KR20000046456A - Oil bypass circuit of cooling cycle for vehicle - Google Patents

Oil bypass circuit of cooling cycle for vehicle Download PDF

Info

Publication number
KR20000046456A
KR20000046456A KR1019980063141A KR19980063141A KR20000046456A KR 20000046456 A KR20000046456 A KR 20000046456A KR 1019980063141 A KR1019980063141 A KR 1019980063141A KR 19980063141 A KR19980063141 A KR 19980063141A KR 20000046456 A KR20000046456 A KR 20000046456A
Authority
KR
South Korea
Prior art keywords
oil
compressor
bypass pipe
refrigerant
cooling cycle
Prior art date
Application number
KR1019980063141A
Other languages
Korean (ko)
Other versions
KR100566834B1 (en
Inventor
장길상
김태성
김기효
Original Assignee
신영주
한라공조 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신영주, 한라공조 주식회사 filed Critical 신영주
Priority to KR1019980063141A priority Critical patent/KR100566834B1/en
Publication of KR20000046456A publication Critical patent/KR20000046456A/en
Application granted granted Critical
Publication of KR100566834B1 publication Critical patent/KR100566834B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3211Control means therefor for increasing the efficiency of a vehicle refrigeration cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3214Control means therefor for improving the lubrication of a refrigerant compressor in a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Abstract

PURPOSE: An oil bypass circuit of a cooling cycle for a vehicle is provided to enhance the entire performance of a cooling system by setting a flow coefficient of a bypass pipe and returning the optimum amount of oil to a compressor. CONSTITUTION: An oil separator(2) is mounted between an inlet and an outlet of a compressor(1) to separate lubricating oil and returns to the compressor. The gas refrigerant performs heat exchange via a liquid receiver(4), an expansion valve(5) and an evaporator(6) and then flows into the compressor. The oil flows into the inlet of the compressor through a bypass pipe(7) and then into the compressor together with the refrigerant.

Description

차량용 냉각싸이클의 오일바이패스회로Oil bypass circuit of vehicle cooling cycle

본 발명은 차량 공조장치에 이용되는 냉각시스템에 있어서, 압축기의 윤활오일을 분리하기 위해 설치되는 오일분리기에서 최적의 오일량이 압축기로 바이패스될 수 있도록 하는 차량용 냉각싸이클의 오일바이패스회로에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil bypass circuit of a vehicle cooling cycle that allows an optimum amount of oil to be bypassed to a compressor in an oil separator installed to separate lubricating oil of a compressor in a vehicle air conditioner. .

일반적으로 왕복피스톤형의 압축기에 있어서, 냉매가스에 미스트형으로 분산된 오일에 의해 압축운전중에 있는 압축기내의 습동부의 윤활을 도모하고 있다.In general, in a reciprocating piston type compressor, oil dispersed in a mist type in refrigerant gas is used to lubricate the sliding part in the compressor during the compression operation.

그러나 오일이 압축기의 기계적인 마찰로 인해 필수적이기는 하나 열교환기측으로 흐를 경우 냉매와 혼합된 오일이 냉매의 열용량을 흡수하므로 고압측의 온도를 하강시키고 반대로 저압측에서는 온도를 높이는 등 열교환기의 열교환 효율을 떨어뜨리게 된다. 또한 열교환기를 흐르는 오일이 열교환기의 전열표면에 대류함으로써 냉매의 유동분배가 균일하지 못해 압력강하가 커지게 된다.However, although oil is essential due to mechanical friction of the compressor, when the oil flows to the heat exchanger side, the oil mixed with the refrigerant absorbs the heat capacity of the refrigerant. Therefore, the heat exchange efficiency of the heat exchanger is increased by lowering the temperature at the high pressure side and increasing the temperature at the low pressure side. Dropped. In addition, since the oil flowing through the heat exchanger convections to the heat transfer surface of the heat exchanger, the flow distribution of the refrigerant is not uniform, resulting in a large pressure drop.

이런점을 감안하여 압축운전중에 토출냉매가스에 포함된 오일을 오일분리기로 분리하고 저유실에 저장하도록 하고 있다. 오일분리기는 압축기에 일체로 형성된 내장형과 압축기의 토출측과 응축기사이에 개재되는 분리형이 있다.In view of this, the oil contained in the discharged refrigerant gas during the compression operation is separated by an oil separator and stored in the oil storage chamber. The oil separator has a built-in type integrally formed in the compressor and a separate type interposed between the discharge side of the compressor and the condenser.

오일분리기에서 분리된 오일이 열교환기측으로 흐르면 열전달 효율이 떨어지며 압력강하가 증가한다. 또한 열교환기의 특정부분에 오일이 존재함으로써 냉매유동이 제한되고 온도분포의 편차가 커지는 문제가 있다. 교축기구에서는 오일이 교축을 방해하는 것으로 알려져 있다. 즉 냉매의 교축시에 압력이 떨어지면서 온도가 떨어지는데 오일이 일정한 양의 열량을 흡수하므로 증발기내의 온도가 올라가는 문제가 있으며 교축기구의 팽창효율이 떨어지게 된다. 수액기는 시스템 내의 냉매 저장고 역할을 하는데 오일이 흐르게 되면 일정량의 오일이 수액기에 저장되므로 액냉매의 저장을 위해서는 수액기의 부피가 커지는 문제가 있다.When the oil separated from the oil separator flows to the heat exchanger side, the heat transfer efficiency decreases and the pressure drop increases. In addition, the presence of oil in a specific portion of the heat exchanger has a problem that the flow of the refrigerant is limited and the temperature distribution is increased. In throttling mechanisms, oil is known to interfere with throttling. In other words, when the refrigerant is throttled, the temperature drops as the pressure drops, so the oil absorbs a certain amount of heat, thereby increasing the temperature in the evaporator and decreasing the expansion efficiency of the throttling mechanism. The receiver acts as a refrigerant reservoir in the system. When oil flows, a certain amount of oil is stored in the receiver, so that the volume of the receiver is increased for the storage of the liquid refrigerant.

오일분리기를 시스템에 장착하여 오일을 분리할 때 오일 바이패스관을 이용하여 분리된 오일을 고압측에서 저압측으로 이동시키게 된다. 이때 분리된 오일을 적절하게 반환시키지 않으면 시스템 성능이 떨어지는 문제가 있다.When the oil separator is installed in the system to separate the oil, the oil bypass pipe is used to move the separated oil from the high pressure side to the low pressure side. At this time, if the separated oil is not properly returned, there is a problem that the system performance is reduced.

일예로 바이패스관의 저항이 너무 작아서 분리된 오일을 전부 반환하고 냉매까지 반환하면 열교환기측으로의 냉매유량이 줄어들어 성능이 떨어진다. 반면에 바이패스관의 저항이 너무 크면 분리된 오일을 충분히 반환시키지 못하므로 오일분리기에 쌓이게 되며 이 양이 커지면 오일은 열교환기측으로 이동하게 된다. 따라서 오일분리를 시키는 것 못지 않게 최적의 오일을 반환할 수 있는 시스템이 요구되고 있다.For example, if the resistance of the bypass pipe is too small to return all the separated oil and return to the refrigerant, the refrigerant flow to the heat exchanger side is reduced, resulting in poor performance. On the other hand, if the resistance of the bypass pipe is too large, the separated oil cannot be returned sufficiently, so it accumulates in the oil separator, and when this amount increases, the oil moves to the heat exchanger side. Therefore, there is a need for a system capable of returning optimum oil as much as oil separation.

본 발명의 목적은 오일분리기에 의해 분리된 오일을 압축기로 반환시키기 위해 설치되는 바이패스관의 유량계수를 설정하여 최적량의 오일이 압축기로 반환되게 함으로써 전체적인 냉각시스템 성능을 향상시킬 수 있도록 하는 차량용 냉각싸이클의 오일바이패스회로를 제공하는데 있다.An object of the present invention is to set the flow coefficient of the bypass pipe installed to return the oil separated by the oil separator to the compressor so that the optimum amount of oil is returned to the compressor to improve the overall cooling system performance To provide an oil bypass circuit for the cooling cycle.

본 발명은 상기한 목적을 달성하기 위해 오일분리기가 설치된 냉각싸이클에 있어서, 오일분리기와 압축기의 흡입측을 연결하는 바이패스관의 유량계수, 즉 바이패스관의 내부직경과 관길이와의 특성관계를 갖는 유량계수가 0.01 내지 3.5의 범위를 갖도록 하고 있다.In order to achieve the above object, the present invention provides a cooling cycle in which an oil separator is installed, wherein the flow coefficient of the bypass pipe connecting the oil separator and the suction side of the compressor, that is, the relationship between the internal diameter of the bypass pipe and the pipe length The flow rate coefficient having the range is 0.01 to 3.5.

본 발명은 바이패스관의 유량계수가 일정범위를 유지토록 설계함으로써 열교환기측으로 오일이 유동하는 것을 방지함과 동시에 압축기로 최적량의 오일이 반환될 수 있기 때문에 전체적인 냉각시스템의 성능을 향상시킬 수 있다.According to the present invention, the flow coefficient of the bypass pipe is designed to maintain a certain range, thereby preventing the oil from flowing to the heat exchanger side, and at the same time, the optimum amount of oil can be returned to the compressor, thereby improving the performance of the overall cooling system. .

도 1은 외장형 오일분리기가 설치된 일반적인 냉각시스템,1 is a general cooling system installed with an external oil separator,

도 2는 바이패스관의 유량계수를 변화시켰을 때 열교환기측의 유량을 나타낸 그래프.2 is a graph showing the flow rate on the heat exchanger side when the flow coefficient of the bypass pipe is changed.

도 3은 바이패스관의 유량계수를 변화시켰을 때 냉방성능의 변화를 보인 그래프.3 is a graph showing a change in cooling performance when the flow coefficient of the bypass pipe is changed.

도 4는 바이패스관의 유량계수를 정의한 그래프.4 is a graph defining the flow coefficient of the bypass pipe.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1;압축기 2;오일분리기1; compressor 2; oil separator

3;응축기 4;수액기3; condenser 4; receiver

5;팽창밸브 6;증발기5; expansion valve 6; evaporator

7;바이패스관 8;모세관7; bypass tube 8; capillary tube

이하, 본 발명에 따른 실시예를 첨부된 도면을 참조하여 설명한다. 도 1은 분리형 오일분리기가 설치된 냉각싸이클을 보인 계통도로써, 압축기(1)의 토출측과 흡입측 사이에 오일분리기(2)를 설치하고 있다. 오일분리기(2)는 냉매와 함께 유동하는 압축기 윤활오일을 분리하여 압축기(1)로 다시 환원시키게 된다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. 1 is a system diagram showing a cooling cycle in which a separate oil separator is installed, and an oil separator 2 is installed between the discharge side and the suction side of the compressor 1. The oil separator 2 separates the compressor lubricating oil flowing with the refrigerant and reduces the oil back to the compressor 1.

오일분리기(2)에 의해 분리된 기냉매는 응축기(3)를 통해 수액기(4), 팽창밸브(5), 증발기(6)를 경유하면서 열교환을 행한 후 압축기(1)로 유입되는 싸이클을 행하게 되고 동시에 오일분리기(2)에서 분리된 오일은 바이패스관(7)을 통해 압축기(1)의 흡입측으로 유동하면서 증발기(6)로부터 압송된 냉매와 함께 압축기(1)로 유입된다.The air refrigerant separated by the oil separator (2) undergoes heat exchange while passing through the condenser (3) through the receiver (4), the expansion valve (5), and the evaporator (6), and then cycles the cycle flowing into the compressor (1). The oil separated in the oil separator 2 flows to the suction side of the compressor 1 through the bypass pipe 7 and flows into the compressor 1 together with the refrigerant pumped from the evaporator 6.

바이패스관(7)의 관로상에는 고온의 오일을 감압시키기 위한 감압수단으로 모세관(8)을 설치하고 있다. 실시예에서는 바이패스관(7)의 관로상에 설치된 모세관(8)에 의해 오일을 감압시키고 있으나 밸브나 또는 오리피스등의 감압수단을 사용하여도 좋다.On the pipe line of the bypass pipe 7, a capillary tube 8 is provided as a pressure reducing means for reducing the high temperature oil. In the embodiment, the pressure is reduced by the capillary tube 8 provided on the pipeline of the bypass pipe 7. However, a pressure reducing means such as a valve or an orifice may be used.

본 발명은 도 1과 같이 오일분리기(2)에 의해 냉매에 혼합된 안개상태의 오일을 분리시키고 분리된 오일을 바이패스관(7)을 통해 압축기(1)로 반환시키는 과정에서 최적의 오일 반환량을 구현하여 냉방성능을 향상시키고자 한다.The present invention is the optimum oil return in the process of separating the oil of the mist state mixed in the refrigerant by the oil separator 2 and return the separated oil to the compressor (1) through the bypass pipe (7) as shown in FIG. Implement the amount to improve the cooling performance.

오일반환량은 바이패스관(7)의 유량계수에 의해 절대적으로 좌우되는 것으로 바이패스관(7)의 길이 및 내경을 최적으로 설계함으로써 가능하다.The oil return amount is absolutely dependent on the flow coefficient of the bypass pipe 7, and it is possible by optimally designing the length and the inner diameter of the bypass pipe 7.

도 2는 바이패스관(7)의 유량계수를 변화시켰을 때 열교환기측의 유량을 나타낸 것이다. 오일분리시의 유량은 오일이 분리되지 않을 때 보다 작으며 그 차이는 바이패스관(7)을 통해 반환된 유량과 같다. 오일회전율(OCR; Oil circulation ratio)이 15%일 때의 순수냉매 유동량과 오일회전율이 3%일 때의 순수냉매 유동량을 기준으로 할 때 유량계수 0.01 내지 3.5의 범위는 충분한 오일을 반환하는 것으로 실험결과에 의해 나타나고 있다.2 shows the flow rate at the heat exchanger side when the flow rate coefficient of the bypass pipe 7 is changed. The flow rate at the oil separation is smaller than when the oil is not separated and the difference is equal to the flow rate returned through the bypass pipe 7. Based on the pure refrigerant flow rate when the oil circulation ratio (OCR) is 15% and the pure refrigerant flow rate when the oil rotation rate is 3%, the range of the flow coefficient 0.01 to 3.5 returns sufficient oil. It is indicated by the result.

여기서 유량계수는 바이패스관(7)의 특정 내경 및 관의 특정 길이에 의해 결정되는 유량을 1로 정한 상대적 값으로 정의한다. 즉, 도 4의 그래프와 같이 바이패스관(7)의 내경과 관길이에 의해 정의되는 유량계수를 0.35라 할 때 바이패스관(7)의 내경이 1.0mm, 관길이가 1.25m임을 의미한다.Here, the flow coefficient is defined as a relative value in which the flow rate determined by the specific inner diameter of the bypass pipe 7 and the specific length of the pipe is defined as 1. That is, as shown in the graph of FIG. 4, when the flow coefficient defined by the inner diameter and the pipe length of the bypass pipe 7 is 0.35, it means that the inner diameter of the bypass pipe 7 is 1.0 mm and the pipe length is 1.25 m. .

다시말해 동일한 유량계수를 나타내기 위해서는 바이패스관(7)의 내경이 커지면 길이가 길어져야 하며 내경이 작아지면 길이가 줄어들어야 한다.In other words, in order to show the same flow coefficient, the length of the bypass pipe 7 should be increased if the inner diameter is large, and if the inner diameter is small, the length should be reduced.

자동차용 에어컨 시스템에서 오일회전율은 일반적으로 3% 내지 12%의 범위를 가지며 특이한 환경 또는 압축기 내구성을 향상시키기 위해 오일주입량을 늘린 경우 15%까지 확장할 수 있으며, 오일회전율이 15%일 때 유량계수는 3.5로 하여야 충분한 오일반환량을 얻을 수 있다. 여기서 도 3을 참조하면 오일분리시에는 오일을 분리하지 않는 경우에 비해서 냉방성능이 향상되고, 유량계수가 3.5를 초과할 경우 오일반환통로로 바이패스하는 기냉매량이 증가하여 냉방성능이 감소함을 알 수 있다. 따라서 본 발명에서 정의하는 유량계수는 0.01 내지 3.5의 범위에서 냉방성능을 향상시킬 수 있었다. 일반적으로 오일회전율이 2% 이내 일때는 100% 냉매 유동량과 비교해서 냉방성능이 크게 영향을 미치지 않고 있다.In automotive air conditioning systems, the oil turnover typically ranges from 3% to 12% and can be extended to 15% with increased oil injection to improve unusual environments or compressor durability. It should be 3.5 to obtain sufficient oil return. Referring to FIG. 3, the cooling performance is improved when the oil is separated when the oil is not separated, and when the flow coefficient exceeds 3.5, the amount of air refrigerant bypassed to the oil return passage increases to decrease the cooling performance. Can be. Therefore, the flow coefficient defined in the present invention was able to improve the cooling performance in the range of 0.01 to 3.5. In general, when the oil turnover rate is within 2%, cooling performance is not significantly affected as compared with 100% refrigerant flow rate.

도 4는 바이패스관(7)의 유량계수를 변화시켰을 때 냉방성능의 변화를 나타낸 것이다. 본 발명에서 정의되는 유량계수가 0.01 내지 3.5의 범위에 있을 때 냉방성능이 대체적으로 우수한 것으로 나타난다. 유량계수가 매우 작거나 클 경우에는 냉방성능이 급격히 떨어지게 된다. 유량계수가 매우 클 경우에는 오일분리기에서 오일뿐만 아니라 고온의 냉매까지 압축기의 흡입측에 유입되어 압축기에 과도한 부하가 작용하게 된다.4 shows a change in cooling performance when the flow coefficient of the bypass pipe 7 is changed. It appears that the cooling performance is generally superior when the flow coefficient defined in the present invention is in the range of 0.01 to 3.5. If the flow coefficient is very small or large, the cooling performance will drop drastically. If the flow coefficient is very large, not only oil but also high-temperature refrigerant from the oil separator flows into the suction side of the compressor, causing an excessive load on the compressor.

본 발명에서의 오일분리기(2)는 압축기(1) 토출측에 설치되는 외장형 오일분리기나 압축기에 내장되거나 부착하는 오일분리기를 포함한다. 다시말해 실시예와 같이 외장형 오일분리기를 적용할 경우에는 바이패스관(7)의 관길이가 길어지는 반면 내경이 확개되고, 반대로 내장형 오일분리기를 적용할 경우 관길이가 짧아지는 반면 내경을 축개함으로써 최적의 유량계수를 유지할 수 있다.The oil separator 2 in the present invention includes an external oil separator installed at the discharge side of the compressor 1 or an oil separator built in or attached to the compressor. In other words, when the external oil separator is applied as in the embodiment, the pipe length of the bypass pipe 7 is increased while the internal diameter is increased. On the contrary, when the internal oil separator is applied, the tube length is shortened while the internal diameter is reduced. Maintain an optimum flow coefficient.

이상에서 설명한 바와 같이 본 발명은 오일분리 시스템에서의 최적의 오일반환량을 구현하여 시스템 냉방성능을 극대화할 수 있다. 다량의 고온냉매가 오일반환라인을 통해 압축기로 유입되어 과다한 부하가 걸리는 것을 방지할 수 있고, 오일분리에 의해 응축기 및 증발기의 열용량을 높히고 에어컨 시스템의 냉방성능을 높힐 수 있다.As described above, the present invention can realize the optimum oil return in the oil separation system to maximize the system cooling performance. It is possible to prevent a large amount of high-temperature refrigerant to enter the compressor through the oil return line to prevent excessive load, and to increase the heat capacity of the condenser and evaporator by oil separation and to increase the cooling performance of the air conditioning system.

더욱이 압축기 토출압과 흡입압을 낮춤으로써 시스템의 내구특성을 향상시키고 소모동력을 줄일 수 있을 뿐만 아니라 최적의 오일주입량을 설정함으로 인해 과다하게 주입된 오일에 의해 발생할 수 있는 유동의 소음과 진동을 감소시킬 수 있다.Furthermore, lowering compressor discharge and suction pressure not only improves the durability of the system and reduces power consumption, but also reduces the noise and vibration of the flow caused by overfilled oil by setting the optimum oil injection volume. You can.

Claims (1)

압축기의 출구측과 응축기의 입구측 사이에 오일분리기가 설치된 차량용 냉각싸이클에 있어서, 상기 오일분리기의 출구측과 압축기의 입구측을 연결하는 바이패스관의 유량계수를 0.01 내지 3.5의 범위로 설정함을 특징으로 하는 차량용 냉각싸이클의 오일바이패스회로.In a vehicle cooling cycle in which an oil separator is installed between the outlet side of the compressor and the inlet side of the condenser, the flow coefficient of the bypass pipe connecting the outlet side of the oil separator and the inlet side of the compressor is set in the range of 0.01 to 3.5. Oil bypass circuit of the vehicle cooling cycle, characterized in that.
KR1019980063141A 1998-12-31 1998-12-31 Oil bypass circuit of vehicle cooling cycle KR100566834B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980063141A KR100566834B1 (en) 1998-12-31 1998-12-31 Oil bypass circuit of vehicle cooling cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980063141A KR100566834B1 (en) 1998-12-31 1998-12-31 Oil bypass circuit of vehicle cooling cycle

Publications (2)

Publication Number Publication Date
KR20000046456A true KR20000046456A (en) 2000-07-25
KR100566834B1 KR100566834B1 (en) 2006-05-29

Family

ID=19569748

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980063141A KR100566834B1 (en) 1998-12-31 1998-12-31 Oil bypass circuit of vehicle cooling cycle

Country Status (1)

Country Link
KR (1) KR100566834B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09187617A (en) * 1996-01-11 1997-07-22 Sanden Corp Oil separator
JPH09250821A (en) * 1996-03-14 1997-09-22 Sanyo Electric Co Ltd Freezer
KR100600625B1 (en) * 1998-11-14 2007-03-02 한라공조주식회사 Oil separator
KR100542149B1 (en) * 1998-11-14 2006-09-13 한라공조주식회사 Oil separator

Also Published As

Publication number Publication date
KR100566834B1 (en) 2006-05-29

Similar Documents

Publication Publication Date Title
CN1878993B (en) Compressor with unloader valve between economizer line and evaporator inlet
US5081847A (en) Variable flow orifice tube
US7721559B2 (en) Multi-type air conditioner and method for controlling the same
JP2007240041A (en) Expansion valve
CN111365896B (en) Oilless bearing external cooling system with secondary supercooling function
US6997001B2 (en) Method of operating a refrigeration cycle
JP3617083B2 (en) Receiver integrated refrigerant condenser
US6807821B2 (en) Compressor with internal accumulator for use in split compressor
US6712281B2 (en) Expansion valve
CA2517403A1 (en) Refrigeration system including a side-load sub-cooler
US10948220B2 (en) Two-stage compressor
KR100566834B1 (en) Oil bypass circuit of vehicle cooling cycle
KR100563849B1 (en) Oil Separator with Compressor
JP3495899B2 (en) Screw refrigerator
KR100819015B1 (en) Internal oil separator for compressor
CN106958892B (en) Air conditioner
CN112833019B (en) End cover and compressor
EP0255035A2 (en) Refrigeration circuit
CN216448413U (en) Refrigerating system capable of reducing oil return temperature of compressor
CN217381757U (en) One-way valve and air conditioner with same
KR200164344Y1 (en) Cooling apparatus for cars
CN213872918U (en) Air conditioning unit
JPH07139825A (en) Freezer device
KR20000032413A (en) Oil separator
JPH06241588A (en) Oil separator for refrigerator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110225

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee