JP2008022408A - Piezoelectric thin film resonator - Google Patents

Piezoelectric thin film resonator Download PDF

Info

Publication number
JP2008022408A
JP2008022408A JP2006193713A JP2006193713A JP2008022408A JP 2008022408 A JP2008022408 A JP 2008022408A JP 2006193713 A JP2006193713 A JP 2006193713A JP 2006193713 A JP2006193713 A JP 2006193713A JP 2008022408 A JP2008022408 A JP 2008022408A
Authority
JP
Japan
Prior art keywords
film
thin film
substrate
piezoelectric thin
compressive stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006193713A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sato
一彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006193713A priority Critical patent/JP2008022408A/en
Publication of JP2008022408A publication Critical patent/JP2008022408A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an SMR type piezoelectric thin film resonator that can resolve or reduce a warpage of a substrate due to film stress, suppress deformation or destruction, or characteristic deterioration of a device, and be industrially put to practical use and manufactured at low cost. <P>SOLUTION: A piezoelectric thin film resonator 11 includes: an acoustic multilayer film 13 on an upper surface of a substrate 12, in which a high acoustic impedance layer and a low acoustic impedance layer are alternately stacked; and a lower electrode 14, a piezoelectric thin film 15; and an upper electrode 16 which are stacked on the film 13, and further includes a compression stress film 17 on a lower surface of the substrate. The compressive stress film is formed in the same film configuration and in the same dimension and thickness as the acoustic multilayer film so as to have a compression stress of a level offset by a compressive stress caused by the acoustic multilayer film in the substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基板上に音響多層膜を介して設けた圧電薄膜を備える圧電薄膜共振子に関する。   The present invention relates to a piezoelectric thin film resonator including a piezoelectric thin film provided on a substrate via an acoustic multilayer film.

最近、特に携帯電話等の移動体通信機器の分野では、使用周波数の高周波化が進められている。これに対応して、それらの電子機器にフィルタや共振子として使用される圧電素子も、数GHz又はそれ以上の非常に高い周波数が要求されるようになっている。従来から広く使用されている圧電基板の厚み縦振動を利用した圧電振動子は、共振周波数を高くするために、圧電基板の厚さを薄くしなければならない。しかしながら、実際には機械加工の困難性等から、数10〜数100MHz程度の周波数が限界である。   Recently, particularly in the field of mobile communication devices such as mobile phones, the frequency of use has been increased. Correspondingly, a piezoelectric element used as a filter or a resonator in such electronic devices is required to have a very high frequency of several GHz or more. Piezoelectric vibrators that use longitudinal vibration of piezoelectric substrates that have been widely used in the past have to reduce the thickness of the piezoelectric substrate in order to increase the resonance frequency. However, in practice, a frequency of about several tens to several hundreds of MHz is the limit due to difficulty in machining.

そこで、圧電薄膜の厚み縦振動を利用した圧電薄膜共振子が提案されている(例えば、非特許文献1を参照)。この圧電薄膜共振子には、大きく分けて2つの異なる構造が知られている。その1つは、基板上に下地膜、下部電極、圧電薄膜及び上部電極を形成し、基板裏面から振動部の下側にある基板部分を除去して開口部を形成したダイヤフラム型圧電薄膜共振子(FBAR)である(例えば、特許文献1〜3を参照)。他の1つは、基板上に音響多層膜を介して圧電薄膜、下部及び上部電極を設けた圧電薄膜共振子(SMR)である(例えば、特許文献4,5を参照)。   Therefore, a piezoelectric thin film resonator using the longitudinal vibration of the thickness of the piezoelectric thin film has been proposed (see, for example, Non-Patent Document 1). In this piezoelectric thin film resonator, two different structures are known. One of them is a diaphragm type piezoelectric thin film resonator in which a base film, a lower electrode, a piezoelectric thin film, and an upper electrode are formed on a substrate, and an opening is formed by removing the substrate portion below the vibrating portion from the back surface of the substrate. (FBAR) (see, for example, Patent Documents 1 to 3). The other one is a piezoelectric thin film resonator (SMR) in which a piezoelectric thin film, lower and upper electrodes are provided on a substrate via an acoustic multilayer film (see, for example, Patent Documents 4 and 5).

図4は、SMR構造の圧電薄膜共振子の一般的な構成を模式的に示している。圧電薄膜共振子1は、基板2上に形成された音響多層膜3を有する。音響多層膜3は、高音響インピーダンス層3a〜3aと低音響インピーダンス層3b〜3bとを交互に積層して構成される。音響多層膜3の上には、下部電極膜4、圧電薄膜5及び上部電極膜6が積層されている。圧電薄膜5により発生した弾性波(バルク波)は、音響多層膜3によって圧電薄膜内に閉じ込められ、基板2の影響を受けないので、高いQ値を得ることができる。しかも、圧電薄膜5の下面全体が音響多層膜3で固定されているので、安定した動作が可能である。 FIG. 4 schematically shows a general configuration of a piezoelectric thin film resonator having an SMR structure. The piezoelectric thin film resonator 1 has an acoustic multilayer film 3 formed on a substrate 2. The acoustic multilayer film 3 is configured by alternately laminating high acoustic impedance layers 3 a 1 to 3 a n and low acoustic impedance layers 3 b 1 to 3 b n . On the acoustic multilayer film 3, a lower electrode film 4, a piezoelectric thin film 5, and an upper electrode film 6 are laminated. The elastic wave (bulk wave) generated by the piezoelectric thin film 5 is confined in the piezoelectric thin film by the acoustic multilayer film 3 and is not affected by the substrate 2, so that a high Q value can be obtained. In addition, since the entire lower surface of the piezoelectric thin film 5 is fixed by the acoustic multilayer film 3, stable operation is possible.

音響多層膜3の低音響インピーダンス層は例えばSiO やMgを使用し、高音響インピーダンス層は例えばAlN、ZnO、Al、Ta、Wを使用し、スパッタ法などを用いて基板上に成膜される(例えば、特許文献6を参照)。また、基板2には、例えばSi、水晶、GaAsやサファイア等の単結晶基板、AlやAl・TiC等の多結晶セラミックス基板、石英やガラスが用いられる。 The low acoustic impedance layer of the acoustic multilayer film 3 uses, for example, SiO 2 or Mg, and the high acoustic impedance layer uses, for example, AlN, ZnO, Al 2 O 3 , Ta 2 O 5 , W, using a sputtering method or the like. A film is formed on the substrate (see, for example, Patent Document 6). As the substrate 2, for example, a single crystal substrate such as Si, quartz, GaAs or sapphire, a polycrystalline ceramic substrate such as Al 2 O 3 or Al 2 O 3 .TiC, quartz or glass is used.

K.M. Lakin, "Thin Film Resonators and Filters", 1999 IEEE Ultrasonics Symposium, p.895-906K.M.Lakin, "Thin Film Resonators and Filters", 1999 IEEE Ultrasonics Symposium, p.895-906 特開2002−76824号公報JP 2002-76824 A 特開2003−51732号公報JP 2003-51732 A 特開2003−60478号公報JP 2003-60478 A 特開2004−235886号公報JP 2004-235886 A 特開2004−235887号公報Japanese Patent Laid-Open No. 2004-235887 特開2005−136761号公報Japanese Patent Laid-Open No. 2005-136761

しかしながら、SMR型圧電薄膜共振子において、基板表面にスパッタ成膜した低音響インピーダンス層のSiO 膜は、図4に矢印で示すように大きな圧縮応力を有する。この膜応力が、基板に反りを生じさせ、そのために素子を変形させ又は破壊し、もしくはその振動特性を劣化させる虞がある。また、その製造工程において基板に反りがあると、搬送時に真空チャックでの吸着が困難になったり素子を破壊する虞があり、取扱い性が大きく低下する、という問題がある。更に、これらの問題がSMR型圧電薄膜共振子の実用化を大きく妨げている。 However, in the SMR type piezoelectric thin film resonator, the SiO 2 film of the low acoustic impedance layer formed by sputtering on the surface of the substrate has a large compressive stress as shown by an arrow in FIG. This film stress may cause the substrate to warp, which may cause the element to be deformed or broken, or deteriorate its vibration characteristics. Further, if the substrate is warped in the manufacturing process, there is a problem that it may be difficult to suck with a vacuum chuck during transportation or the element may be destroyed, and the handleability is greatly reduced. Furthermore, these problems greatly hinder the practical application of SMR type piezoelectric thin film resonators.

ダイヤフラム型圧電薄膜共振子も、基板表面に下地膜としてSiO 薄膜を形成するので、同様にその圧縮応力による素子の変形や破壊、特性の劣化を生じる虞がある。そのため、特許文献1,2記載の圧電薄膜共振子は、圧電薄膜を構成するAlN薄膜の引張応力をSiO 薄膜の圧縮応力と均衡させている。特許文献3に記載の圧電薄膜共振子は、圧電体層を所要の圧電性を確保するための第1層と共振子全体における応力調整を行うための第2層とで構成している。しかしながら、これらの構成により素子全体の応力を完全に零にすることは困難であり、またSMR型圧電薄膜共振子にそのまま適用することも困難である。 Since the diaphragm type piezoelectric thin film resonator also forms a SiO 2 thin film as a base film on the substrate surface, there is a possibility that the element is similarly deformed or broken due to the compressive stress, and the characteristics are deteriorated. For this reason, the piezoelectric thin film resonators described in Patent Documents 1 and 2 balance the tensile stress of the AlN thin film constituting the piezoelectric thin film with the compressive stress of the SiO 2 thin film. In the piezoelectric thin film resonator described in Patent Document 3, the piezoelectric layer is composed of a first layer for ensuring required piezoelectricity and a second layer for adjusting stress in the entire resonator. However, it is difficult to make the stress of the entire element completely zero by these configurations, and it is also difficult to apply to the SMR type piezoelectric thin film resonator as it is.

そこで本発明は、上述した従来の問題点に鑑みてなされたものであり、その目的は、基板上に音響多層膜を介して圧電薄膜を設けたSMR型圧電薄膜共振子において、その製造コストを低減しつつ、膜応力による基板の反りを解消又は軽減し、それにより素子の変形や破壊、又は振動特性の劣化を抑制し、工業的にその実用化を促進することにある。   Accordingly, the present invention has been made in view of the above-described conventional problems, and an object thereof is to reduce the manufacturing cost of an SMR type piezoelectric thin film resonator in which a piezoelectric thin film is provided on a substrate via an acoustic multilayer film. It is to eliminate or reduce the warpage of the substrate due to the film stress while reducing it, thereby suppressing the deformation and destruction of the element or the deterioration of the vibration characteristics, and industrially promoting its practical use.

本発明によれば、上記目的を達成するために、基板の一方の面に複数の高音響インピーダンス層と低音響インピーダンス層とを交互に積層した音響多層膜と、該音響多層膜の上に形成した下部電極と、該下部電極の上に形成した圧電薄膜と、該圧電薄膜の上に形成した上部電極と、基板の他方の面に形成した圧縮応力膜とを備え、該圧縮応力膜が、基板において音響多層膜により発生する圧縮応力と相殺される大きさの圧縮応力を有するように形成される圧電薄膜共振子が提供される。   According to the present invention, in order to achieve the above object, an acoustic multilayer film in which a plurality of high acoustic impedance layers and low acoustic impedance layers are alternately laminated on one surface of a substrate, and formed on the acoustic multilayer film A lower electrode, a piezoelectric thin film formed on the lower electrode, an upper electrode formed on the piezoelectric thin film, and a compressive stress film formed on the other surface of the substrate. There is provided a piezoelectric thin film resonator formed to have a compressive stress of a magnitude that cancels out the compressive stress generated by an acoustic multilayer film in a substrate.

このように基板の表裏両側で圧縮応力を相殺させることにより、基板の反りを解消し、素子の変形や破壊、又は振動特性の劣化を抑制することができる。このような圧縮応力膜は、従来技術を用いて工業的に容易に形成することができるから、SMR型圧電薄膜共振子を工業的に実用化することが可能である。   Thus, by canceling the compressive stress on both the front and back sides of the substrate, the warp of the substrate can be eliminated, and the deformation and destruction of the element or the deterioration of the vibration characteristics can be suppressed. Since such a compressive stress film can be easily formed industrially using conventional techniques, an SMR type piezoelectric thin film resonator can be commercialized industrially.

或る実施例では、前記圧縮応力膜が、音響多層膜と同一の膜構成、同一の平面及び厚さ寸法を有し、基板を挟んで音響多層膜と対称に形成される。この圧縮応力膜は、音響多層膜と全く同じ製造工程及び設備をそのまま利用して同じ成膜条件で形成できるので、比較的低コストでかつ簡単に製造することができる。   In one embodiment, the compressive stress film has the same film configuration, the same plane and the same thickness as the acoustic multilayer film, and is formed symmetrically with the acoustic multilayer film across the substrate. Since this compressive stress film can be formed under the same film forming conditions using the same manufacturing process and equipment as the acoustic multilayer film as it is, it can be manufactured at a relatively low cost and easily.

別の実施例では、前記圧縮応力膜が、音響多層膜と同一の平面寸法を有し、基板を挟んで音響多層膜と対称に配置されると共に、高音響インピーダンス層と同一の材料からなりかつ各高音響インピーダンス層の膜厚を合計した膜厚を有する単一の第1層と、低音響インピーダンス層と同一の材料からなりかつ各低音響インピーダンス層の膜厚を合計した膜厚を有する単一の第2層とを積層して形成される。この圧縮応力膜は、音響多層膜と全く同じ製造工程及び設備をそのまま利用して形成できるので、同様に比較的低コストでかつ容易に製造でき、しかも2回の成膜工程で形成できるので、工数を少なくでき、生産性が向上する。   In another embodiment, the compressive stress film has the same planar dimensions as the acoustic multilayer film, is disposed symmetrically with the acoustic multilayer film across the substrate, and is made of the same material as the high acoustic impedance layer; A single first layer having the total thickness of the high acoustic impedance layers and a single layer having the total thickness of the low acoustic impedance layers made of the same material as the low acoustic impedance layer. It is formed by laminating one second layer. Since this compressive stress film can be formed by using exactly the same manufacturing process and equipment as the acoustic multilayer film, it can be easily manufactured at a relatively low cost, and can be formed by two film forming processes. Man-hours can be reduced and productivity is improved.

更に別の実施例では、前記圧縮応力膜が、音響多層膜と同一の平面寸法を有しかつ単一の材料からなる単一層で形成され、基板を挟んで音響多層膜と対称に配置される。この圧縮応力膜は、1回の成膜工程で形成できるので、工数をより少なくでき、より高い生産性が得られる。   In still another embodiment, the compressive stress film is formed of a single layer having the same plane size as the acoustic multilayer film and made of a single material, and is disposed symmetrically with the acoustic multilayer film across the substrate. . Since this compressive stress film can be formed in a single film formation process, the number of steps can be reduced, and higher productivity can be obtained.

以下に、添付図面を参照しつつ、本発明による圧電薄膜共振子の好適な実施例を詳細に説明する。
図1は、本発明の第1実施例による圧電薄膜共振子の構成を模式的に示している。本実施例の圧電薄膜共振子11は、例えばSi、水晶又はガラス材料で形成された基板12を有する。他の基板12の材料として、GaAsやサファイア等の単結晶基板、AlやAl・TiC等の多結晶セラミックス基板、石英などを用いることができる。
Hereinafter, preferred embodiments of a piezoelectric thin film resonator according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 schematically shows the configuration of a piezoelectric thin film resonator according to a first embodiment of the present invention. The piezoelectric thin film resonator 11 of the present embodiment has a substrate 12 made of, for example, Si, quartz, or glass material. As the material of the other substrate 12, a single crystal substrate such as GaAs or sapphire, a polycrystalline ceramic substrate such as Al 2 O 3 or Al 2 O 3 .TiC, quartz, or the like can be used.

基板12の上面には、高音響インピーダンス層13a〜13aと低音響インピーダンス層13b〜13bとを交互に積層した音響多層膜13が形成されている。前記各高音響インピーダンス層は、例えばAlN、ZnOなどの圧電薄膜で形成する。他の高音響インピーダンス材料として、Al、Ta、Wなどを用いることができる。前記低音響インピーダンス層は、例えばSiO 薄膜で形成する。他の低音響インピーダンス材料として、Mgなどを用いることができる。 On the upper surface of the substrate 12, an acoustic multi-layer film 13 formed by alternately laminating a high acoustic impedance layer 13a 1 ~13a n and a low acoustic impedance layer 13b 1 13 b n are formed. Each of the high acoustic impedance layers is formed of a piezoelectric thin film such as AlN or ZnO. As other high acoustic impedance materials, Al 2 O 3 , Ta 2 O 5 , W, or the like can be used. The low acoustic impedance layer is formed of, for example, a SiO 2 thin film. Mg or the like can be used as another low acoustic impedance material.

音響多層膜13の上には、下部電極膜14、圧電薄膜15及び上部電極膜16が積層されている。圧電薄膜15は、例えばAlN、ZnO、CdSなどの様々な公知の圧電材料で形成する。下部及び上部電極膜14,16は、例えばCr/Au膜で形成することができ、他の材料としてPt、Au、Al、W、Mo等の様々な公知の導電材料を用いることができる。   On the acoustic multilayer film 13, a lower electrode film 14, a piezoelectric thin film 15 and an upper electrode film 16 are laminated. The piezoelectric thin film 15 is formed of various known piezoelectric materials such as AlN, ZnO, and CdS. The lower and upper electrode films 14 and 16 can be formed of, for example, a Cr / Au film, and various other known conductive materials such as Pt, Au, Al, W, and Mo can be used as other materials.

一般に圧電薄膜15の膜厚は、これを単独の薄膜としてその共振周波数f の音波が該圧電薄膜を伝搬するときの波長λの1/2とすることが知られている。また、高音響インピーダンス層13a〜13a及び低音響インピーダンス層13b〜13bの膜厚は、それらをそれぞれ単独の膜層として共振周波数f の音波が伝搬するときの波長λの1/4に設定する。 In general, it is known that the thickness of the piezoelectric thin film 15 is ½ of the wavelength λ when the sound wave having the resonance frequency f 0 propagates through the piezoelectric thin film, using this as a single thin film. The thickness of the high acoustic impedance layer 13a 1 ~13a n and the low acoustic impedance layer 13b 1 13 b n is the wavelength λ when the sound waves of the resonant frequency f 0 thereof as each single layer is propagated 1 / Set to 4.

音響多層膜13の層数は、通常10またはそれ以上に設定する。音響多層膜13の層数が増えるほど、圧電薄膜15から基板12の方向を見たときの負荷インピーダンスが小さくなる。従って、前記圧電薄膜を基板から音響的に分離し、Q値の高い共振を得ることができる。また、圧電薄膜15の下面全面が音響多層膜13で支持されているので、安定した動作が得られる。   The number of layers of the acoustic multilayer film 13 is normally set to 10 or more. As the number of layers of the acoustic multilayer film 13 increases, the load impedance when viewing the direction from the piezoelectric thin film 15 to the substrate 12 is reduced. Therefore, the piezoelectric thin film can be acoustically separated from the substrate, and resonance with a high Q value can be obtained. Further, since the entire lower surface of the piezoelectric thin film 15 is supported by the acoustic multilayer film 13, a stable operation can be obtained.

基板12の下面には、圧縮応力膜17が形成されている。圧縮応力膜17は、音響多層膜13と全く同一の構成を有し、基板12を挟んで対称に形成される。即ち、圧縮応力膜17は、高音響インピーダンス層13a〜13aと同一の材料で同一の寸法を有する第1層17a〜17aと、低音響インピーダンス層13b〜13bと同一の材料で同一の寸法を有する第2層17b〜17bとが、音響多層膜13と同一の層数で交互に積層されている。 A compressive stress film 17 is formed on the lower surface of the substrate 12. The compressive stress film 17 has the same configuration as the acoustic multilayer film 13 and is formed symmetrically with the substrate 12 interposed therebetween. In other words, the compressive stress film 17, a first layer 17a 1 ~17a n having the same dimensions of the same material as the high acoustic impedance layers 13a 1 ~13a n, the same as the low acoustic impedance layer 13b 1 13 b n material The second layers 17b 1 to 17b n having the same dimensions are stacked alternately with the same number of layers as the acoustic multilayer film 13.

圧縮応力膜17は、基板12を上下逆にして、音響多層膜13と全く同じ製造工程及び設備をそのまま利用して同じ成膜条件で形成することができる。従って、第1実施例の圧電薄膜共振子11は比較的低コストでかつ簡単に製造でき、その工業的な実用化を容易に実現することが可能である。   The compressive stress film 17 can be formed under the same film formation conditions by using the same manufacturing process and equipment as those of the acoustic multilayer film 13 with the substrate 12 turned upside down. Therefore, the piezoelectric thin film resonator 11 of the first embodiment can be easily manufactured at a relatively low cost, and its industrial practical use can be easily realized.

基板12の上面側には、音響多層膜13により発生する圧縮応力が、従来技術に関連して図4に矢印で示すように作用している。基板12の下面側には、圧縮応力膜17を設けたことにより、音響多層膜13による圧縮応力と同じ大きさの圧縮応力が逆向きに作用している。基板12上面側には、圧電薄膜15による引張応力も発生するが、SiO 薄膜の圧縮応力に比すると大幅に小さい。従って、基板12の表裏両面で作用する応力を相殺して、該基板の反りを解消することができる。 On the upper surface side of the substrate 12, compressive stress generated by the acoustic multilayer film 13 acts as shown by arrows in FIG. By providing the compressive stress film 17 on the lower surface side of the substrate 12, a compressive stress having the same magnitude as the compressive stress caused by the acoustic multilayer film 13 acts in the opposite direction. Although tensile stress due to the piezoelectric thin film 15 is also generated on the upper surface side of the substrate 12, it is significantly smaller than the compressive stress of the SiO 2 thin film. Accordingly, the stress acting on both the front and back surfaces of the substrate 12 can be offset and the warpage of the substrate can be eliminated.

図2は、本発明の第2実施例による圧電薄膜共振子の構成を模式的に示している。第2実施例の圧電薄膜共振子21は、第1実施例と同様に、Si、水晶又はガラス材料などで形成された基板22の上面に音響多層膜23が形成され、その上に下部電極膜24、圧電薄膜25及び上部電極膜26が積層されている。音響多層膜23は、AlN、ZnOなどからなる高音響インピーダンス層23a〜23aと、SiO 薄膜などからなる低音響インピーダンス層23b〜23bとが、交互に積層されている。 FIG. 2 schematically shows the configuration of a piezoelectric thin film resonator according to a second embodiment of the present invention. In the piezoelectric thin film resonator 21 of the second embodiment, as in the first embodiment, an acoustic multilayer film 23 is formed on the upper surface of a substrate 22 made of Si, quartz or glass material, and a lower electrode film is formed thereon. 24, the piezoelectric thin film 25 and the upper electrode film 26 are laminated. Acoustic multilayer film 23, AlN, etc. 1 and ~23A n high acoustic impedance layer 23a made of ZnO, and a low acoustic impedance layer 23b 1 ~23b n made of SiO 2 film are laminated alternately.

基板22の下面には、音響多層膜23と同一の平面寸法を有する圧縮応力膜27が、該基板を挟んで音響多層膜23と対称に形成されている。第2実施例の圧縮応力膜27は、音響多層膜23の高音響インピーダンス層と同一の材料で形成された単一の第1層27aと、低音響インピーダンス層と同一の材料で形成された単一の第2層27bとを積層した2層構造からなる点において、第1実施例と異なる。   A compressive stress film 27 having the same plane dimensions as the acoustic multilayer film 23 is formed on the lower surface of the substrate 22 symmetrically with the acoustic multilayer film 23 with the substrate interposed therebetween. The compressive stress film 27 of the second embodiment includes a single first layer 27a formed of the same material as the high acoustic impedance layer of the acoustic multilayer film 23 and a single layer formed of the same material as the low acoustic impedance layer. The second embodiment is different from the first embodiment in that it has a two-layer structure in which one second layer 27b is laminated.

第1層27aの膜厚Taは、各高音響インピーダンス層23a〜23aの膜厚をそれぞれta,…,taとした場合に、Ta=ta+…+taとなるように設定する。第2層27bの膜厚Tbは、各低音響インピーダンス層23b〜23bの膜厚をそれぞれtb,…,tbとした場合に、Tb=tb+…+tbとなるように設定する。この圧縮応力膜27によって、基板22の下面側に、音響多層膜23により発生する圧縮応力と略同じ大きさの圧縮応力を逆向きに作用させる。従って、基板22の表裏両面で作用する応力を相殺して、該基板の反りを解消又は軽減することができる。 Thickness Ta of the first layer 27a is, ta 1 the thickness of each high acoustic impedance layer 23a 1 ~23a n respectively, ..., when the ta n, set so that Ta = ta 1 + ... + ta n To do. Thickness Tb of the second layer 27b, the thickness of each tb 1 of each low acoustic impedance layer 23b 1 ~23b n, ..., when the tb n, set so that Tb = tb 1 + ... + tb n To do. By this compressive stress film 27, a compressive stress having approximately the same magnitude as the compressive stress generated by the acoustic multilayer film 23 is applied to the lower surface side of the substrate 22 in the opposite direction. Accordingly, it is possible to cancel or reduce the warpage of the substrate by canceling out the stress acting on both the front and back surfaces of the substrate 22.

また、圧縮応力膜27は、基板22を上下逆にして、音響多層膜23と全く同じ製造工程及び設備をそのまま利用して形成することができる。このとき、第1層27a及び第2層27bは、それぞれ上述した膜厚が得られるように成膜条件を調整する。このようにして第2実施例の圧電薄膜共振子21も、同様に比較的低コストでかつ容易に製造することができ、その工業的な実用化を実現することが可能である。しかも、圧縮応力膜27を2回の成膜工程で形成できるので、工数を少なくでき、生産性が向上する。   The compressive stress film 27 can be formed by using the same manufacturing process and equipment as the acoustic multilayer film 23 with the substrate 22 upside down. At this time, the film formation conditions of the first layer 27a and the second layer 27b are adjusted so that the above-described film thicknesses are obtained. In this way, the piezoelectric thin film resonator 21 of the second embodiment can also be easily manufactured at a relatively low cost, and its industrial practical use can be realized. In addition, since the compressive stress film 27 can be formed by two film forming steps, the number of steps can be reduced and the productivity is improved.

図3は、本発明の第3実施例による圧電薄膜共振子の構成を模式的に示している。第3実施例の圧電薄膜共振子31は、第1及び第2実施例と同様に、Si、水晶又はガラス材料などで形成された基板32の上面に音響多層膜33が形成され、その上に下部電極膜34、圧電薄膜35及び上部電極膜36が積層されている。音響多層膜33は、AlN、ZnOなどからなる高音響インピーダンス層33a〜33aと、SiO 薄膜などからなる低音響インピーダンス層33b〜33bとが、交互に積層されている。 FIG. 3 schematically shows the configuration of a piezoelectric thin film resonator according to a third embodiment of the present invention. As in the first and second embodiments, the piezoelectric thin film resonator 31 of the third embodiment has an acoustic multilayer film 33 formed on the upper surface of a substrate 32 made of Si, quartz, glass, or the like, on which the acoustic multilayer film 33 is formed. A lower electrode film 34, a piezoelectric thin film 35, and an upper electrode film 36 are laminated. Acoustic multilayer 33, AlN, etc. 1 and ~33A n high acoustic impedance layer 33a made of ZnO, and a low acoustic impedance layer 33b 1 ~33b n made of SiO 2 film are laminated alternately.

基板32の下面には、音響多層膜33と同一の平面寸法を有する圧縮応力膜37が、該基板を挟んで音響多層膜33と対称に形成されている。第3実施例の圧縮応力膜7は、単一の材料で形成された単一層からなる点において、第1及び第2実施例と異なる。   A compressive stress film 37 having the same plane dimensions as the acoustic multilayer film 33 is formed on the lower surface of the substrate 32 symmetrically with the acoustic multilayer film 33 with the substrate interposed therebetween. The compressive stress film 7 of the third embodiment is different from the first and second embodiments in that it consists of a single layer formed of a single material.

音響多層膜33の圧縮応力は予め算出することができるから、それと同じ大きさの圧縮応力を有するように、圧縮応力膜37の材料及び膜厚を選択する。圧縮応力膜37の材料は、例えば前記低音響インピーダンス層と同じSiO のように、基板上に成膜したときに圧縮応力を有するものであればよい。これによって、基板32の表裏両面で作用する応力を相殺して、該基板の反りを解消又は軽減することができる。 Since the compressive stress of the acoustic multilayer film 33 can be calculated in advance, the material and film thickness of the compressive stress film 37 are selected so as to have the same compressive stress as that. The material of the compressive stress film 37 may be any material as long as it has a compressive stress when it is formed on the substrate, for example, the same SiO 2 as the low acoustic impedance layer. As a result, the stress acting on both the front and back surfaces of the substrate 32 can be offset, and the warpage of the substrate can be eliminated or reduced.

このように第3実施例の圧電薄膜共振子31も、同様に比較的低コストでかつ容易に製造することができ、その工業的な実用化を実現することが可能である。しかも、圧縮応力膜37を1回の成膜工程で形成できるので、工数をより少なくでき、第1及び第2実施例よりも高い生産性が得られる。   As described above, the piezoelectric thin film resonator 31 of the third embodiment can also be manufactured at a relatively low cost and easily, and its industrial practical use can be realized. In addition, since the compressive stress film 37 can be formed in a single film formation step, the number of steps can be reduced, and higher productivity than the first and second embodiments can be obtained.

以上、本発明の好適な実施例を詳細に説明したが、本発明は上記実施例に限定されるものでなく、その技術的範囲内において様々な変形・変更を加えて実施することができる。例えば、第2実施例において圧縮応力膜の第1層と第2層は、基板上に逆の順序で積層することができる。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made within the technical scope. For example, in the second embodiment, the first layer and the second layer of the compressive stress film can be laminated in reverse order on the substrate.

本発明による圧電薄膜共振子の第1実施例を示す概略断面図。1 is a schematic cross-sectional view showing a first embodiment of a piezoelectric thin film resonator according to the present invention. 本発明による圧電薄膜共振子の第2実施例を示す概略断面図。FIG. 3 is a schematic sectional view showing a second embodiment of the piezoelectric thin film resonator according to the present invention. 本発明による圧電薄膜共振子の第3実施例を示す概略断面図。FIG. 4 is a schematic sectional view showing a third embodiment of the piezoelectric thin film resonator according to the present invention. 従来の圧電薄膜共振子を示す概略断面図。FIG. 6 is a schematic cross-sectional view showing a conventional piezoelectric thin film resonator.

符号の説明Explanation of symbols

1,11,21,31…圧電薄膜共振子、2,12,22,32…基板、3,13,23,33…音響多層膜、3a〜3a,13a〜13a,23a〜23a,33a〜33a…高音響インピーダンス層、3b〜3b,13b〜13b,23b〜23b,33b〜33b…低音響インピーダンス層、4,14,24,34…下部電極膜、5,15,25,35…圧電薄膜、6,16,26,36…上部電極膜、17,27,37…圧縮応力膜、17a〜17a,27a…第1層、17b〜17b,27b…第2層。 1, 11, 21, 31 ... piezoelectric thin film resonator, 2,12,22,32 ... substrate, 3,13,23,33 ... acoustic multilayer, 3a 1 ~3a n, 13a 1 ~13a n, 23a 1 ~ 23a n, 33a 1 ~33a n ... high acoustic impedance layer, 3b 1 ~3b n, 13b 1 ~13b n, 23b 1 ~23b n, 33b 1 ~33b n ... low acoustic impedance layer, 4,14,24,34 ... lower electrode film, 5,15,25,35 ... piezoelectric thin film, 6,16,26,36 ... upper electrode film, 17, 27, 37 ... compression stress film, 17a 1 ~17a n, 27a ... first layer, 17b 1 to 17b n , 27b... Second layer.

Claims (4)

基板の一方の面に複数の高音響インピーダンス層と低音響インピーダンス層とを交互に積層した音響多層膜と、前記音響多層膜の上に形成した下部電極と、前記下部電極の上に形成した圧電薄膜と、前記圧電薄膜の上に形成した上部電極と、前記基板の他方の面に形成した圧縮応力膜とを備え、前記圧縮応力膜が、前記基板において前記音響多層膜により発生する圧縮応力と相殺される大きさの圧縮応力を有するように形成されることを特徴とする圧電薄膜共振子。   An acoustic multilayer film in which a plurality of high acoustic impedance layers and low acoustic impedance layers are alternately laminated on one surface of a substrate, a lower electrode formed on the acoustic multilayer film, and a piezoelectric formed on the lower electrode A thin film, an upper electrode formed on the piezoelectric thin film, and a compressive stress film formed on the other surface of the substrate, wherein the compressive stress film is generated by the acoustic multilayer film on the substrate; A piezoelectric thin film resonator formed to have a compressive stress of a magnitude that cancels out. 前記圧縮応力膜が、前記音響多層膜と同一の膜構成、同一の平面及び厚さ寸法を有し、前記基板を挟んで前記音響多層膜と対称に形成されることを特徴とする請求項1に記載の圧電薄膜共振子。   The compressive stress film has the same film configuration, the same plane and the same thickness as the acoustic multilayer film, and is formed symmetrically with the acoustic multilayer film with the substrate interposed therebetween. 2. A piezoelectric thin film resonator according to 1. 前記圧縮応力膜が、音響多層膜と同一の平面寸法を有し、前記基板を挟んで音響多層膜と対称に配置され、高音響インピーダンス層と同一の材料からなりかつ前記各高音響インピーダンス層の膜厚を合計した膜厚を有する単一の第1層と、前記低音響インピーダンス層と同一の材料からなりかつ前記各低音響インピーダンス層の膜厚を合計した膜厚を有する単一の第2層とを積層して形成されることを特徴とする請求項1に記載の圧電薄膜共振子。   The compressive stress film has the same planar dimensions as the acoustic multilayer film, is disposed symmetrically with the acoustic multilayer film across the substrate, is made of the same material as the high acoustic impedance layer, and each of the high acoustic impedance layers A single first layer having a total film thickness and a single second layer made of the same material as the low acoustic impedance layer and having a total film thickness of the low acoustic impedance layers The piezoelectric thin film resonator according to claim 1, wherein the piezoelectric thin film resonator is formed by laminating a layer. 前記圧縮応力膜が、前記音響多層膜と同一の平面寸法を有しかつ単一の材料からなる単一層で形成され、前記基板を挟んで前記音響多層膜と対称に配置されることを特徴とする請求項1に記載の圧電薄膜共振子。   The compressive stress film is formed of a single layer having the same plane dimension as the acoustic multilayer film and made of a single material, and is disposed symmetrically with the acoustic multilayer film with the substrate interposed therebetween. The piezoelectric thin film resonator according to claim 1.
JP2006193713A 2006-07-14 2006-07-14 Piezoelectric thin film resonator Withdrawn JP2008022408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193713A JP2008022408A (en) 2006-07-14 2006-07-14 Piezoelectric thin film resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193713A JP2008022408A (en) 2006-07-14 2006-07-14 Piezoelectric thin film resonator

Publications (1)

Publication Number Publication Date
JP2008022408A true JP2008022408A (en) 2008-01-31

Family

ID=39078021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193713A Withdrawn JP2008022408A (en) 2006-07-14 2006-07-14 Piezoelectric thin film resonator

Country Status (1)

Country Link
JP (1) JP2008022408A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130026021A1 (en) * 2011-07-26 2013-01-31 Advantest Corporation Actuator manufacturing method, switching apparatus, transmission line switching apparatus, and test apparatus
JP2020022209A (en) * 2015-05-27 2020-02-06 株式会社村田製作所 Mems resonator with high quality factor
JP2023516429A (en) * 2020-03-06 2023-04-19 レイセオン カンパニー Semiconductor device with aluminum nitride anti-bending layer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130026021A1 (en) * 2011-07-26 2013-01-31 Advantest Corporation Actuator manufacturing method, switching apparatus, transmission line switching apparatus, and test apparatus
US9343655B2 (en) * 2011-07-26 2016-05-17 Advantest Corporation Method for manufacturing bimorph actuator
JP2020022209A (en) * 2015-05-27 2020-02-06 株式会社村田製作所 Mems resonator with high quality factor
JP7029114B2 (en) 2015-05-27 2022-03-03 株式会社村田製作所 High Q MEMS resonator
JP2023516429A (en) * 2020-03-06 2023-04-19 レイセオン カンパニー Semiconductor device with aluminum nitride anti-bending layer
JP7479493B2 (en) 2020-03-06 2024-05-08 レイセオン カンパニー Semiconductor device having aluminum nitride anti-deflection layer

Similar Documents

Publication Publication Date Title
US11152914B2 (en) Elastic wave device and method for manufacturing the same
US7567023B2 (en) Piezoelectric thin-film resonator and filter using the same
JP6903471B2 (en) Piezoelectric thin film resonators, filters and multiplexers
JP4321754B2 (en) Piezoelectric resonator and filter using the same
CN110582938A (en) Elastic wave device
KR20080064842A (en) Piezoelectric thin film resonator
US20070228880A1 (en) Piezoelectric thin film resonator
WO2007119556A1 (en) Piezoelectric resonator and piezoelectric filter
JP6631925B2 (en) Method for manufacturing piezoelectric thin film element
WO2017068828A1 (en) Elastic wave device
JP7098453B2 (en) Elastic wave resonators, filters and multiplexers
WO2016185772A1 (en) Surface acoustic wave device and method for manufacturing same
JP2007228225A (en) Surface acoustic wave device
JP2005277454A (en) Piezoelectric resonator and electronic component provided with same
JP2008022408A (en) Piezoelectric thin film resonator
JP2011176644A (en) Acoustic wave device
JP2018207376A (en) Acoustic wave device
JP2005260484A (en) Piezoelectric resonator and electronic component equipped with the same
WO2021241681A1 (en) Elastic wave device
JP4339604B2 (en) Piezoelectric thin film element
JP7261568B2 (en) Acoustic wave devices, filters and multiplexers
JP4693407B2 (en) Piezoelectric thin film device and manufacturing method thereof
US20220038073A1 (en) Elastic wave device and method for manufacturing the same
WO2022085565A1 (en) Elastic wave device
JP7456734B2 (en) Acoustic wave devices, filters and multiplexers

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006