを特徴とする。
A method for manufacturing a piezoelectric thin film according to the present invention made to solve the above-described problems is as follows.
A temperature gradient is formed on the substrate in one direction parallel to the surface of the substrate, and particles made of any one of ZnO and AlN are formed on the surface of the substrate obliquely with respect to the substrate surface and in the incident direction. Producing a first piezoelectric layer by causing the projection onto the surface to be incident in the same direction as the temperature gradient;
A temperature gradient is formed on the substrate in a direction different from the direction by 180 °, and particles made of the same material as the material are obliquely incident on the surface of the first piezoelectric layer and incident on the substrate. A step of producing a second piezoelectric layer by causing the projection onto the surface to be incident so that the direction of projection differs by 180 ° from the production of the first piezoelectric layer;
It is characterized by having.
Further, the high-order mode thin film resonator according to the present invention is a thin film resonator in which a piezoelectric thin film made of either ZnO or AlN is provided between upper and lower electrodes.
Piezoelectric thin film is a one produced by the above method, on the [0001] first pressure conductor layer direction is oriented substantially parallel to one direction on the surface of the piezoelectric thin film, the material and thickness is the same as the first piezoelectric layer [0001] direction and the second pressure collector layer oriented in the first piezoelectric layer and 180 ° different directions, characterized in that it is formed directly.

ZnO及びAlNは共に、図1に示すように、一般式An+Bn-(nは整数)で表され六方晶であるウルツ鉱構造を有する。ウルツ鉱構造では、An+から成る層(A層)とBn-から成る層(B層)が交互に積層し、B層はその上下にある2枚のA層から等距離の位置よりもc軸の1方向にずれた位置に配置される。即ち、ウルツ鉱構造はc軸方向に極性を有する。本願では、B層に対してA層がずれる方向を[0001]方向と定義する。 As shown in FIG. 1, both ZnO and AlN have a wurtzite structure represented by the general formula An + Bn- (n is an integer) and a hexagonal crystal. In the wurtzite structure, layers composed of An + (layer A) and layers composed of B n- (layer B) are alternately stacked, and the layer B is located at a distance from the two layers A above and below the same distance. It is arranged at a position shifted in one direction of the c-axis. That is, the wurtzite structure has polarity in the c-axis direction. In the present application, the direction in which the A layer deviates from the B layer is defined as the [0001] direction.

前記圧電体薄膜には第1圧電体層及び第2圧電体層を交互に複数積層したものを用いることもできる。ここで、第1圧電体層と第2圧電体層を合わせた、圧電体薄膜中の全層数は偶数であっても奇数であってもよい。例えば、上から順に第1圧電体層、第2圧電体層、第1圧電体層、第2圧電体層、...の順に積層した場合、最下層は第2圧電体層であってもよいし、第1圧電体層であってもよい。   The piezoelectric thin film may be formed by alternately laminating a plurality of first piezoelectric layers and second piezoelectric layers. Here, the total number of layers in the piezoelectric thin film including the first piezoelectric layer and the second piezoelectric layer may be an even number or an odd number. For example, when the first piezoelectric layer, the second piezoelectric layer, the first piezoelectric layer, the second piezoelectric layer,... Are stacked in this order from the top, the lowest layer may be the second piezoelectric layer. It may be the first piezoelectric layer.

本発明の薄膜共振器を、空洞を有する基板上に固定することができる。これによりFBARを構成することができる。
また、本発明の薄膜共振器において、薄膜共振器の共振周波数を有する超音波の波長の1/4の厚さを有し音響インピーダンスの異なる2種類の層が交互に積層して成る音響多層膜を一方の面に固定することができる。これによりSMRを構成することができる。
The thin film resonator of the present invention can be fixed on a substrate having a cavity. As a result, the FBAR can be configured.
Further, in the thin film resonator of the present invention, an acoustic multilayer film in which two types of layers having a thickness of 1/4 of an ultrasonic wave having a resonance frequency of the thin film resonator and having different acoustic impedances are alternately laminated. Can be fixed to one side. Thereby, the SMR can be configured.

発明の実施の形態及び効果Embodiments and effects of the invention

本発明に係る薄膜共振器は、従来の薄膜共振器と同様に、圧電体薄膜とそれを挟む上下の電極から構成される。従来の薄膜共振器との相違点は、本発明では圧電体薄膜が、[0001]方向が共に圧電体薄膜の面に略平行であって、その方向が180°異なる2つの圧電体層(第1圧電体層、第2圧電体層)から成ることにある。   The thin film resonator according to the present invention includes a piezoelectric thin film and upper and lower electrodes sandwiching the piezoelectric thin film, as in the conventional thin film resonator. The difference from the conventional thin film resonator is that, in the present invention, the piezoelectric thin film has two [0001] directions that are substantially parallel to the surface of the piezoelectric thin film, and the directions are 180 ° different from each other. 1 piezoelectric body layer, 2nd piezoelectric body layer).

従来の薄膜共振器においては、その共振周波数を有する交流電界が電極間に印加されると、圧電体薄膜は上面と下面で逆方向に振動し、波長が圧電体薄膜の厚さの2倍である定在波(1次モードの定在波)が形成される。一方、波長が圧電体薄膜の厚さに等しい定在波(2次モードの定在波)を形成するためには、圧電体薄膜の上面と下面で振動が同位相でなければならない。単独の圧電体薄膜を用いる限り、電極間に交流電界を印加しても圧電体薄膜にそのような振動を生じさせることはできず2次モードの定在波を形成することはできなかった。   In a conventional thin film resonator, when an AC electric field having the resonance frequency is applied between the electrodes, the piezoelectric thin film vibrates in the opposite direction on the upper surface and the lower surface, and the wavelength is twice the thickness of the piezoelectric thin film. A standing wave (first-order mode standing wave) is formed. On the other hand, in order to form a standing wave having a wavelength equal to the thickness of the piezoelectric thin film (second-order mode standing wave), vibrations must be in phase on the upper and lower surfaces of the piezoelectric thin film. As long as a single piezoelectric thin film was used, even if an AC electric field was applied between the electrodes, such vibration could not be generated in the piezoelectric thin film, and a standing wave of the second mode could not be formed.

それに対して、本発明の薄膜共振器は、[0001]方向が180°異なる2つの圧電体層から成る圧電体薄膜を用いることにより、共振周波数を有する交流電界が電極間に印加されると、第1圧電体層及び第2圧電体層には互いに逆方向にすべり振動が生じる。それにより薄膜内に、面に垂直な伝搬方向の横波による定在波が形成される。この時、第1圧電体層の上面と第2圧電体層の下面は同じ方向にすべることから振動が同位相になるため、形成される定在波は2次モードになる。   On the other hand, the thin film resonator of the present invention uses a piezoelectric thin film composed of two piezoelectric layers whose [0001] directions differ by 180 °, so that when an alternating electric field having a resonance frequency is applied between the electrodes, Slip vibrations are generated in the first and second piezoelectric layers in opposite directions. Thereby, a standing wave is formed in the thin film by a transverse wave in a propagation direction perpendicular to the surface. At this time, since the upper surface of the first piezoelectric layer and the lower surface of the second piezoelectric layer slide in the same direction, the vibrations have the same phase, so that the formed standing wave becomes a secondary mode.

また、本発明の薄膜共振器は従来の薄膜共振器とは反対に、圧電体薄膜が上面と下面で逆方向に振動することがないため、1次モードの定在波が不要な振動(スプリアス)として形成されることを防ぐことができる。   In contrast to the conventional thin film resonator, the thin film resonator of the present invention does not vibrate in the opposite direction on the upper surface and the lower surface. ) Can be prevented.

このように2次モードの高次定在波が形成される本発明の薄膜共振器では、圧電体薄膜の厚さはそのままで、共振波長を従来の薄膜共振器の1/2倍に、即ち共振周波数を2倍にすることができる。   Thus, in the thin film resonator of the present invention in which a high-order standing wave of the second order mode is formed, the thickness of the piezoelectric thin film remains the same, and the resonance wavelength is half that of the conventional thin film resonator, that is, The resonance frequency can be doubled.

また、本発明の薄膜共振器は、[0001]方向が薄膜の面に平行な方向に配向していることにより、以下の有利な効果が得られる。
仮に、[0001]方向が第1圧電体層では面に垂直な1方向に配向し、第2圧電体層ではそれとは180°異なる方向に配向した圧電体薄膜を有する薄膜共振器を作製することができれば、その薄膜共振器は本発明の薄膜共振器と同様に圧電体薄膜内に2次モードの定在波を形成することができる。しかし、そのような圧電体薄膜を作製するためには、[0001]方向が面に垂直な1方向に配向した薄膜を作製したうえで、[0001]方向が180°異なる薄膜同士を接着する必要がある。実際には、このような圧電体薄膜を作製することは難しく、また、実用的ではない。
それに対して、本発明の薄膜共振器で用いる圧電体薄膜は、本願発明者が発明した方法(特開2004-244716号公報、日本音響学会2004年度秋季研究発表会講演論文集第II分冊1169-1170頁参照)を利用して容易に作製することができる。この方法によれば、基板の面に平行な1方向に温度勾配を形成し、その基板の上にZnO等の材料を堆積させることにより、[0001]方向が基板の温度の低い方から高い方に向くように配向した薄膜を作製することができる。そこで、まず、この方法により[0001]方向が面に平行な1方向に配向した第1圧電体層を作製し、次に、基板の温度勾配の方向を180°変えて、第1圧電体層の上に第2圧電体層を作製する。これにより、[0001]方向が第1圧電体層では面に平行な1方向に配向し、第2圧電体層ではそれとは180°異なる方向に配向した圧電体薄膜を容易に得ることができる。
また、横波は空気中を伝搬しないため、共振器の振動エネルギーが外部に漏れることを防ぐことができる。
The thin film resonator of the present invention has the following advantageous effects because the [0001] direction is oriented in a direction parallel to the plane of the thin film.
Temporarily, a [0001] direction is oriented in one direction perpendicular to the surface in the first piezoelectric layer, and a thin film resonator having a piezoelectric thin film oriented in a direction different from that in the second piezoelectric layer by 180 ° is manufactured. If possible, the thin film resonator can form a standing wave of a secondary mode in the piezoelectric thin film similarly to the thin film resonator of the present invention. However, in order to produce such a piezoelectric thin film, it is necessary to produce a thin film in which the [0001] direction is oriented in one direction perpendicular to the surface, and then adhere the thin films whose [0001] direction differs by 180 °. There is. In practice, it is difficult to produce such a piezoelectric thin film, and it is not practical.
On the other hand, the piezoelectric thin film used in the thin film resonator of the present invention is a method invented by the present inventor (Japanese Patent Laid-Open No. 2004-244716, Japanese Acoustical Society 2004 Autumn Research Presentation Proceedings II Volume 1169- (See page 1170). According to this method, a temperature gradient is formed in one direction parallel to the surface of the substrate, and a material such as ZnO is deposited on the substrate, so that the [0001] direction is higher from the lower temperature of the substrate. It is possible to produce a thin film oriented so as to face the surface. Therefore, first, by this method, a first piezoelectric layer having a [0001] direction oriented in one direction parallel to the surface is manufactured, and then the direction of the temperature gradient of the substrate is changed by 180 ° to thereby change the first piezoelectric layer. A second piezoelectric layer is fabricated on the substrate. Accordingly, it is possible to easily obtain a piezoelectric thin film in which the [0001] direction is oriented in one direction parallel to the surface in the first piezoelectric layer and in the second piezoelectric layer in a direction different from that by 180 °.
Further, since the transverse wave does not propagate in the air, the vibration energy of the resonator can be prevented from leaking outside.

本発明において、圧電体薄膜には第1圧電体層及び第2圧電体層を交互に複数積層したものを用いてもよい。これにより、圧電体薄膜の厚さを従来と同じとしたままで、圧電体薄膜内に3次モード以上の高調波を形成することができ、更に共振周波数を高くすることができる。   In the present invention, the piezoelectric thin film may be formed by alternately laminating a plurality of first piezoelectric layers and second piezoelectric layers. As a result, while the thickness of the piezoelectric thin film is kept the same as that of the prior art, harmonics of the third mode or higher can be formed in the piezoelectric thin film, and the resonance frequency can be further increased.

本発明の薄膜共振器はFBAR、SMRのいずれにも適用することができる。いずれも、圧電体の分極方向が180°異なる2つの圧電体層を用いる点を除いて、従来のFBAR及びSMRと同様の構成を有する。   The thin film resonator of the present invention can be applied to either FBAR or SMR. Both have the same configuration as the conventional FBAR and SMR, except that two piezoelectric layers having a piezoelectric polarization direction different by 180 ° are used.

本発明に係る薄膜共振器の一実施例として、圧電体薄膜の材料にZnOを用いたFBAR10を、図2を用いて説明する。シリコン(Si)基板11は、その中央にそれを貫通する空洞12を有する。Si基板11の上に下部電極13を設け、その上に、ZnOから成る第1圧電体層141、及び、同じくZnOから成る第2圧電体層142をこの順に積層した圧電体薄膜14を設ける。そして、圧電体薄膜14の上に上部電極15を設ける。ここで、第1圧電体層141は[0001]方向が面に平行な1方向(図2の右方向)に配向し、第2圧電体層142は[0001]方向が第1圧電体層141のものとは180°異なる方向(図2の左方向)に配向する、ように形成する。また、下部電極13と上部電極15に挟まれた領域16において、第1圧電体層141の厚さと第2圧電体層142の厚さは共にt=2μmとする。なお、本実施例では、下部電極13には厚さは0.8μmの銅薄膜を、上部電極15には厚さ0.2μmの金薄膜を、それぞれ用いた。   As an embodiment of the thin film resonator according to the present invention, an FBAR 10 using ZnO as a material for a piezoelectric thin film will be described with reference to FIG. The silicon (Si) substrate 11 has a cavity 12 passing through it at the center. A lower electrode 13 is provided on the Si substrate 11, and a piezoelectric thin film 14 in which a first piezoelectric layer 141 made of ZnO and a second piezoelectric layer 142 also made of ZnO are laminated in this order is provided thereon. Then, the upper electrode 15 is provided on the piezoelectric thin film 14. Here, the first piezoelectric layer 141 is oriented in one direction (right direction in FIG. 2) in which the [0001] direction is parallel to the surface, and the second piezoelectric layer 142 is oriented in the first piezoelectric layer 141 in the [0001] direction. It is formed so as to be oriented in a direction (left direction in FIG. 2) different from that of 180 °. In the region 16 sandwiched between the lower electrode 13 and the upper electrode 15, both the thickness of the first piezoelectric layer 141 and the thickness of the second piezoelectric layer 142 are t = 2 μm. In this embodiment, a copper thin film having a thickness of 0.8 μm was used for the lower electrode 13, and a gold thin film having a thickness of 0.2 μm was used for the upper electrode 15.

図3に、圧電体薄膜のZnOの[0001]方向が薄膜の面に垂直に配向したFBAR20を示す。Si基板21、空洞22、下部電極23及び上部電極25は本実施例のFBAR10のものと同様である。圧電体薄膜24は、薄膜の面に垂直な1方向(図3の下方向)に[0001]方向が配向した第1圧電体層241と、その配向方向と180°異なる方向(図3の上方向)に[0001]方向が配向した第2圧電体層242が積層した構造を有する。   FIG. 3 shows the FBAR 20 in which the [0001] direction of ZnO of the piezoelectric thin film is oriented perpendicular to the plane of the thin film. The Si substrate 21, the cavity 22, the lower electrode 23, and the upper electrode 25 are the same as those of the FBAR 10 of this embodiment. The piezoelectric thin film 24 includes a first piezoelectric layer 241 whose [0001] direction is oriented in one direction perpendicular to the plane of the thin film (the lower direction in FIG. 3), and a direction that is 180 ° different from the orientation direction (upper direction in FIG. 3). The second piezoelectric layer 242 oriented in the [0001] direction is stacked.

図4に、従来のFBAR30の一例を示す。Si基板31、空洞32、下部電極33及び上部電極35は本実施例のFBAR10と同様である。圧電体薄膜34はc軸が薄膜の面に垂直な方向に配向したZnO薄膜から成る。   FIG. 4 shows an example of a conventional FBAR 30. The Si substrate 31, the cavity 32, the lower electrode 33, and the upper electrode 35 are the same as those of the FBAR 10 of this embodiment. The piezoelectric thin film 34 is made of a ZnO thin film whose c-axis is oriented in a direction perpendicular to the plane of the thin film.

図5を用いて、電極間に交流電圧を印加した時に圧電体薄膜内に形成される振動モードについて説明する。
まず、比較例のFBAR30では、下部電極33と上部電極35の間にFBARの共振周波数と同じ周波数を有する交流電圧を印加すると、圧電体薄膜34の上側の表面と下側の表面で互いに逆位相になるような振動が生じる(図5(a))。すなわち、振動の波長の1/2が圧電体薄膜34の厚さと等しくなる1次モードの振動が発生する。
それに対して、本実施例のFBAR10では、下部電極13と上部電極15の間にFBARの共振周波数と同じ周波数を有する交流電圧を印加すると、第1圧電体層141と第2圧電体層142には互いに逆方向にすべり振動が発生する(図5(b))。例えば、第1圧電体層141の下面が図の左側に移動した時には、第1圧電体層141の上面は右側に、第2圧電体層142の下面は右側に、第2圧電体層142の上面は左側に、それぞれ移動する。そのため、圧電体薄膜14の振動は、圧電体薄膜14の上側の表面と下側の表面で同位相となり、厚さ方向の中央(第1圧電体層141と第2圧電体層142の境界)付近でそれとは逆位相になる(図5(b))。これにより、圧電体薄膜14の厚さと振動の波長が等しくなる2次モードの振動が発生する。
これらのことから、圧電体薄膜14の厚さ(第1圧電体層141と第2圧電体層142の厚さの和)と圧電体薄膜34の厚さを同じとすれば、本実施例のFBAR10の共振周波数は比較例のFBAR30の共振周波数の2倍になることがわかる。
A vibration mode formed in the piezoelectric thin film when an AC voltage is applied between the electrodes will be described with reference to FIG.
First, in the FBAR 30 of the comparative example, when an AC voltage having the same frequency as the resonance frequency of the FBAR is applied between the lower electrode 33 and the upper electrode 35, the upper surface and the lower surface of the piezoelectric thin film 34 are opposite in phase. (Fig. 5 (a)). That is, the vibration of the first mode in which ½ of the vibration wavelength is equal to the thickness of the piezoelectric thin film 34 is generated.
On the other hand, in the FBAR 10 of this embodiment, when an AC voltage having the same frequency as the resonance frequency of the FBAR is applied between the lower electrode 13 and the upper electrode 15, the first piezoelectric layer 141 and the second piezoelectric layer 142 are applied. Slip vibrations occur in opposite directions (FIG. 5 (b)). For example, when the lower surface of the first piezoelectric layer 141 moves to the left side of the drawing, the upper surface of the first piezoelectric layer 141 is on the right side, the lower surface of the second piezoelectric layer 142 is on the right side, and the second piezoelectric layer 142 is The upper surface moves to the left. Therefore, the vibration of the piezoelectric thin film 14 has the same phase on the upper surface and the lower surface of the piezoelectric thin film 14, and the center in the thickness direction (the boundary between the first piezoelectric layer 141 and the second piezoelectric layer 142). In the vicinity, the phase is opposite to that (FIG. 5B). Thereby, the vibration of the secondary mode in which the thickness of the piezoelectric thin film 14 is equal to the wavelength of vibration is generated.
Therefore, if the thickness of the piezoelectric thin film 14 (the sum of the thicknesses of the first piezoelectric layer 141 and the second piezoelectric layer 142) and the thickness of the piezoelectric thin film 34 are made the same, It can be seen that the resonance frequency of the FBAR 10 is twice the resonance frequency of the FBAR 30 of the comparative example.

次に、図6を用いて、本実施例のFBAR10の製造方法を説明する。
まず、Si基板21の表面に、下部電極13を形成する領域に窓を設けたマスク41を形成し、その上から下部電極材料を蒸着する(a)ことにより下部電極13を作製する。マスク41を除去した後、Si基板11及び下部電極13の上に、図の左側の温度が右側の温度よりも高くなるようにSi基板11に平行な方向に温度勾配を形成しつつ、マグネトロンスパッタリング法によりZnOの粒子をスパッタして図の左上から右下に向けて飛行させ、Si基板11の表面に入射させる(c)。これにより、[0001]方向が図の左側から右側に向いた第1圧電体層141が形成される(d)。このような温度勾配及びZnO粒子の入射方向の制御については後述する。次に、第1圧電体層141に垂直な軸((e)中の一点鎖線)を中心にSi基板11を180°回転する(e)(これにより第1圧電体層141の[0001]方向は図の右側から左側を向く)。次に、第1圧電体層141の上に、(c)と同様に、左側の温度が右側の温度よりも高くなるようにSi基板11に温度勾配を形成しつつ、左上から右下に向けて飛行させ、第1圧電体層141の表面にZnOの粒子を入射させる(f)。これにより、第1圧電体層141のZnOとは180°異なる方向に分極を持つZnO薄膜から成る第2圧電体層142が形成される(g)。この時、第1圧電体層141の作製時間と第2圧電体層142の作製時間を等しくすることにより、第1圧電体層141と第2圧電体層142の厚さを等しくすることができる。その上に更に、上部電極15を形成する領域に窓を設けたマスク42を形成し、その上から上部電極材料を蒸着する(h)ことにより上部電極15を作製する。マスク42を除去した(i)後、Si基板11のうち圧電体薄膜14の中央付近の領域を、Siを選択的にエッチングして空洞12を形成する(j)。
Next, a manufacturing method of the FBAR 10 of this embodiment will be described with reference to FIG.
First, a mask 41 having a window in a region where the lower electrode 13 is to be formed is formed on the surface of the Si substrate 21, and a lower electrode material is vapor-deposited thereon (a) to produce the lower electrode 13. After removing the mask 41, a magnetron sputtering is performed on the Si substrate 11 and the lower electrode 13 while forming a temperature gradient in a direction parallel to the Si substrate 11 so that the temperature on the left side of the drawing is higher than the temperature on the right side. ZnO particles are sputtered by the above method and are caused to fly from the upper left to the lower right of the figure and enter the surface of the Si substrate 11 (c). As a result, the first piezoelectric layer 141 having the [0001] direction from the left side to the right side in the drawing is formed (d). Such control of the temperature gradient and the incident direction of the ZnO particles will be described later. Next, the Si substrate 11 is rotated by 180 ° about an axis perpendicular to the first piezoelectric layer 141 (one-dot chain line in (e)) (e) (by this, the [0001] direction of the first piezoelectric layer 141) From the right to the left in the figure). Next, on the first piezoelectric layer 141, as in (c), while forming a temperature gradient in the Si substrate 11 so that the temperature on the left side is higher than the temperature on the right side, the upper left side is directed to the lower right side. The ZnO particles are incident on the surface of the first piezoelectric layer 141 (f). As a result, the second piezoelectric layer 142 made of a ZnO thin film having a polarization in a direction different by 180 ° from the ZnO of the first piezoelectric layer 141 is formed (g). At this time, by making the production time of the first piezoelectric layer 141 equal to the production time of the second piezoelectric layer 142, the thicknesses of the first piezoelectric layer 141 and the second piezoelectric layer 142 can be made equal. . Further, a mask 42 provided with a window is formed in a region where the upper electrode 15 is to be formed, and the upper electrode material is vapor-deposited (h) thereon to produce the upper electrode 15. After removing the mask 42 (i), a region near the center of the piezoelectric thin film 14 in the Si substrate 11 is selectively etched to form the cavity 12 (j).

第1圧電体層141及び第2圧電体層142は、図7に示すマグネトロンスパッタリング装置50を用いて作製した。マグネトロンスパッタリング装置50は、成膜室51の下部にマグネトロン回路52及び陰極53を、上部に陽極54を設けたものである。陽極54の直下には、陰極53及び陽極54の中心を結ぶ線(図中の一点鎖線)から外れた位置に基板台55を有する。この基板台55は、前記中心線に対して傾斜した面を有し、その面に基板58を載置することにより基板58を前記中心線に対して傾斜して配置することができる。陰極53の上に、第1圧電体層141及び第2圧電体層142の原料となるZnOターゲット56を載置する。また、成膜室51にアルゴン(Ar)ガス及び酸素(O2)ガスのガス源57を接続する。 The first piezoelectric layer 141 and the second piezoelectric layer 142 were produced using the magnetron sputtering apparatus 50 shown in FIG. In the magnetron sputtering apparatus 50, a magnetron circuit 52 and a cathode 53 are provided in the lower part of the film forming chamber 51, and an anode 54 is provided in the upper part. Immediately below the anode 54, a substrate base 55 is provided at a position deviated from a line connecting the centers of the cathode 53 and the anode 54 (one-dot chain line in the drawing). The substrate table 55 has a surface inclined with respect to the center line, and by placing the substrate 58 on the surface, the substrate 58 can be disposed inclined with respect to the center line. On the cathode 53, a ZnO target 56 as a raw material for the first piezoelectric layer 141 and the second piezoelectric layer 142 is placed. Further, a gas source 57 of argon (Ar) gas and oxygen (O 2 ) gas is connected to the film forming chamber 51.

このマグネトロンスパッタリング装置50を用いて第1圧電体層141及び第2圧電体層142を作製する方法を説明する。図6(b)に示した下部電極13を形成したもの、又は図6(e)に示した第1圧電体層141を形成したものを基板58として基板台55に取り付ける。ここで、基板58のうち、温度を高くしたい方の端面(図6(c)及び(f)の左側)を装置の中心(図7の一点鎖線)側に来るようにする。成膜室51内にArガス及びO2ガスを導入し、陰極53に高周波電力を供給すると、成膜室51内に磁界及び電界が形成され、それによりArガス及びO2ガスが電離して電子を放出する。この電子は電界及び磁界によりトロイダル曲線を描きながら運動し、これによりZnOターゲット56の近傍にプラズマが発生してZnOターゲット56からZnOがスパッタされる。スパッタされたZnOは陽極54向かう一軸方向の流れ(原料流59)を形成し、基板58の表面に到達するとこの表面に堆積する。この時、基板58を前述のように傾斜して配置したことにより、基板58に温度勾配が形成され、それにより[0001]方向が基板に平行な1方向に配向した第1圧電体層141又は第2圧電体層142が形成される。 A method for producing the first piezoelectric layer 141 and the second piezoelectric layer 142 using the magnetron sputtering apparatus 50 will be described. A substrate on which the lower electrode 13 shown in FIG. 6B is formed or a substrate on which the first piezoelectric layer 141 shown in FIG. Here, the end face (the left side of FIGS. 6 (c) and 6 (f)) of the substrate 58 where the temperature is desired to be raised is brought to the center (dashed line in FIG. 7) side of the apparatus. When Ar gas and O 2 gas are introduced into the film forming chamber 51 and high frequency power is supplied to the cathode 53, a magnetic field and an electric field are formed in the film forming chamber 51, whereby the Ar gas and O 2 gas are ionized. Emits electrons. The electrons move while drawing a toroidal curve by an electric field and a magnetic field, whereby plasma is generated near the ZnO target 56 and ZnO is sputtered from the ZnO target 56. The sputtered ZnO forms a uniaxial flow (raw material flow 59) toward the anode 54 , and deposits on this surface when it reaches the surface of the substrate 58. At this time, by arranging the substrate 58 to be inclined as described above, a temperature gradient is formed in the substrate 58, whereby the [0001] direction is oriented in one direction parallel to the substrate. A second piezoelectric layer 142 is formed.

図8に示すように、マグネトロンスパッタリング装置50において、基板58を基板台55の表面に平行な方向に可動にし、基板58の表面に、一部の領域のみに窓62を設けたマスク61を設けてもよい。この場合、基板58を前記方向に移動させながら第1圧電体層141及び第2圧電体層142を形成することにより、基板58にレジストマスク等を設けることなく、第1圧電体層141及び第2圧電体層142を基板58上の所定の範囲内にのみ形成することができる。また、第1圧電体層141及び第2圧電体層142の厚さ及び品質を面内で均一にすることができる。   As shown in FIG. 8, in the magnetron sputtering apparatus 50, the substrate 58 is movable in a direction parallel to the surface of the substrate table 55, and a mask 61 having windows 62 only in a part of the region is provided on the surface of the substrate 58. May be. In this case, by forming the first piezoelectric layer 141 and the second piezoelectric layer 142 while moving the substrate 58 in the above-described direction, the first piezoelectric layer 141 and the first piezoelectric layer 141 are not provided on the substrate 58 without providing a resist mask or the like. The two piezoelectric layers 142 can be formed only within a predetermined range on the substrate 58. In addition, the thickness and quality of the first piezoelectric layer 141 and the second piezoelectric layer 142 can be made uniform in the plane.

図9(a)に、本発明に係る薄膜共振器の他の実施例として、SMR70aを示す。SMR70aは、膜状の下部電極73と上部電極75の間にFBAR10と同様の、ZnOから成る第1圧電体層741a及び第2圧電体層742aを設けたものである。ここで、第1圧電体層741aは[0001]方向が図の左側から右側に向くように、第2圧電体層742aは[0001]方向が図の右側から左側に向くように、それぞれ形成する。下部電極73の下に、SiO2から成る低音響インピーダンス層76aとMoから成る高音響インピーダンス層77aを交互に多数積層した音響多層膜78aを設け、その下に基板79を設ける。これら低音響インピーダンス層76a及び高音響インピーダンス層77aは、SMR70aの共振周波数と同じ周波数を有する超音波がそれぞれの層を伝播する時の波長の1/4の厚さに形成する。この音響多層膜78aは従来のSMRで用いられている音響多層膜と同様のものであり、これにより共振のエネルギーが基板79に漏れて損失となることを防ぐことができる。 FIG. 9 (a) shows an SMR 70a as another embodiment of the thin film resonator according to the present invention. In the SMR 70a, a first piezoelectric layer 741a and a second piezoelectric layer 742a made of ZnO are provided between a film-like lower electrode 73 and an upper electrode 75, similar to the FBAR 10. Here, the first piezoelectric layer 741a is formed so that the [0001] direction is from the left side to the right side of the drawing, and the second piezoelectric layer 742a is formed so that the [0001] direction is from the right side to the left side of the drawing. . Under the lower electrode 73, an acoustic multilayer film 78a in which a plurality of low acoustic impedance layers 76a made of SiO 2 and high acoustic impedance layers 77a made of Mo are alternately laminated is provided, and a substrate 79 is provided thereunder. The low acoustic impedance layer 76a and the high acoustic impedance layer 77a are formed to have a thickness of 1/4 of the wavelength when the ultrasonic wave having the same frequency as the resonance frequency of the SMR 70a propagates through each layer. The acoustic multilayer film 78a is the same as the acoustic multilayer film used in the conventional SMR, and can thereby prevent the resonance energy from leaking to the substrate 79 and being lost.

図9(b)に、圧電体薄膜のZnOの[0001]方向が薄膜の面に垂直に配向したSMR70bを示す。SMR70bは、FBAR20と同様の、第1圧電体層741b及び第2圧電体層742bを設けた点を除いて、基本的にはSMR70aと同じ構成を有する。   FIG. 9B shows an SMR 70b in which the [0001] direction of ZnO of the piezoelectric thin film is oriented perpendicular to the surface of the thin film. The SMR 70b basically has the same configuration as the SMR 70a except that the first piezoelectric layer 741b and the second piezoelectric layer 742b are provided as in the FBAR 20.

図10に、本発明のFBAR及びSMRの変形例として、ZnOから成る複数の第1圧電体層8411、8412、...及び第2圧電体層8421、8422、...を交互に積層した例を示す。(a)はZnOの[0001]方向が層に平行な方向に配向したFBAR、(b)は[0001]方向が層に平行な方向に配向したSMR、(c)は[0001]方向が層に垂直な方向に配向したFBAR、(d)は[0001]方向が層に垂直な方向に配向したSMR、をそれぞれ示す。いずれも、第1圧電体層及び第2圧電体層の厚さは、それらを1層ずつ設けたFBAR10、SMR70a、FBAR20、SMR70bと同じ値とした。また、(b)及び(d)では、低音響インピーダンス層86及び高音響インピーダンス層87の厚さは、SMR70a、SMR70bと同じ値とした。それら以外の基板81、空洞82、上部電極83、下部電極85、音響多層膜88、基板89はFBAR10、FBAR20、SMR70a、SMR70bと同様の構成とした。   10, as a modification of the FBAR and SMR of the present invention, a plurality of first piezoelectric layers 8411, 8412,... And second piezoelectric layers 8421, 8422,. An example is shown. (a) is an FBAR in which the [0001] direction of ZnO is oriented in a direction parallel to the layer, (b) is an SMR in which the [0001] direction is oriented in a direction parallel to the layer, and (c) is a layer in the [0001] direction. FBARs oriented in the direction perpendicular to, and (d) shows SMR oriented in the direction perpendicular to the layer in the [0001] direction. In all cases, the thicknesses of the first piezoelectric layer and the second piezoelectric layer were set to the same values as those of the FBAR 10, SMR 70a, FBAR 20, and SMR 70b in which they were provided one by one. In (b) and (d), the thicknesses of the low acoustic impedance layer 86 and the high acoustic impedance layer 87 are set to the same values as those of the SMR 70a and the SMR 70b. Other than that, the substrate 81, the cavity 82, the upper electrode 83, the lower electrode 85, the acoustic multilayer film 88, and the substrate 89 have the same configuration as the FBAR 10, FBAR 20, SMR 70a, and SMR 70b.

図11に、作製したFBAR20のアドミタンス特性を測定した結果を示す。ここでは、図6に示した工程において下部電極13、圧電体薄膜14及び上部電極15から成る薄膜共振器を作製した後に基板11を除去し、空洞を有する基板上にその薄膜共振器を載置して固定したものを用いた。下部電極13と上部電極15の間に周波数560MHzの交流電圧を印加した時に共振が観測された。この周波数は、第1圧電体層241及び第2圧電体層242の厚さから、2次モードの横波共振が生じていると考えるのが妥当である。なお、周波数280MHzの所に見られる、周波数560MHzの時よりも小さい共振(スプリアス)は、作製した下部電極13が比較的厚かったことが影響して完全には打ち消されなかった1次モードの横波共振であると考えられる。これは製造精度を高めることによりほぼ消失させることができる。   FIG. 11 shows the results of measuring the admittance characteristics of the manufactured FBAR 20. Here, after the thin film resonator comprising the lower electrode 13, the piezoelectric thin film 14 and the upper electrode 15 is fabricated in the process shown in FIG. 6, the substrate 11 is removed, and the thin film resonator is placed on the substrate having a cavity. And fixed one was used. Resonance was observed when an AC voltage having a frequency of 560 MHz was applied between the lower electrode 13 and the upper electrode 15. From this thickness, it is appropriate to consider that the transverse wave resonance of the secondary mode is generated from the thickness of the first piezoelectric layer 241 and the second piezoelectric layer 242. Note that the resonance (spurious) seen at a frequency of 280 MHz, which is smaller than that at a frequency of 560 MHz, is a transverse wave of a primary mode that was not completely canceled due to the fact that the manufactured lower electrode 13 was relatively thick. It is considered to be resonance. This can be almost eliminated by increasing the manufacturing accuracy.

ウルツ鉱構造を示す結晶構造図。The crystal structure figure which shows a wurtzite structure. 本発明に係るFBARの一実施例を示す縦断面図。The longitudinal cross-sectional view which shows one Example of FBAR which concerns on this invention. 圧電体薄膜のZnOの[0001]方向が面に垂直な方向に配向したFBARの例を示す縦断面図。The longitudinal cross-sectional view which shows the example of FBAR with which the [0001] direction of ZnO of the piezoelectric material thin film was orientated in the direction perpendicular | vertical to a surface. 比較例のFBARの一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of FBAR of a comparative example. 本実施例及び比較例のFBARにおける圧電体薄膜の振動モードを説明するための縦断面図及びグラフ。The longitudinal cross-sectional view and graph for demonstrating the vibration mode of the piezoelectric material thin film in FBAR of a present Example and a comparative example. 本実施例のFBAR10の製造方法を示す縦断面図。The longitudinal cross-sectional view which shows the manufacturing method of FBAR10 of a present Example. [0001]方向が面内に配向したZnO薄膜を製造するための装置を示す縦断面図。[0001] Fig. 3 is a longitudinal sectional view showing an apparatus for producing a ZnO thin film whose [0001] direction is in-plane oriented. ZnO薄膜製造装置の他の例を示す縦断面図。The longitudinal cross-sectional view which shows the other example of a ZnO thin film manufacturing apparatus. 本発明のSMRの他の実施例を示す縦断面図。The longitudinal cross-sectional view which shows the other Example of SMR of this invention. 本発明のFBAR及びSMRの他の実施例を示す縦断面図。The longitudinal cross-sectional view which shows the other Example of FBAR and SMR of this invention. 本実施例のFBAR10のアドミタンス特性の測定結果を示すグラフ。The graph which shows the measurement result of the admittance characteristic of FBAR10 of a present Example.

符号の説明Explanation of symbols

10、20、30…FBAR
11、21、31、81…Si基板
12、22、32、82…空洞
13、23、33、73、83…下部電極
14、24、34…圧電体薄膜
141、241、741a、741b、8411…第1圧電体層
142、242、742a、742b、8421…第2圧電体層
15、25、35、75、85…上部電極
41、42…マスク
50…マグネトロンスパッタリング装置
51…成膜室
52…マグネトロン回路
53…陰極
54…陽極
55…基板台
56…ZnOターゲット
57…ガス源
58…基板
59…原料流
61…マスク
62…窓
70a、70b…SMR
76a、76b、86…低音響インピーダンス層
77a、77b、87…高音響インピーダンス層
78a、78b、88…音響多層膜
10, 20, 30 ... FBAR
11, 21, 31, 81 ... Si substrates 12, 22, 32, 82 ... cavities 13, 23, 33, 73, 83 ... lower electrodes 14, 24, 34 ... piezoelectric thin films 141, 241, 741a, 741b, 8411 ... First piezoelectric layer 142, 242, 742a, 742b, 8421 ... second piezoelectric layer 15, 25, 35, 75, 85 ... upper electrode 41, 42 ... mask 50 ... magnetron sputtering apparatus 51 ... film forming chamber 52 ... magnetron Circuit 53 ... Cathode 54 ... Anode 55 ... Substrate table 56 ... ZnO target 57 ... Gas source 58 ... Substrate 59 ... Raw material flow 61 ... Mask 62 ... Windows 70a, 70b ... SMR
76a, 76b, 86 ... low acoustic impedance layers 77a, 77b, 87 ... high acoustic impedance layers 78a, 78b, 88 ... acoustic multilayer films

Claims (7)

基板に、該基板の面に平行な1方向に温度勾配を形成し、該基板の表面にZnO及びAlNのいずれかの材料から成る粒子を該基板表面に対して斜めに且つ入射方向の該基板表面への射影の方向が前記温度勾配と同方向になるように入射させることにより第1圧電体層を作製する工程と、
基板に前記方向とは180°異なる方向に温度勾配を形成し、前記第1圧電体層の表面に、前記材料と同じ材料から成る粒子を該基板表面に対して斜めに且つ入射方向の該基板表面への射影の方向が前記第1圧電体層の作製時とは180°異なるように入射させることにより第2圧電体層を作製する工程と、
を有することを特徴とする圧電体薄膜製造方法。
A temperature gradient is formed on the substrate in one direction parallel to the surface of the substrate, and particles made of any one of ZnO and AlN are formed on the surface of the substrate obliquely with respect to the substrate surface and in the incident direction. Producing a first piezoelectric layer by causing the projection onto the surface to be incident in the same direction as the temperature gradient;
A temperature gradient is formed on the substrate in a direction different from the direction by 180 °, and particles made of the same material as the material are obliquely incident on the surface of the first piezoelectric layer and incident on the substrate. A step of producing a second piezoelectric layer by causing the projection onto the surface to be incident so that the direction of projection differs by 180 ° from the production of the first piezoelectric layer;
A method for producing a piezoelectric thin film, comprising:
上下電極の間にZnO及びAlNのいずれかから成る圧電体薄膜を設けて成る薄膜共振器において、
該圧電体薄膜が請求項1に記載の方法により製造されたものであって、[0001]方向が圧電体薄膜の面に略平行な1方向に配向した第1圧電体層の上に、材料及び厚さが第1圧電体層と同じであり[0001]方向が第1圧電体層と180°異なる方向に配向した第2圧電体層が直接形成されていることを特徴とする高次モード薄膜共振器。
In thin-film resonator comprising providing a piezoelectric thin film made of any one of ZnO and AlN between the upper and lower electrodes,
Be one piezoelectric thin film was prepared by the method of claim 1, on the [0001] first pressure conductor layer direction is oriented substantially parallel to one direction on the surface of the piezoelectric thin film, high, characterized in that the material and thickness are the same as the first piezoelectric layer [0001] second pressure collector layer direction is oriented in the first piezoelectric layer and 180 ° different directions are formed directly Next mode thin film resonator.
前記圧電体薄膜が第1圧電体層及び第2圧電体層を交互に複数積層したものであることを特徴とする請求項2に記載の高次モード薄膜共振器。   3. The high-order mode thin film resonator according to claim 2, wherein the piezoelectric thin film is formed by alternately laminating a plurality of first piezoelectric layers and second piezoelectric layers. 空洞を有する基板上に固定されていることを特徴とする請求項2又は3に記載の高次モード薄膜共振器。   4. The high-order mode thin film resonator according to claim 2, wherein the high-order mode thin film resonator is fixed on a substrate having a cavity. 薄膜共振器の共振周波数と同じ周波数を有する超音波の波長の1/4の厚さを有し音響インピーダンスの異なる2種類の層が交互に積層して成る音響多層膜を一方の面に固定したことを特徴とする請求項2又は3に記載の高次モード薄膜共振器。   An acoustic multi-layer film composed of two layers with different acoustic impedance and a thickness of 1/4 of the ultrasonic wave having the same frequency as the resonance frequency of the thin film resonator is fixed to one surface. The high-order mode thin film resonator according to claim 2 or 3, wherein ZnO及びAlNのいずれかから成り、請求項1に記載の方法により製造された圧電体薄膜であって、[0001]方向が圧電体薄膜の面に略平行な1方向に配向した第1圧電体層の上に、材料及び厚さが第1圧電体層と同じであり[0001]方向が第1圧電体層と180°異なる方向に配向した第2圧電体層が直接形成されていることを特徴とする圧電体薄膜。 Ri consists either ZnO and AlN, a piezoelectric thin film manufactured by the method of claim 1, [0001] first pressure direction is oriented substantially parallel to one direction on the surface of the piezoelectric thin film on the collector layer, the material and thickness are the same as the first piezoelectric layer [0001] direction and the second pressure collector layer oriented in the first piezoelectric layer and 180 ° different directions is formed directly A piezoelectric thin film characterized by comprising: 第1圧電体層及び第2圧電体層が交互に複数積層していることを特徴とする請求項6に記載の圧電体薄膜。   7. The piezoelectric thin film according to claim 6, wherein a plurality of first piezoelectric layers and second piezoelectric layers are alternately laminated.
JP2005219834A 2005-07-29 2005-07-29 High-order mode thin film resonator, piezoelectric thin film, and method for manufacturing piezoelectric thin film Active JP4784815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005219834A JP4784815B2 (en) 2005-07-29 2005-07-29 High-order mode thin film resonator, piezoelectric thin film, and method for manufacturing piezoelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005219834A JP4784815B2 (en) 2005-07-29 2005-07-29 High-order mode thin film resonator, piezoelectric thin film, and method for manufacturing piezoelectric thin film

Publications (2)

Publication Number Publication Date
JP2007036915A JP2007036915A (en) 2007-02-08
JP4784815B2 true JP4784815B2 (en) 2011-10-05

Family

ID=37795583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005219834A Active JP4784815B2 (en) 2005-07-29 2005-07-29 High-order mode thin film resonator, piezoelectric thin film, and method for manufacturing piezoelectric thin film

Country Status (1)

Country Link
JP (1) JP4784815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114997B2 (en) 2019-01-31 2021-09-07 Samsung Electro-Mechanics Co., Ltd. Bulk-acoustic wave resonator

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2529824C2 (en) * 2012-11-29 2014-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) Piezoelectric converter
JP6168486B2 (en) * 2014-01-24 2017-07-26 株式会社村田製作所 Piezoelectric vibrator and piezoelectric vibrator
JP6543109B2 (en) 2015-06-30 2019-07-10 株式会社日立パワーソリューションズ Ultrasonic probe and ultrasonic inspection apparatus
GB2551803B (en) * 2016-06-30 2020-04-01 Xaar Technology Ltd Poling of a piezoelectric thin film element in a preferred electric field driving direction
JP7037336B2 (en) 2017-11-16 2022-03-16 太陽誘電株式会社 Elastic wave devices and their manufacturing methods, filters and multiplexers
WO2020085188A1 (en) * 2018-10-24 2020-04-30 株式会社村田製作所 Resonance device
CN109459148B (en) * 2018-11-12 2020-09-08 中国科学院长春光学精密机械与物理研究所 Polarized infrared sensor based on super surface FBAR resonance frequency temperature drift characteristic
WO2021021739A1 (en) 2019-07-31 2021-02-04 QXONIX Inc. Mass loaded bulk acoustic wave (baw) resonator structures, devices and systems
JP2021190809A (en) * 2020-05-28 2021-12-13 学校法人早稲田大学 Frequency filter
CN114465594B (en) * 2020-11-09 2022-12-23 中国科学院上海微系统与信息技术研究所 Acoustic wave resonator
CN113395051B (en) * 2021-07-09 2024-03-26 赛莱克斯微系统科技(北京)有限公司 Thin film bulk acoustic resonator and high-frequency radio-frequency device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199310A (en) * 1987-10-12 1989-04-18 Murata Mfg Co Ltd Electrostriction effect element
JPH1051262A (en) * 1996-04-16 1998-02-20 Matsushita Electric Ind Co Ltd Piezoelectric vibrator and its production
JP3860695B2 (en) * 1999-02-26 2006-12-20 京セラ株式会社 Piezoelectric resonator and filter
JP3561745B1 (en) * 2003-02-11 2004-09-02 関西ティー・エル・オー株式会社 Thin film manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114997B2 (en) 2019-01-31 2021-09-07 Samsung Electro-Mechanics Co., Ltd. Bulk-acoustic wave resonator

Also Published As

Publication number Publication date
JP2007036915A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP4784815B2 (en) High-order mode thin film resonator, piezoelectric thin film, and method for manufacturing piezoelectric thin film
US9112134B2 (en) Resonator, frequency filter, duplexer, electronic device, and method of manufacturing resonator
US9093979B2 (en) Laterally-coupled acoustic resonators
KR20110058704A (en) Hybrid bulk acoustic wave resonator
KR20060129514A (en) Boundary acoustic wave device manufacturing method and boundary acoustic wave device
JP2004193929A (en) Piezoelectric resonance filter and duplexer
JP2013034130A (en) Piezoelectric thin film resonator and method of manufacturing the same
US20050231072A1 (en) Piezoelectric resonator and electronic component provided therewith
US9386388B2 (en) Method of manufacturing stacked thin film piezoelectric filter
US10658998B2 (en) Piezoelectric film transfer for acoustic resonators and filters
US10771032B2 (en) Method for manufacturing piezoelectric thin-film element
US20240088869A1 (en) Frequency-tunable film bulk acoustic resonator and preparation method therefor
JP2008113061A (en) Bulk acoustic wave resonator, filter device, and communication device
JP2008211392A (en) Resonator and manufacturing method thereof
JP2006340007A (en) Thin-film bulk acoustic wave resonator, filter, and communication device
JP2005057707A (en) Thin film bulk acoustic resonator and micro electromechanical system device
JP2005033379A (en) Thin film bulk wave vibrating element and manufacturing method thereof
JP2005260484A (en) Piezoelectric resonator and electronic component equipped with the same
JP2007036914A (en) Thin film resonator
WO2021241696A1 (en) Frequency filter
JP4339604B2 (en) Piezoelectric thin film element
JP2006186833A (en) Piezoelectric thin film device and its manufacturing method
JP4693406B2 (en) Piezoelectric thin film device and manufacturing method thereof
JP4849445B2 (en) Thin film resonator
JP2008022408A (en) Piezoelectric thin film resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110629

R150 Certificate of patent or registration of utility model

Ref document number: 4784815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250