KR20000046744A - Method for producing flash memory cell - Google Patents
Method for producing flash memory cell Download PDFInfo
- Publication number
- KR20000046744A KR20000046744A KR1019980063467A KR19980063467A KR20000046744A KR 20000046744 A KR20000046744 A KR 20000046744A KR 1019980063467 A KR1019980063467 A KR 1019980063467A KR 19980063467 A KR19980063467 A KR 19980063467A KR 20000046744 A KR20000046744 A KR 20000046744A
- Authority
- KR
- South Korea
- Prior art keywords
- forming
- gate
- semiconductor substrate
- film
- layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 35
- 239000004065 semiconductor Substances 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 238000000059 patterning Methods 0.000 claims abstract description 6
- 229920005591 polysilicon Polymers 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 238000005530 etching Methods 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 36
- 229920002120 photoresistant polymer Polymers 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 8
- 239000012535 impurity Substances 0.000 description 8
- 239000011229 interlayer Substances 0.000 description 7
- 230000005641 tunneling Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000002784 hot electron Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 230000005689 Fowler Nordheim tunneling Effects 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66825—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3215—Doping the layers
- H01L21/32155—Doping polycristalline - or amorphous silicon layers
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
본 발명은 플레쉬 메모리 셀의 제조방법에 관한 것으로서, 특히, 플로팅게이트에 축적된 데이터를 소오스영역으로 소거할 수 있는 플레쉬 메모리 셀의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a flash memory cell, and more particularly, to a method of manufacturing a flash memory cell capable of erasing data accumulated in a floating gate into a source region.
플레쉬 메모리 셀은 메모리 어레이 셀들을 동시에 소거(erase)시킬 수 있으므로 소거 속도가 빠른 비활성 메모리 소자이다.A flash memory cell is an inactive memory device having a high erase speed because it can erase memory array cells at the same time.
플레쉬 메모리 셀은 반도체기판 및 소오스를 접지시킨 상태에서 드레인에 5V 정도의 전압을 인가하여 드레인영역 근방에서 발생되는 열전자(hot electron)을 콘트롤게이트에 약 12V 정도의 고전압을 인가하여 플로팅게이트에 주입시키므로써 데이터를 프로그램(program)한다. 그리고, 반도체기판 및 콘트롤게이트를 접지시키고 드레인을 플로팅시킨 상태에서 소오스에 12V 정도의 고전압을 인가하여 플로팅게이트에서 소오스로 전자를 Fowler-Nordheim 터널링시키므로써 프로그램된 데이터를 소거(erase)한다.The flash memory cell applies a voltage of about 5V to the drain while the semiconductor substrate and the source are grounded, and injects hot electrons generated near the drain region into the floating gate by applying a high voltage of about 12V to the control gate. To program the data. Then, the semiconductor substrate and the control gate are grounded and a drain is floated, and a high voltage of about 12 V is applied to the source to erase the programmed data by Fowler-Nordheim tunneling electrons from the floating gate to the source.
ETOX(EEPROM Tunneling Oxide) 구조를 갖는 플레쉬 메모리는 셀은 터널링산화막으로도 불리는 게이트산화막 상에 부유게이트(floating gate)가 형성되고, 이 부유게이트 상에 실리콘산화물 또는 실리콘산화물/실리콘질화물/실리콘산화물(이하, ONO라 칭함)로 이루어진 층간유전막이 형성되며, 이 층간유전막 상에 제어게이트(control gate)가 중첩되게 형성된 구조를 갖는다.In a flash memory having an ETOX (EEPROM Tunneling Oxide) structure, a cell has a floating gate formed on a gate oxide film, also called a tunneling oxide film, on which the silicon oxide or silicon oxide / silicon nitride / silicon oxide ( An interlayer dielectric film (hereinafter referred to as ONO) is formed, and has a structure in which a control gate is superimposed on the interlayer dielectric film.
도 1a 내지 도 1d는 종래 기술에 따른 플레쉬 메모리 셀의 제조공정도이다.1A to 1D are manufacturing process diagrams of a flash memory cell according to the prior art.
도 1a를 참조하면, P형의 반도체기판(11) 상에 LOCOS(Local Oxidation of Silicon) 방법 또는 STI(Shallow Trench Isolation) 방법에 의해 소자의 활성영역을 한정하는 필드절연막(13)을 형성한다.Referring to FIG. 1A, a field insulating layer 13 is formed on a P-type semiconductor substrate 11 to define an active region of a device by a local oxide of silicon (LOCOS) method or a shallow trench isolation (STI) method.
반도체기판(11)의 필드절연막(13)이 형성되지 않은 소자의 활성영역에 열산화 방법에 의해 터널링산화막으로 이용되는 게이트산화막(15)을 형성한다. 필드절연막(13) 및 게이트산화막(15) 상에 제 1 다결정실리콘층(17)을 화학기상증착(Chemical Vapor Deposition : 이하, CVD라 칭함) 방법으로 두껍게 증착한다. 그리고, 제 1 다결정실리콘층(17)을 채널의 길이 방향으로 스트라이프 형상을 갖도록 포토리쏘그래피(photolithography) 방법으로 패터닝한다.A gate oxide film 15 used as a tunneling oxide film is formed in the active region of the device where the field insulating film 13 of the semiconductor substrate 11 is not formed by a thermal oxidation method. On the field insulating film 13 and the gate oxide film 15, the first polysilicon layer 17 is deposited thickly by chemical vapor deposition (hereinafter, referred to as CVD). The first polysilicon layer 17 is patterned by photolithography to have a stripe shape in the longitudinal direction of the channel.
도 1b를 참조하면, 반도체기판(11) 상에 패터닝된 제 1 다결정실리콘층(17)을 덮는 ONO 구조의 층간절연막(19)을 형성하고, 이 층간절연막(19) 상에 CVD 방법에 의해 제 2 다결정실리콘층(21)을 형성한다.Referring to FIG. 1B, an interlayer insulating film 19 having an ONO structure covering the patterned first polysilicon layer 17 is formed on the semiconductor substrate 11, and the interlayer insulating film 19 is formed on the interlayer insulating film 19 by a CVD method. 2 polysilicon layer 21 is formed.
도 1c를 참조하면, 제 2 다결정실리콘층(21) 상에 포토레지스트(도시되지 않음)를 도포한 후 노광 및 현상에 의해 채널의 길이 방향과 수직하는 채널의 폭 방향으로 길게 패터닝한다.Referring to FIG. 1C, a photoresist (not shown) is applied on the second polysilicon layer 21 and then patterned in the width direction of the channel perpendicular to the length direction of the channel by exposure and development.
그리고, 포토레지스트를 마스크로 사용하여 제 2 다결정실리콘층(21), 층간절연막(19), 제 1 다결정실리콘층(17) 및 게이트산화막(15)을 순차적으로 패터닝한다. 이 때, 포토레지스트의 하부에 제 1 및 제 2 다결정실리콘층(17)(21)의 식각되지 않고 잔류하는 부분은 각각 플로팅게이트(18) 및 콘트롤게이트(22)가 된다. 포토레지스트를 제거한다.Then, using the photoresist as a mask, the second polysilicon layer 21, the interlayer insulating film 19, the first polysilicon layer 17, and the gate oxide film 15 are sequentially patterned. At this time, portions of the first and second polysilicon layers 17 and 21 that remain unetched under the photoresist are the floating gate 18 and the control gate 22, respectively. Remove the photoresist.
상술한 구조의 전 표면에 다시 포토레지스트(23)를 도포한 후 노광 및 현상하여 반도체기판(11)의 플로팅게이트(18) 및 콘트롤게이트(22)의 일측을 노출시킨다. 그리고, 포토레지스트(23)를 마스크로 사용하여 반도체기판(11)의 노출된 부분에 인(P) 등의 확산 속도가 빠른 N형의 불순물을 5×1014∼1×1015/㎠ 정도의 도우즈로 이온 주입하여 저농도영역(25)을 형성한다. 이 때, 저농도영역(25)은 측방으로도 확산되어 플로팅게이트(18)와 소정 부분 중첩되게 형성된다.The photoresist 23 is applied to the entire surface of the above-described structure, and then exposed and developed to expose one side of the floating gate 18 and the control gate 22 of the semiconductor substrate 11. Then, using the photoresist 23 as a mask, N-type impurities having a high diffusion rate such as phosphorus (P) in the exposed portions of the semiconductor substrate 11 may be approximately 5 × 10 14 to 1 × 10 15 / cm 2. Ion implantation into the dose forms the low concentration region 25. At this time, the low concentration region 25 is also diffused laterally so as to overlap a predetermined portion with the floating gate 18.
도 1d를 참조하면, 포토레지스트(23)를 제거한다. 그리고, 콘트롤게이트(22)를 마스크로 사용하여 As 등의 확산 속도가 느린 N형의 불순물을 5×1015∼1×1016/㎠ 정도의 도우즈로 이온 주입하여 고농도의 소오스 및 드레인영역(27)(28)을 형성한다. 이 때, As 등의 불순물은 확산 속도가 늦으므로 소오스 및 드레인영역(27)(28)은 얕은 깊이로 형성되며, 특히, 소오스영역(27)은 저농도영역(25)와 이중 확산(double diffusion) 구조를 이루게 된다.Referring to FIG. 1D, the photoresist 23 is removed. Using the control gate 22 as a mask, N-type impurities having a slow diffusion rate such as As are ion-infused with a dose of about 5 × 10 15 to 1 × 10 16 / cm 2 to obtain a high concentration source and drain region ( 27) form 28. At this time, since impurities such as As have a slow diffusion rate, the source and drain regions 27 and 28 are formed to have a shallow depth. In particular, the source region 27 has a low concentration region 25 and a double diffusion. Structure.
상술한 바와 같이 형성된 플레쉬 메모리 셀은 소오스영역에 고전압을 인가하여 플로팅게이트에 저장된 전하를 소오스영역으로 터널링시켜 소거할 때 저농도영역에 의해 소오스영역과 반도체기판의 접합이 파괴되는 항복 현상의 발생을 억제하는 데, 상기에서 터널링산화막이 얇으므로 전하의 터널링이 용이하다.The flash memory cell formed as described above suppresses the occurrence of a breakdown phenomenon in which the junction between the source region and the semiconductor substrate is destroyed by the low concentration region when the high voltage is applied to the source region to tunnel the charge stored in the floating gate to the source region and erased. In the above, since the tunneling oxide film is thin, tunneling of charges is easy.
그러나, 종래 기술에 따라 제조된 플레쉬 메모리 셀은 게이트산화막이 얇게 형성되므로However, the flash memory cell manufactured according to the prior art has a thin gate oxide film.
프로그램시 인가되는 드레인 전압에 의해 원하지 않는 셀이 프로그램되는 드레인 디스터브(drain disturb) 현상이 발생되거나, 또는, 셀이 과소거(over erase)되면 드레쉬홀드 전압(threshhold voltage : Vt)가 낮아져 읽기 동작시 선택되지 않은 인접 셀이 오동작하여 소자의 신뢰성을 저하시키는 문제점이 있었다.A drain disturb occurs when an unwanted cell is programmed by a drain voltage applied during programming, or when the cell is over erased, a threshold voltage (Vt) is lowered, thereby causing a read operation. An adjacent cell that is not selected at the time of malfunction has a problem of lowering the reliability of the device.
따라서, 본 발명의 목적은 프로그램시 드레인 디스터브(drain disturb) 현상을 방지할 뿐만 아니라 읽기 동작시 선택되지 않은 과소거된 인접 셀의 오동작을 방지하여 소자의 신뢰성을 향상시킬 수 있는 플레쉬 메모리 셀의 제조방법을 제공함에 있다.Accordingly, an object of the present invention is to manufacture a flash memory cell that can improve the reliability of the device by preventing drain disturb during programming and also preventing malfunction of the overerased adjacent cells which are not selected during a read operation. In providing a method.
상기 목적을 달성하기 위한 본 발명에 따른 플레쉬 메모리 셀의 제조 방법은 제 1 도전형의 반도체기판 상의 활성영역의 소정 부분에 측면을 갖는 희생막을 형성하고 나머지 부분에 제 1 게이트산화막을 형성하는 공정과, 상기 제 1 게이트산화막 상에 상기 희생막을 덮는 제 1 다결정실리콘층을 형성하고 상기 제 1 다결정실리콘층의 상기 희생막의 측면과 대응하는 부분에 측벽을 형성하는 공정과, 상기 제 1 다결정실리콘층 및 측벽을 채널의 길이 방향으로 스트라이프 형상을 갖도록 패터닝하여 플로팅게이트를 형성하고 상기 측벽을 마스크로 사용하여 상기 제 1 다결정실리콘층을 에치백하여 플로팅게이트를 형성하는 공정과, 상기 희생막을 선택적으로 제거하여 상기 플로팅게이트의 일측면을 노출시키는 공정과, 상기 반도체기판 상에 상기 플로팅게이트을 덮도록 제 2 게이트산화막과 제 2 다결정실리콘층을 형성하고 상기 반도체기판의 소정 부분 및 상기 플로팅게이트의 일측면에 중첩되며 상기 채널의 폭 방향으로 스트라이프 형상을 패터닝하여 콘트롤게이트를 형성하는 공정과, 상기 콘트롤게이트를 마스크로 사용하여 상기 반도체기판에 제 2 도전형의 소오스 및 드레인영역을 형성하는 공정을 구비한다.A method of manufacturing a flash memory cell according to the present invention for achieving the above object comprises the steps of forming a sacrificial film having a side surface in a predetermined portion of the active region on the first conductive semiconductor substrate and forming a first gate oxide film in the remaining portion; Forming a first polysilicon layer covering the sacrificial layer on the first gate oxide layer and forming sidewalls in a portion corresponding to a side surface of the sacrificial layer of the first polysilicon layer; and the first polysilicon layer; Forming a floating gate by patterning sidewalls to have a stripe shape in the longitudinal direction of the channel, and etching back the first polysilicon layer using the sidewalls as a mask to form a floating gate; and selectively removing the sacrificial layer Exposing one side of the floating gate and the floating on the semiconductor substrate Forming a second gate oxide film and a second polysilicon layer to cover the gate, overlapping a predetermined portion of the semiconductor substrate and one side of the floating gate, and forming a control gate by patterning a stripe shape in the width direction of the channel; And forming a source and drain region of a second conductivity type on the semiconductor substrate using the control gate as a mask.
도 1a 내지 도 1d는 종래 기술에 따른 플레쉬 메모리 셀의 제조공정도1A to 1D are manufacturing process diagrams of a flash memory cell according to the prior art.
도 2a 내지 도 2e는 본 발명에 따른 플레쉬 메모리 셀의 제조공정도2A to 2E are manufacturing process diagrams of a flash memory cell according to the present invention.
이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 2a 내지 도 2e는 본 발명에 따른 플레쉬 메모리 셀의 제조공정도이다.2A to 2E are manufacturing process diagrams of a flash memory cell according to the present invention.
도 2a를 참조하면, P형의 반도체기판(31) 상에 LOCOS 방법 또는 STI 방법에 의해 소자의 활성영역을 한정하는 필드절연막(33)을 형성한다.Referring to FIG. 2A, a field insulating film 33 defining an active region of an element is formed on a P-type semiconductor substrate 31 by the LOCOS method or the STI method.
반도체기판(31) 상에 필드절연막(33)과 식각 선택비가 다른 질화실리콘을 3000∼10000Å 정도의 두께로 증착하고 소자의 활성영역 상에만 잔류하도록 패터닝하여 희생막(35)을 형성한다. 그리고, 반도체기판(31)의 필드절연막(33) 및 희생막(35)이 형성되지 않은 부분을 50∼100Å 정도 두께로 산화하여 터널링산화막으로 사용되는 제 1 게이트산화막(37)을 형성한다.A silicon nitride having an etch selectivity different from that of the field insulating film 33 is deposited on the semiconductor substrate 31 to a thickness of about 3000 to 10000 GPa and patterned so as to remain only on the active region of the device to form a sacrificial film 35. Then, the portion of the semiconductor substrate 31 where the field insulating film 33 and the sacrificial film 35 are not formed is oxidized to a thickness of about 50 to 100 Å to form a first gate oxide film 37 used as a tunneling oxide film.
도 2b를 참조하면, 필드절연막(33) 및 제 1 게이트산화막(37) 상에 불순물이 도핑된 다결정실리콘을 CVD 방법으로 희생막(35)을 덮도록 증착하여 제 1 다결정실리콘층(39)을 형성한다.Referring to FIG. 2B, polycrystalline silicon doped with impurities on the field insulating layer 33 and the first gate oxide layer 37 is deposited to cover the sacrificial layer 35 by a CVD method to form the first polycrystalline silicon layer 39. Form.
제 1 다결정실리콘층(39) 상에 희생막(35)과 식각 선택비가 다른 절연물질, 즉, 산화실리콘을 CVD 방법으로 증착한다. 그리고, 절연물질을 제 1 다결정실리콘층(39)의 표면이 노출되도록 반응성이온식각(Reactive Ion Etching : 이하, RIE라 칭함) 방법 등으로 에치백하여 제 1 다결정실리콘층(39)의 희생막(35)의 측면과 대응하는 부분에 측벽(41)을 형성한다.An insulating material having a different etching selectivity from that of the sacrificial film 35, that is, silicon oxide, is deposited on the first polysilicon layer 39 by CVD. The sacrificial film of the first polysilicon layer 39 is etched back by etching the insulating material by using a reactive ion etching method such that the surface of the first polysilicon layer 39 is exposed. The side wall 41 is formed in a portion corresponding to the side surface of the 35.
도 2c를 참조하면, 제 1 다결정실리콘층(39) 및 측벽(41)을 채널의 길이 방향으로 스트라이프 형상을 갖도록 포토리쏘그래피(photolithography) 방법으로 패터닝한다.Referring to FIG. 2C, the first polysilicon layer 39 and the sidewalls 41 are patterned by photolithography to have a stripe shape in the longitudinal direction of the channel.
측벽(41)을 마스크로 사용하여 제 1 다결정실리콘층(39)을 반도체기판(31) 및 희생막(35)이 노출되도록 RIE 방법으로 에치백한다. 이 때, 잔류하는 제 1 다결정실리콘층(39)은 플로팅게이트가 되는 데, 이 플로팅게이트(39)와 측벽(41)에 의해 터널링영역이 한정된다.Using the sidewall 41 as a mask, the first polysilicon layer 39 is etched back by the RIE method so that the semiconductor substrate 31 and the sacrificial film 35 are exposed. At this time, the remaining first polysilicon layer 39 becomes a floating gate, and the tunneling region is defined by the floating gate 39 and the sidewalls 41.
희생막(35)을 습식 방법으로 선택적으로 제거하여 플로팅게이트(39)의 일측면을 노출시킨다. 이 때, 필드절연막(33) 및 측벽(41)은 희생막(35)과 식각 선택비가 다르므로 식각되지 않는다.The sacrificial layer 35 is selectively removed by a wet method to expose one side of the floating gate 39. In this case, the field insulating layer 33 and the sidewall 41 are not etched because the etching selectivity is different from that of the sacrificial layer 35.
도 2d를 참조하면, 반도체기판(31)과 플로팅게이트(39) 일측의 표면에 200∼400Å 정도 두께의 제 2 게이트산화막(43)을 형성하고, 이 제 2 게이트산화막(43) 상에 불순물이 도핑된 다결정실리콘을 CVD 방법으로 증착하여 제 2 다결정실리콘층(45)을 형성한다.Referring to FIG. 2D, a second gate oxide film 43 having a thickness of about 200 to 400 Å is formed on the surface of one side of the semiconductor substrate 31 and the floating gate 39, and impurities are formed on the second gate oxide film 43. The doped polysilicon is deposited by CVD to form a second polysilicon layer 45.
제 2 다결정실리콘층(45) 및 제 2 게이트산화막(43)을 반도체기판(31) 및 플로팅게이트(39)와 중첩되며 채널의 폭 방향으로 스트라이프 형상을 갖도록 포토리쏘그래피(photolithography) 방법으로 패터닝한다. 이 때, 잔류하는 제 2 다결정실리콘층(45)은 콘트롤게이트가 된다. 또한, 잔류하는 제 2 게이트산화막(43)은 플로팅게이트(39)와 중첩되는 부분은 층간절연막으로 사용되고 반도체기판(31) 상에 형성된 부분은 게이트산화막으로 사용된다.The second polysilicon layer 45 and the second gate oxide layer 43 are patterned by a photolithography method so as to overlap the semiconductor substrate 31 and the floating gate 39 and have a stripe shape in the width direction of the channel. . At this time, the remaining second polysilicon layer 45 becomes a control gate. In addition, the remaining portion of the second gate oxide film 43 overlapping with the floating gate 39 is used as the interlayer insulating film, and the portion formed on the semiconductor substrate 31 is used as the gate oxide film.
상술한 구조의 표면에 포토레지스트(47)를 도포한 후 노광 및 현상에 의해 패터닝하여 반도체기판(31)의 플로팅게이트(39) 타측 부분을 노출시킨다. 그리고, 포토레지스트(47)를 마스크로 사용하여 반도체기판(31)의 노출된 부분에 인(P) 등의 확산 속도가 빠른 N형의 불순물을 5×1014∼1×1015/㎠ 정도의 도우즈로 이온 주입하여 저농도영역(49)을 형성한다. 이 때, 저농도영역(49)은 측방으로도 확산되어 플로팅게이트(39)와 소정 부분 중첩되게 형성된다.The photoresist 47 is applied to the surface of the structure described above, and then patterned by exposure and development to expose the other side of the floating gate 39 of the semiconductor substrate 31. Then, using the photoresist 47 as a mask, N-type impurities having a high diffusion rate such as phosphorus (P) in the exposed portions of the semiconductor substrate 31 are formed in a range of 5 × 10 14 to 1 × 10 15 / cm 2. Ion implantation into the dose forms a low concentration region 49. At this time, the low concentration region 49 is also diffused laterally so as to overlap a portion of the floating gate 39.
도 2e를 참조하면, 포토레지스트(47)를 제거한다. 그리고, 콘트롤게이트(45)를 마스크로 사용하여 As 등의 확산 속도가 느린 N형의 불순물을 5×1015∼1×1016/㎠ 정도의 도우즈로 이온 주입하여 고농도의 소오스 및 드레인영역(51)(53)을 형성한다. 이 때, As 등의 불순물은 확산 속도가 늦으므로 소오스 및 드레인영역(51)(53)은 얕은 깊이로 형성되며, 특히, 소오스영역(51)은 저농도영역(49)와 이중 확산(double diffusion) 구조를 이루게 된다.Referring to FIG. 2E, the photoresist 47 is removed. Then, using the control gate 45 as a mask, N-type impurities having a slow diffusion rate such as As are ion-implanted with a dose of about 5 × 10 15 to 1 × 10 16 / cm 2 to obtain a high concentration source and drain region ( 51 and 53 are formed. At this time, since impurities such as As have a slow diffusion rate, the source and drain regions 51 and 53 are formed to have a shallow depth. In particular, the source region 51 has a low concentration region 49 and a double diffusion. Structure.
상술한 바와 같이 제조된 플레쉬 메모리 셀은 드레인영역(53) 부근에 두꺼운 제 2 게이트산화막(43)이 형성되므로 프로그램시 인가되는 드레인전압에 의해 선택되지 않은 셀의 플로팅게이트에 열전자가 주입되는 것을 방지하여 셀이 프로그램되는 드레인 디스터브(drain disturb) 현상을 방지한다. 그리고, 읽기 동작시 과소거(over erase)된 셀이 선택되지 않으면 플로팅게이트(39)가 형성된 부분의 드레쉬홀드 전압(threshhold voltage : Vt)가 낮아져도 콘트롤게이트(45)가 접지 상태이므로 채널이 '오프(off)' 상태가 되어 동작되지 않아 셀이 오동작하는 것이 방지된다.In the flash memory cell manufactured as described above, a thick second gate oxide layer 43 is formed near the drain region 53, thereby preventing hot electrons from being injected into the floating gate of the cell that is not selected by the drain voltage applied during programming. This prevents drain disturb in which the cell is programmed. If the over erased cell is not selected during the read operation, the control gate 45 is grounded even if the threshold voltage (Vt) of the portion where the floating gate 39 is formed is lowered. The cell is turned off and is not operated, thereby preventing the cell from malfunctioning.
따라서, 본 발명은 프로그램시 드레인 디스터브(drain disturb) 현상을 방지할 뿐만 아니라 읽기 동작시 선택되지 않은 인접 셀의 오동작을 방지하여 소자의 신뢰성을 향상시킬 수 있다.Therefore, the present invention not only prevents a drain disturb phenomenon during programming but also prevents malfunction of adjacent cells which are not selected during a read operation, thereby improving reliability of the device.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980063467A KR20000046744A (en) | 1998-12-31 | 1998-12-31 | Method for producing flash memory cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980063467A KR20000046744A (en) | 1998-12-31 | 1998-12-31 | Method for producing flash memory cell |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20000046744A true KR20000046744A (en) | 2000-07-25 |
Family
ID=19570041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980063467A KR20000046744A (en) | 1998-12-31 | 1998-12-31 | Method for producing flash memory cell |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20000046744A (en) |
-
1998
- 1998-12-31 KR KR1019980063467A patent/KR20000046744A/en not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7410871B2 (en) | Split gate type flash memory device and method for manufacturing same | |
KR100221619B1 (en) | A fabrication method of flash memory cell | |
KR100390889B1 (en) | non-volatile semiconductor memory device and fabricating method thereof | |
US5953602A (en) | EEPROM cell and related method of making thereof | |
KR100568445B1 (en) | Method of fabricating a local SONOS type gate structure and method of fabricating a nonvolatile memory cell having the same | |
US5736765A (en) | EEPROM cell having improved topology and reduced leakage current | |
KR0168155B1 (en) | Flash eeprom cell & fabrication method | |
US6555869B2 (en) | Non-volatile memory device and method of manufacturing the same | |
US7166887B2 (en) | EEPROM device and method of fabricating the same | |
KR100261996B1 (en) | Flash memory cell and fabricating method thereof | |
US5576232A (en) | Fabrication process for flash memory in which channel lengths are controlled | |
KR100683389B1 (en) | Cell transistor of flash memory and forming method | |
US20070215931A1 (en) | Non-volatile memory cell in a trench having a first portion deeper than a second portion, an array of such memory cells, and method of manufacturing | |
KR0161391B1 (en) | Non-volatile memory device & method for making the same | |
KR100376864B1 (en) | Non-volatile semiconductor memory device and fabricating method thereof | |
KR100303916B1 (en) | Manufacturing method of flash memory cell | |
KR20000046744A (en) | Method for producing flash memory cell | |
KR100462370B1 (en) | Flash memory device and manufacturing method thereof | |
KR20000039091A (en) | Flash memory device and method for manufacturing the same | |
KR100279001B1 (en) | Manufacturing Method of Flash Memory Cell | |
KR100255006B1 (en) | Method of manufacturing semiconductor device | |
KR100399415B1 (en) | Nonvolatile Memory Device and Method of fabricationg the Same | |
KR100261187B1 (en) | Nonvolatile memory device and method for fabricating the same | |
KR100253582B1 (en) | Manufacture of semiconductor device | |
KR19990057083A (en) | Flash memory and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Withdrawal due to no request for examination |