KR20000045513A - Method of manufacturing coatless weather resistance steel - Google Patents

Method of manufacturing coatless weather resistance steel Download PDF

Info

Publication number
KR20000045513A
KR20000045513A KR1019980062072A KR19980062072A KR20000045513A KR 20000045513 A KR20000045513 A KR 20000045513A KR 1019980062072 A KR1019980062072 A KR 1019980062072A KR 19980062072 A KR19980062072 A KR 19980062072A KR 20000045513 A KR20000045513 A KR 20000045513A
Authority
KR
South Korea
Prior art keywords
steel
weather resistance
temperature
less
hot rolling
Prior art date
Application number
KR1019980062072A
Other languages
Korean (ko)
Other versions
KR100402127B1 (en
Inventor
유호천
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1998-0062072A priority Critical patent/KR100402127B1/en
Publication of KR20000045513A publication Critical patent/KR20000045513A/en
Application granted granted Critical
Publication of KR100402127B1 publication Critical patent/KR100402127B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A method of manufacturing weather resistance steel is provided to enhance weather resistance by maintaining the fine structure without growing Ca(OH)2 through rapid cooling and by changing the polygonal ferrite structure into deposition ferrite one. CONSTITUTION: A steel billet consists essentially of, by weight %: 0.01-0.15% of C, not more than 0.50% of Si, not more than 2.0% of Mn, not more than 0.020% of P, not more than 0.010% of S, 0.10-2.0% of Cu, 0.10-1.0% of Ni, 0.0010-0.0050% of Ca(OH)2 powder with a diameter less than 2 micrometers, Fe and incidental impurities. The steel billet is heated at a temperature of 1100-1250°C and hot-rolled with a temperature range of austenite structure. Finally, the steel billet is cooled at a speed of 6-15°C/sec at a temperature of 550-350°C.

Description

무도장 내후성강의 제조방법Manufacturing method of unpainted weathering steel

본 발명은 제강중에 미세한 Ca(OH)2(수산화칼슘)분말을 첨가하고 열간압연시에 가속냉각한 저합금강을 제조하여 습(濕)한 부식환경하에서 녹이 발생하기 힘든 염기성분위기를 조성하여 내후성이 우수한 무도장 내후성강을 제조하는 방법에 관한 것으로, 보다 상세하게는 기지조직의 내후성을 향상시키기 위하여 Cu, Ni과 미세한 Ca(OH)2분말을 기본조성으로 함유하고, Cr, Mo, Ti, Nb, V을 임의적으로 첨가한 강괴를 제조한 다음, 열간압연을 하기 위한 온도범위로 가열한 후에, Ar3점 이상의 오스테나이트 조직의 온도범위에서 열간압연을 마무리한 직후에서부터 경화조직인 마르텐사이트 조직이 생기기 전의 온도범위까지 가속냉각한 후에, 공냉하거나 혹은 공냉후에 후열처리하여 내후성이 우수한 무도장 내후성강을 제조하는 방법에 관한 것이다.The present invention adds fine Ca (OH) 2 (calcium hydroxide) powder to steelmaking and manufactures low-alloy steel that is accelerated and cooled during hot rolling to form a base-based atmosphere that is hard to cause rust in a wet corrosive environment. The present invention relates to a method for manufacturing uncoated weather resistant steel, and more specifically, to improve weather resistance of a matrix structure, Cu, Ni and fine Ca (OH) 2 powders are included as a basic composition, and Cr, Mo, Ti, Nb, V After the steel ingot was optionally added and heated to a temperature range for hot rolling, immediately after finishing hot rolling in the temperature range of the austenitic structure of at least 3 Ar, the temperature before the formation of the hardened martensite structure. The present invention relates to a method for producing an unpainted weather resistant steel having excellent weather resistance by accelerated cooling to a range, followed by air cooling or post-heat treatment after air cooling.

본 발명에서 Ar3점이란 열간압연을 하기 위하여 슬라브를 고온으로 상승시켜 완전한 오스테나이트 조직이 되었을 경우에 다시 온도를 낮추어 오스테나이트 조직내에 페라이트 조직이 발생되는 시점이 되는 온도점으로 정의된다.In the present invention, the Ar 3 point is defined as a temperature point at which the ferrite structure is generated in the austenite structure by lowering the temperature again when the slab is heated to a high temperature in order to perform hot rolling.

종래기술에서는, 중량%로, C:0.01-0.15%, Si:0.50% 이하, Mn:1.50% 이하, P:0.020% 이하, S:0.010% 이하를 기본조성으로 함유하고, 여기에 잔부의 Fe와 불가피한 불순물을 함유한 강괴를 제조하여 1100-1250℃의 온도범위로 가열한 후에, Ar3점 이상의 오스테나이트 조직의 온도범위에서 열간압연을 마무리한후 공냉하여 무도장 내후성강을 제조하였다.In the prior art, by weight%, C: 0.01-0.15%, Si: 0.50% or less, Mn: 1.50% or less, P: 0.020% or less, S: 0.010% or less are contained as a basic composition, and the balance of Fe After manufacturing a steel ingot containing an inevitable impurity and heated to a temperature range of 1100-1250 ℃, after the hot rolling in the temperature range of the austenitic structure of Ar 3 or more point to air-cooled to prepare a non-painted weather-resistant steel.

그러나 상기 설명한 바와 같은 종래기술에 의하면 습한 부식환경하에서 녹을 다량 발생하여 내후성이 극히 불량하여 교량이나 건축구조물에 사용할 때 페인팅이 필요한등 내후성 소재로 사용함에 문제가 존재하였다.However, according to the prior art as described above, a large amount of rust is generated in a humid corrosive environment, and the weatherability is extremely poor. Therefore, there is a problem in using it as a weatherproof material, such as painting required when used in a bridge or a building structure.

본 발명은 상기와 같은 문제점을 해결하기 위하여 이루어진 것으로, 미세한 Ca(OH)2분말을 첨가하고, 가속냉각하여 강종의 Ca(OH)2를 조대하게 성장시키지 않고 미세한 채로 유지시키고 기지조직을 폴리고날(입상) 페라이트 조직에서 침상 페라이트 조직으로 변형시켜 내후성을 향상시킨 무도장 내후성강의 제조방법을 제공함에 그 목적이 있다.The present invention has been made to solve the above problems, by adding fine Ca (OH) 2 powder, accelerated cooling to maintain the fine structure without coarse growth of Ca (OH) 2 of steel species and polygonal base (Granular) An object of the present invention is to provide a method of manufacturing a non-coated weather resistant steel having improved weather resistance by transforming it into a needle-like ferrite structure.

상기 목적을 달성하기 위한 본 발명의 무도장 내후성강의 제조방법은, 중량%로, C:0.01-0.15%, Si:0.50% 이하, Mn:2.0% 이하, P:0.020% 이하, S:0.010% 이하, Cu:0.10-2.0%, Ni:0.10-1.0%, 직경이 2㎛ 이하인 Ca(OH)2분말을 0.0010-0.0050% 기본조성으로 함유하고, 여기에 잔부의 Fe와 불가피한 불순물을 함유한 강괴를 제조하여 1100-1250℃의 온도범위로 가열한 후에, Ar3점 이상의 오스테나이트 조직의 온도범위에서 열간압연을 마무리한 직후에서부터 550-350℃까지의 온도범위에서 6-13℃/sec의 냉각속도범위로 강판을 냉각하는 것을 특징으로 하는 구성이다.In order to achieve the above object, the production method of the non-painted weathering steel of the present invention is, in weight%, C: 0.01-0.15%, Si: 0.50% or less, Mn: 2.0% or less, P: 0.020% or less, S: 0.010% or less , Cu: 0.10-2.0%, Ni: 0.10-1.0%, Ca (OH) 2 powder with a diameter of 2 μm or less in a 0.0010-0.0050% basic composition, in which a steel ingot containing a balance of Fe and unavoidable impurities After manufacturing and heating to a temperature range of 1100-1250 ° C, a cooling rate of 6-13 ° C / sec in the temperature range from 550-350 ° C immediately after finishing hot rolling in the temperature range of the austenitic structure of at least 3 Ar It is a structure characterized by cooling a steel plate in the range.

또한, 본 발명에서 Cr, Mo:0.01-1.0%, Ti, Nb, V: 0.01-0.10%에서 1종 이상을 함유할 수 있다.In the present invention, Cr, Mo: 0.01-1.0%, Ti, Nb, V: may contain at least one kind at 0.01-0.10%.

더욱이, 가속냉각후에는 500-650℃의 온도범위에서 후열처리할 수 있다.Furthermore, after accelerated cooling, the post-heat treatment can be performed in the temperature range of 500-650 ° C.

이하에서는 양호한 실시예와 관련하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to the preferred embodiments.

본 발명에서는 기본적으로, 중량%로, C:0.01-0.15%, Si:0.50% 이하, Mn: 2.0% 이하, P:0.020% 이하, S:0.010% 이하, Al:0.010-0.10%를 기본적으로 함유시키고, 내후성을 향상시키기 위하여 Cu:0.10-2.0%, Ni:0.10-1.0% 및 Ca(OH)2분말을 기본조성으로 함유시킨다.In the present invention, by weight, basically C: 0.01-0.15%, Si: 0.50% or less, Mn: 2.0% or less, P: 0.020% or less, S: 0.010% or less, Al: 0.010-0.10% In order to improve weather resistance, Cu: 0.10-2.0%, Ni: 0.10-1.0% and Ca (OH) 2 powder are included as a basic composition.

특히 미세한 Ca(OH)2분말은 0.0010-0.0050%를 기본조성으로 함유시키는데, 2㎛ 이하의 미세한 개재물을 형성하여 강 기지조직의 pH를 증가시켜 염기성 분위기를 만들고 동시에 미세한 침상 페라이트 조직을 만들어 내후성을 향상시키는데 결정적인 역할을 한다.Particularly, the fine Ca (OH) 2 powder contains 0.0010-0.0050% as a basic composition, and forms fine inclusions of 2 μm or less to increase the pH of the steel matrix to create a basic atmosphere, and at the same time to form fine needle-like ferrite tissue to provide weather resistance. Plays a crucial role in improving

미세한 Ca(OH)2분말은 수분에 포함된 부식 분위기중에서 산성분위기를 억제하여 국부적으로 pH가 12 이상으로 되는 염기성 분위기를 조성하는 역할을 하여 부식을 감소시켜 내후성을 향상시킨다.The fine Ca (OH) 2 powder suppresses acidic acid in the corrosive atmosphere contained in water, thereby forming a basic atmosphere having a pH of 12 or more, thereby reducing corrosion and improving weather resistance.

이 분말은 용강 투입전의 평균 크기가 0.5-2.0㎛로 이루어졌으나 용강중에 분포되어 생산 제품이 되면 Ca(OH)2분말의 평균 크기 0.05-0.1㎛가 가장 효과적이다.This powder is composed of 0.5-2.0㎛ average size before molten steel, but the average size of Ca (OH) 2 powder is 0.05-0.1㎛ most effective when it is distributed in molten steel and becomes a product.

Ca(OH)2분말은 튜브에 의해 둘러싸여지는데, 튜브는 강판 혹은 구리판 혹은 알루미늄판으로 제조할 수 있으나 냉연강판인 경우에 가장 경제성이 있다.The Ca (OH) 2 powder is surrounded by a tube, which can be made of steel or copper or aluminum but is most economical in the case of cold rolled steel.

합금원소중에서 Cr, Mo:0.01-1.0%, Ti, Nb, V: 0.01-0.10%를 무첨가 혹은 하나의 성분 이상으로 임의로 첨가하여 강 기지조직의 내후성을 향상시키고 결정립을 미세화하여 강도를 향상시킬 수 있다.Cr, Mo: 0.01-1.0%, Ti, Nb, V: 0.01-0.10% among alloying elements can be added without additives or optionally added as one or more components to improve the weather resistance of the steel matrix structure and to refine the grain size to improve the strength. have.

상기의 원소들을 함유한 강들은 내후성을 더욱 향상시키기 위하여 고온압연과 가속냉각을 하게 되는데, 강 기지조직의 내부응력을 제거하여 내후성을 향상시키기 위하여 고온압연을 한다. 고온압연은 1100-1250℃의 온도범위로 가열하여 Ar3점 이상의 오스테나이트조직의 온도범위에서 열간압연을 종료한다.Steels containing the above elements are subjected to hot rolling and accelerated cooling to further improve weather resistance, and hot rolling to remove weather stress of the steel matrix structure to improve weather resistance. The high temperature rolling is heated to a temperature range of 1100-1250 ° C. to finish the hot rolling in the temperature range of the austenitic structure of at least Ar 3 .

또한, 띠상의 펄라이트 조직을 감소시키고 침상의 균일한 페라이트 조직을 형성시키기 위하여 가속냉각하여 내후성을 최고로 향상시킨다. 가속냉각은 550-350℃까지의 온도범위에서 6-13℃/sec의 냉각속도로 강판을 수냉하여 강종의 Ca(OH)2를 조대하게 성장시키지 않고 미세한 채로 유지시키고 기지조직인 폴리고날(입상) 페라이트 조직을 침상 페라이트 조직으로 변형시킨다.In addition, it is accelerated cooling to reduce the band-shaped pearlite structure and to form a needle-like uniform ferrite structure to improve weather resistance to the best. Accelerated cooling cools the steel plate at a cooling rate of 6-13 ° C / sec in the temperature range of 550-350 ° C to keep the Ca (OH) 2 of the steel grade fine without growing it coarsely. The ferrite tissue is transformed into acicular ferrite tissue.

또한, 사용용도에 따라서 후열처리를 하는 경우가 있는데, 이 경우에는 공냉하거나 혹은 공냉후에 500-650℃의 온도범위로 열처리하여 강내부의 열응력을 제거하여 내후성을 더욱 향상시킨다.In addition, there may be a post-heat treatment depending on the intended use, in this case, air-cooled or heat-treated in the temperature range of 500-650 ℃ after air cooling to remove the thermal stress in the steel to further improve weather resistance.

이하, 본 발명에서 강괴의 조성 성분의 수치한정이유에 대해서 설명하기로 한다.Hereinafter, the reason for numerical limitation of the composition component of the steel ingot will be described.

C 함량의 증가는 펄라이트량의 증가를 가져와 용접성과 가공성을 저하시키며 내후성을 감소시키고 용접부와 모재의 경도 및 조직의 차이를 크게 하는 원인으로 작용하기 때문에 적을수록 좋다. 따라서, C함량을 0.15%이하로 한정하였다. 한편, C 함량이 0.01% 이하로 너무 적으면 강도의 저하가 심하여 바람직하지 않기 때문에 C 함량을 0.01% 이상으로 하였다.Increasing the C content results in an increase in the amount of pearlite, which deteriorates weldability and workability, reduces weatherability, and causes a large difference in hardness and texture between the welded part and the base metal. Therefore, the C content was limited to 0.15% or less. On the other hand, if the C content is too small at 0.01% or less, the drop in strength is severe and undesirable, so the C content is set at 0.01% or more.

Si은 내후성을 향상시키고 강중에서 탈산작용을 하지만 0.50% 이상 첨가되면 강중에서 비금속개재물로 작용하여 청정성을 해치기 때문에 0.50% 이하로 한정하였다.Si is limited to 0.50% or less because it improves weather resistance and deoxidizes in steel, but when 0.50% or more is added, it acts as a non-metallic inclusion in steel to impair cleanliness.

Mn은 강중에서 탈산작용을 하고 용접성, 열간가공성 및 강도를 향상시키는 유효한 원소이지만 2.0% 이상 첨가시에는 MnS와 같은 비금속개재물을 형성하여 열간압연시에 길게 늘어나 열간가공성과 용접성을 저해하므로 2.0% 이하로 한정하였다.Mn is an effective element that deoxidizes in steel and improves weldability, hot workability and strength, but when it is added more than 2.0%, it forms a non-metallic inclusion such as MnS, which increases during hot rolling and inhibits hot workability and weldability. It was limited to.

P는 0.020% 이상으로 다량으로 존재하면 입계에 편석하여 입계응집력을 저하시키고, 중심편석을 조장시켜 내후성을 해치기 때문에 상한치를 0.020%로 한정하였다.When P is present in a large amount of 0.020% or more, the upper limit is limited to 0.020% because segregation at grain boundaries lowers grain cohesion and promotes central segregation to impair weather resistance.

S는 내부식성에 매우 해로운 원소이므로 함량이 적을수록 효과가 있지만 완전히 제거하는 것은 불가능하며, 0.010%를 초과하면 MnS등의 비금속개재물이 강중에 다량으로 존재하여 강의 청정성과 내후성을 해치기 때문에 상한치를 0.010%로 한정하였다.Since S is an element that is very harmful to corrosion resistance, the smaller the content, the more effective it is, but it is impossible to remove it completely. It was limited to%.

Cu는 기지조직을 강화하여 강중에 수소의 절대량을 억제시켜 용접부 및 모재부에 있어서 내수소유기응력부식균열성을 향상시키는 원소이다. 0.10% 미만에서는 내부식성 개선 효과가 적기 때문에 하한치를 0.10%로 하며, Cu 함량이 2.0%를 초과하면 열간압연시 표면결함이 쉽게 발생되고 제관시 용접성을 해치기 때문에 상한치를 2.0%로 하였다. Cu의 첨가는 실제로 0.10% 이상 첨가하여야 효과가 있기 때문에 Cu의 첨가 범위를 0.10-2.0%로 하였다.Cu is an element that strengthens the matrix structure and suppresses the absolute amount of hydrogen in the steel, thereby improving the hydrogen stress corrosion cracking resistance in the welded portion and the base metal portion. Below 0.10%, the lower limit was 0.10% because of less corrosion resistance improvement effect. When the Cu content exceeded 2.0%, the surface defects were easily generated during hot rolling and the upper limit was set to 2.0% because it deteriorated weldability. Since the addition of Cu is effective only by adding 0.10% or more, the addition range of Cu was made into 0.10-2.0%.

Ni은 강중에서 Cu 첨가로 인한 강판의 고온균열을 억제시켜 주는 효과가 있으면서 열간압연후 용접부와 모재부에 강도 및 경도를 크게 상승시키지 않고 내부식성 및 저온인성을 크게 향상시키는 원소이다. 1.0% 이상의 첨가는 부식분위기중에서 내수소유기용력부식균열감수성을 증가시킬 뿐만 아니라 고가이기 때문에 경제적인 측면에서도 1.0% 이하로 규제하는 것이 바람직하다.Ni has the effect of suppressing the high temperature cracking of the steel sheet due to the addition of Cu in steel, and it is an element that greatly improves the corrosion resistance and low temperature toughness without significantly increasing the strength and hardness of the welded part and the base material part after hot rolling. The addition of more than 1.0% not only increases the resistance to hydrogen-containing organic corrosion corrosion in the atmosphere of corrosion, but is also expensive, so it is desirable to regulate it to 1.0% or less from an economical point of view.

Ca(OH)2는 미세한 개재물의 형태로 강중에서 침상 페라이트 조직을 형성시키는 핵으로서 작용한다. 또한 습(濕)한 부식환경중에서 염기성 분위기를 형성하기 때문에 0.0010% 이하를 첨가하면 효과가 없으며, 0.0050% 이상 첨가하면 강중에서 중심편석의 원인이 되어 내부식성과 용접성을 해치기 때문에 0.0010-0.0050%로 한정하였다.Ca (OH) 2 acts as a nucleus to form acicular ferrite tissue in the river in the form of fine inclusions. Also, since it forms basic atmosphere in wet corrosive environment, adding 0.0010% or less is ineffective, and adding 0.0050% or more will cause central segregation in steel, which will damage corrosion resistance and weldability. It was limited.

또한, Ca(OH)2는 2㎛ 이상이 되면 강중에서 대형의 비금속개재물로 작용하여 오히려 내후성과 청정성을 해치기 때문에 2㎛ 이하로 분말 입자 크기를 한정하였다.In addition, when the Ca (OH) 2 is 2㎛ or more to act as a large non-metallic inclusions in the steel, rather than impairing weatherability and cleanliness, the particle size was limited to 2㎛ or less.

Cr은 열간압연후의 후열처리에 대한 열화저항을 증대하여 강도를 상승시키는 원소이며, 1.0%까지의 첨가에서는 내후성은 지속적으로 상승하지만, 1.0% 이상에서는 효과가 완만할 뿐만 아니라 경제적인 측면에서 1.0% 이하로 유지하는 것이 바람직하기 때문에 0.01-1.0%로 한정하였다.Cr is an element that increases the strength by increasing the deterioration resistance to the post-heat treatment after hot rolling.In addition, up to 1.0%, the weatherability is continuously increased, but at 1.0% or more, the effect is not only slow but also economically 1.0%. Since it is preferable to keep below, it was limited to 0.01-1.0%.

Mo은 열간압연후의 후열처리에 대한 열화저항을 증대하여 강도 향상을 도모할수 있고, 수소유기균열파괴의 기점이 되는 공석을 억제하는 원소이지만, 1.0% 이상에서는 기지조직의 경화가 심하기 때문에 0.01-1.0%로 한정하였다.Mo is an element that improves the strength by increasing the deterioration resistance to the post-heating treatment after hot rolling, and suppresses the vacancy which is the starting point of hydrogen organic cracking destruction, but at 1.0% or more, Mo is a hard structure of the matrix structure. It was limited to%.

V, Ti, Nb의 강화원소를 미량 첨가함에 의해서 탄소 당량을 높이지 않고 기지조직의 결정립을 미세화하여 고강도화와 내후성 향상 효과를 도모할 수 있기 때문에 이들 성분을 첨가하는데, V, Ti, Nb은 각각 0.01% 이하로 첨가되면 결정립미세화 효과가 없으며 0.10%이상 첨가되면 미세화 효과가 포화되어 더 이상의 효과가 나타나지 않기 때문에 본 발명에서는 V, Ti, Nb의 첨가량이 각각 0.01-0.10%로 한정하였다.By adding a small amount of strengthening elements of V, Ti, and Nb, these components are added because the grain size of the matrix structure can be refined without increasing the carbon equivalent, thereby increasing the strength and improving the weather resistance. When added to 0.01% or less, there is no grain refinement effect, and when added to 0.10% or more, the micronization effect is saturated and no further effect is shown. In the present invention, the amounts of V, Ti, and Nb are limited to 0.01-0.10%, respectively.

본 발명에서는 상기 화학성분 범위를 가진 강괴를 제조하여 가열, 열간압연 및 후열처리공정을 거쳐 내후성이 우수한 강을 제조하게 된다.In the present invention, a steel ingot having the above chemical component range is manufactured to produce steel having excellent weather resistance through heating, hot rolling and post-heat treatment processes.

우선 열간압연하기 위하여 1100-1250℃의 온도범위로 가열한 후에, Ar3점 이상의 오스테나이트 조직의 온도범위에서 열간압연을 마무리한 직후에서 부터 550-350℃까지의 온도범위에서 6-15℃/sec의 냉각속도로 강판을 수냉한 후에 공냉하거나, 혹은 공냉후에 500-650℃의 온도범위로 열처리한다.First, it is heated to a temperature range of 1100-1250 ° C. for hot rolling, and then 6-15 ° C./at a temperature range of 550-350 ° C. immediately after finishing hot rolling in the temperature range of the austenitic structure having an Ar 3 point or more. After cooling the steel plate at a cooling rate of sec, it is cooled by air or heat-treated to a temperature range of 500-650 ° C. after cooling.

이하, 본 발명의 열간압연 및 후열처리 조건에 대한 한정이유에 대하여 설명하기로 한다.Hereinafter, the reason for limitation on the hot rolling and post-heat treatment conditions of the present invention will be described.

본 발명의 조성 한정범위내로 이루어진 강괴를 열간압연하고 가속냉각함에 있어서, 열간압연온도는 1100℃ 이상으로 가열하여야만 강중에 분포되어 있는 석출물들이 충분히 재용해하여 고용량 증대에 의한 강도상승 효과를 가져오고 내후성을 향상시켜 주기 때문에 1100℃ 이상으로 가열한다. 또한, 1250℃ 이상으로 가열하면 결정립조대화 현상을 발생하며 표면상태가 불량하여 열간압연시에 표면불량을 가져와 내후성을 저하시킬 가능성이 많기 때문에 1250℃ 이하로 가열하는 것이다.In hot rolling and accelerated cooling of steel ingots within the compositional limits of the present invention, the hot rolling temperature should be heated to 1100 ° C. or higher to sufficiently dissolve the precipitates distributed in the steel to bring about the effect of increasing the strength by increasing the capacity and weather resistance. Since it improves, it heats to 1100 degreeC or more. In addition, when heated to 1250 ℃ or more, the grain coarsening phenomenon occurs and the surface condition is poor, so that the surface defects at the time of hot rolling, which is likely to lower the weather resistance is to be heated to 1250 ℃ or less.

열간압연하기 위하여 가열한 시험편을 열간압연 마무리온도를 950℃ 이상으로 하면 결정립 조대화 현상을 기대할 수 없어 결정립 미세화에 의한 강도의 상승효과를 가져올 수 없고 열간압연 마무리온도를 900℃ 이하로 하면 가속냉각에 의한 충분한 소입효과를 가져올 수 없어 결정립미세화 효과가 적어지기 때문에 900-950℃의 온도범위로 열간압연 마무리 온도를 한정하였다.If the hot-rolled test piece is hot-rolled for hot rolling at a temperature of 950 ° C or higher, grain coarsening cannot be expected. Therefore, an increase in strength due to grain refinement cannot be obtained. The hot rolling finish temperature was limited to a temperature range of 900-950 ° C. because it could not bring about the sufficient hardening effect due to the crystallization.

계속하여 열간압연을 마무리한 직후에 가속냉각을 개시하며, 실조업에서는 열간압연 마무리온도에서부터 15-30℃아래에서 가속냉각을 개시하게 되는데, 본 발명에서는 이 가속냉각 개시온도는 열간압연 마무리온도와 직접적으로 관련되어 자동적으로 결정되기 때문에 본 발명에서는 온도 범위를 한정하지 않았다.Then, the accelerated cooling is started immediately after finishing the hot rolling, and in the actual industry, the accelerated cooling is started at 15-30 ° C. from the hot rolling finish temperature. In the present invention, the accelerated cooling start temperature is equal to the hot rolling finish temperature. The temperature range is not limited in the present invention because it is determined directly and automatically.

가속냉각 속도는 강조직에 가장 영향을 심하게 미치는 인자로써 가속냉각 속도가 6℃/sec 이하가 되면 충분히 경화되지 않아 강도가 저하하며, 가속냉각 속도가 15℃/sec 이상이 되면 마르텐사이트 경화조직이 발생되어 수소유기응력부식균열성을 해치기 때문에 본 발명에서는 6-15℃/sec로 한정하였다.Accelerated cooling rate is the most influential factor for stressed fabrics. When the accelerated cooling rate is 6 ℃ / sec or less, the strength is not sufficiently hardened. When the accelerated cooling rate is 15 ℃ / sec or more, the martensite hardened structure In the present invention, it is limited to 6-15 ° C./sec because it is generated and impairs hydrogen organic stress corrosion cracking.

가속냉각 종료온도는 오스테나이트 조직이 거의 없는 완전한 페라이트 조직이 나타날 수 있는 범위까지로 한정되어야 하는데, 550℃ 이상에서는 오스테나이트조직이 남아있어 불완전 소입이 될 가능성이 많고, 350℃가 되면 충분한 가속냉각효과가 이루어진다. 계속하여 350℃ 이하까지 내려가면 과잉의 물과 시간을 소비하기 때문에 본 발명에서는 550-350℃로 한정하였다.The end temperature of accelerated cooling should be limited to the extent that complete ferrite structure with little austenite structure can be shown. Above 550 ℃, austenite structure remains, which is likely to be incomplete quenching. Effect is achieved. When the temperature is continuously lowered to 350 ° C or lower, excess water and time are consumed, and therefore, the present invention is limited to 550-350 ° C.

열간압연후 가속냉각과 공냉을 거친 시험편을 열처리함으로써 가공 열응력을 제거하는 것이 목적인데, 500℃ 이하에서 열처리하면 가공 열응력이 완전히 제거되지 않아서 내후성이 저하하기 쉽고, 650℃이상으로 열처리하면 결정립조대화 현상이 발생하여 강도가 저하하기 때문에 열처리온도를 500-650℃로 한정하였다.The purpose is to remove the processing thermal stress by heat-treating the specimens which have undergone accelerated cooling and air-cooling after hot rolling.If the heat treatment is performed at 500 ℃ or lower, the processing thermal stress is not completely removed. Since the coarsening phenomenon occurred and the strength decreased, the heat treatment temperature was limited to 500-650 ° C.

열처리시간은 열처리온도에 비해서 내후성에 민감하게 영향을 미치지 않을 뿐만 아니라 강판 두께에 따라 열처리 시간이 달라지기 때문에 열처리 시간을 제한하는 것은 의미가 없으므로 본 발명에서는 열처리 시간에 대해서는 한정하지 않았다.Since the heat treatment time does not affect the weather resistance more sensitively than the heat treatment temperature, and the heat treatment time varies depending on the thickness of the steel sheet, the heat treatment time is not limited to the heat treatment time.

본 발명에 의해서 제조된 강은 대기환경하에서 내후성이 요구되는 교량, 건축구조물 등에 사용될 수 있으며 강도가 높고 내후성이 극히 우수하여 페인팅할 필요가 없다.The steel produced by the present invention can be used in bridges, building structures, etc., where weather resistance is required in the atmosphere, and high strength and extremely excellent weather resistance do not need to be painted.

이하에서는 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

합금원소, 열간압연 및 열처리에 대한 한정범위를 검증하기 위하여 진공유도용해로에 의해서 30㎏ 단층으로 진공용해하여 열간압연용 강괴를 준비하였다. 이때의 화학성분은 표 1에 나타낸 바와 같다. 이 강괴를 1100-1250℃에서 2시간동안 가열한 다음, 두께 120mm의 강괴를 아래 표 2와 같은 조건으로 열간압연하여 최종두께가 12㎜로 되게하여 내후성 시험편으로 제작하였다.이때 열간압연 개시온도는 1150℃로 하였으며 6패스로 아연한 후 마무리온도를 925℃로 하였으며 압연직후에 바로 유냉하였다.열간압연시에 1000℃ 이상에서의 누적압하율은 68%(1020℃일 경우)로 하였다.In order to verify the limited range for the alloy element, hot rolling and heat treatment, a hot-rolled steel ingot was prepared by vacuum dissolving in a single 30 kg layer by a vacuum induction furnace. Chemical components at this time are as shown in Table 1. The ingot was heated at 1100-1250 ° C. for 2 hours, and then a 120 mm thick ingot was hot rolled under the conditions as shown in Table 2 below to obtain a final thickness of 12 mm to prepare a weather resistant test piece. After finishing zinc in 6 passes, the finishing temperature was 925 ° C and the oil was cooled immediately after rolling. The cumulative reduction rate at 1000 ° C or higher at hot rolling was 68% (at 1020 ° C).

열간압연 직후에 압연 마무리온도, 가속냉각 개시온도, 가속냉각 종료온도, 가속 냉각속도 및 후열처리온도를 변화시킨 다음 내후성 시험을 하였다. 열간압연후에 압연 마무리온도에서 20℃만큼 하강하였을 때 바로 그 시점을 가속냉각 개시온도의 시작점으로 하였다.Immediately after hot rolling, the rolling finish temperature, accelerated cooling start temperature, accelerated cooling end temperature, accelerated cooling rate and post-heat treatment temperature were changed, and then weather resistance test was performed. When the temperature was lowered by 20 ° C. from the rolling finish temperature after hot rolling, the point was taken as the starting point of the accelerated cooling start temperature.

합금원소 첨가의 영향, 열간압연 가공조건 및 후열처리 유무에 따른 내후성시험은 내후성 촉진시험중의 하나인 염수분무시험(Salt spray test)을 선정하여 진행하였다. 이 경우에는 ASTM B 117-64와 JIS Z 3136에 준하며, 5%NaCl 분무중에서 35℃에서 120시간 동안 시험편을 부식시켜 시험편 표면에 발생되는 녹의 발생량에 의해서 내후성을 평가하였다.The weather resistance test was performed by selecting the salt spray test, one of the weather resistance promotion tests, with the effect of alloying elements, hot rolling, and post-heat treatment. In this case, in accordance with ASTM B 117-64 and JIS Z 3136, the test pieces were corroded at 35 ° C. for 120 hours in 5% NaCl spray to evaluate weather resistance by the amount of rust generated on the surface of the test pieces.

열간압연과 후열처리에 대한 제조조건 변화에 따른 내후성애 대한 실험결과는 표 3과 같다. 본 발명예에서는 가열온도의 변화(발명예1,2), 압연마무리온도의 변화(발명예3,4)와, 가속냉각 개시온도의 변화(발명예5,6), 가속냉각 종료온도의 변화(발명예7,8),가속냉각속도의 변화(발명예9,10),후열처리온도의 변화(발명예11,12)시키면서 시험한 바, 모두 양호한 내후성시험 결과를 나타내었다.Table 3 shows the results of weather resistance according to the change of manufacturing conditions for hot rolling and post heat treatment. In the example of the present invention, the change of heating temperature (invention examples 1 and 2), the change of rolling finish temperature (invention examples 3 and 4), the change in accelerated cooling start temperature (invention examples 5 and 6) and the change in accelerated cooling end temperature (Invention Examples 7 and 8), the change in the acceleration cooling rate (Invention Examples 9 and 10) and the change in the post-heat treatment temperature (Invention Examples 11 and 12) were all tested, and all showed good weather resistance test results.

열간압연과 후열처리에 대한 제조조건변화에 따른 내후성애 대한 실험결과는 표 3과 같다. 본 발명 방법에서는 가열온도의 변화(방법1-2), 압연마무리온도의 변화(방법3-4)와 가속냉각개시온도의 변화(방법5-6), 가속냉각종료온도의 변화(방법7-8), 가속냉각속도의 변화(방법9-10), 후열처리온도의 변화(방법11-12)시험에서 양호한 내후성시험결과를 나타내었다.Table 3 shows the results of weather resistance according to the change of manufacturing conditions for hot rolling and post heat treatment. In the method of the present invention, a change in heating temperature (method 1-2), a change in rolling finish temperature (method 3-4), a change in accelerated cooling start temperature (method 5-6), and a change in accelerated cooling end temperature (method 7-) 8) Good weather resistance test results were obtained from the change of accelerated cooling rate (method 9-10) and the change of post-heat treatment temperature (method 11-12).

구 분division 화학성분(중량%)Chemical composition (% by weight) CC SiSi MnMn PP SS CuCu NiNi CrCr MoMo NbNb VV TiTi Ca(OH)2 Ca (OH) 2 비교강Comparative steel AA 0.190.19 0.350.35 1.241.24 0.0170.017 0.0030.003 -- -- -- -- -- -- -- -- BB 0.080.08 0.280.28 1.501.50 0.0190.019 0.0040.004 0.250.25 0.180.18 -- -- -- -- -- -- CC 0.050.05 0.320.32 1.281.28 0.0150.015 0.0030.003 0.280.28 0.180.18 0.240.24 -- 0.010.01 -- -- -- 발명강Invention steel DD 0.100.10 0.290.29 1.281.28 0.0160.016 0.0040.004 0.250.25 0.160.16 -- -- -- -- -- 0.00150.0015 EE 0.050.05 0.280.28 1.821.82 0.0080.008 0.0030.003 0.220.22 0.170.17 0.340.34 -- -- -- -- 0.00100.0010 FF 0.050.05 0.340.34 1.541.54 0.0120.012 0.0040.004 0.210.21 0.140.14 0.240.24 -- -- -- 0.0150.015 0.00140.0014 GG 0.180.18 0.320.32 1.501.50 0.0170.017 0.0040.004 0.280.28 0.120.12 -- -- -- 0.010.01 0.0150.015 0.00180.0018 HH 0.180.18 0.350.35 1.251.25 0.0150.015 0.0030.003 0.250.25 0.140.14 0.430.43 -- 0.010.01 -- 0.0150.015 0.00190.0019 II 0.090.09 0.300.30 1.231.23 0.0140.014 0.0030.003 1.021.02 0.380.38 0.390.39 0.240.24 -- -- 0.0150.015 0.00100.0010 JJ 0.090.09 0.290.29 1.121.12 0.0190.019 0.0030.003 1.051.05 0.420.42 0.270.27 0.200.20 0.010.01 -- -- 0.00220.0022 KK 0.080.08 0.280.28 1.091.09 0.0180.018 0.0020.002 1.491.49 0.560.56 0.290.29 -- 0.010.01 0.010.01 0.0150.015 0.00200.0020 LL 0.120.12 0.350.35 0.750.75 0.0150.015 0.0040.004 1.501.50 0.700.70 0.320.32 0.280.28 0.010.01 -- 0.0140.014 0.00350.0035 MM 0.020.02 0.290.29 0.890.89 0.0140.014 0.0030.003 1.871.87 0.780.78 0.350.35 0.290.29 0.010.01 0.010.01 -- 0.00380.0038 NN 0.040.04 0.330.33 1.011.01 0.0180.018 0.0030.003 1.851.85 0.800.80 0.500.50 0.270.27 0.010.01 0.010.01 0.0150.015 0.00400.0040

압연개시온도 (℃)Rolling start temperature (℃) -- 11501150 11101110 10701070 10201020 970970 925925 압연후두께(㎜)Thickness after rolling (mm) 120120 100100 7878 5858 3838 2121 1212 누적압하율(%)Cumulative reduction rate (%) 00 16.716.7 35.035.0 51.751.7 88.388.3 82.582.5 90.090.0

구 분division 제조조건변화Manufacturing condition change 내후성시험결과Weatherability Test Results 강종Steel grade 가열온도(℃)Heating temperature (℃) 압연마무리온도(℃)Rolling Finish Temperature (℃) 가속냉각개시온도(℃)Accelerated cooling start temperature (℃) 가속냉각종료온도(℃)Accelerated cooling end temperature (℃) 가속냉각속도(℃/sec)Accelerated Cooling Speed (℃ / sec) 후열처리온도(℃)Post heat treatment temperature (℃) 비교예Comparative example 1One AA 11501150 925925 공냉Air cooling 공냉Air cooling 1One -- ×× 22 AA 11501150 925925 공냉Air cooling 공냉Air cooling 1One 620620 ×× 33 BB 12001200 925925 905905 450450 2020 -- 44 CC 12001200 925925 905905 450450 2020 -- 발명예Inventive Example 1One DD 11001100 925925 905905 500500 1010 -- 22 DD 12501250 925925 906906 500500 1010 -- 33 FF 11501150 950950 908908 500500 1010 -- 44 FF 11501150 925925 905905 500500 1010 -- 55 HH 11501150 950950 926926 500500 1010 -- 66 HH 11501150 925925 890890 500500 1010 570570 77 JJ 12001200 925925 905905 500500 1010 620620 88 JJ 12001200 925925 905905 500500 1010 640640 99 KK 12001200 925925 905905 500500 77 620620 1010 KK 12001200 925925 905905 500500 1313 620620 1111 D,EF,GH,ID, EF, GH, I 11801180 925925 905905 500500 1010 -- 1212 J,KL,MNJ, KL, MN 11801180 925925 905905 500500 1010 620620

내후성 시험결과; ○:15%이하의 녹발생, △:15-60%의 녹발생,Weathering test results; ○: less than 15% rust, △: less than 15-60%

×:60-100%의 녹발생×: Rust generation of 60-100%

본 실시예에서는 합금원소의 함량과 압연과 열처리에 관한 제조조건을 변화시켜 본 발명에 대한 효과를 검토하였는데, 표 3의 비교예에서 보는 바와 같이 합금원소의 함량이 과잉이거나 결핍인 경우에, 혹은 압연조건과 후열처리조건이 본 발명 제조 조건 범위를 넘었을 경우에는 내후성이 불량하였다.In this embodiment, the effect of the present invention was examined by changing the content of the alloying element and the manufacturing conditions for rolling and heat treatment. As shown in the comparative example of Table 3, when the content of the alloying element was excessive or deficient, or When the rolling conditions and post-heat treatment conditions exceeded the manufacturing conditions of the present invention, the weather resistance was poor.

따라서, 본 발명에 의해 제조된 무도장 내후성강은, 미세한 Ca(OH)2분말을 함유시켜 2㎛ 이하의 미세한 개재물을 형성하여 미세한 침상 페라이트 조직을 만들어 내후성을 향상시키며, 강 기지조직의 내부응력을 제거하여 내후성을 향상시키기 위하여 고온압연을 하고, 띠(Band)상의 펄라이트 조직을 감소시키고 침상의 균일한 페라이트 조직을 형성시키기 위하여 가속냉각하여 내후성을 최고로 향상시킴으로써 대기환경하에서 내후성이 요구되는 교량, 건축구조물 등에 사용될 수 있으며, 내후성이 극히 우수하여 페인팅할 필요가 없다.Therefore, the unpainted weathering steel produced by the present invention, containing fine Ca (OH) 2 powder to form a fine inclusion of 2㎛ or less to create a fine needle-like ferrite structure to improve weather resistance, and improve the internal stress of the steel matrix Hot-rolled to improve weather resistance by removing, and to improve the weather resistance to the best by reducing the band-like pearlite structure and accelerating cooling to form needle-like uniform ferrite structure. It can be used in structures and the like, and its weather resistance is extremely excellent, so there is no need to paint.

Claims (3)

중량%로, C:0.01-0.15%, Si:0.50% 이하, Mn:2.0% 이하, P:0.020% 이하, S:0.010% 이하, Cu:0.10-2.0%, Ni:0.10-1.0%, 직경이 2㎛ 이하인 Ca(OH)2분말을 0.0010-0.0050% 기본조성으로 함유하고, 잔부의 Fe 및 불가피한 불순물을 함유한 강괴를 제조하여 1100-1250℃의 온도범위로 가열한 후에, Ar3점 이상의 오스테나이트 조직의 온도범위에서 열간압연을 마무리한 직후에서부터 550-350℃까지의 온도범위에서 6-15℃/sec의 냉각속도로 강판을 냉각하는 것을 특징으로 하는 무도장 내후성강의 제조방법.By weight%, C: 0.01-0.15%, Si: 0.50% or less, Mn: 2.0% or less, P: 0.020% or less, S: 0.010% or less, Cu: 0.10-2.0%, Ni: 0.10-1.0%, diameter A Ca (OH) 2 powder having a thickness of 2 µm or less in a 0.0010-0.0050% basic composition, a steel ingot containing Fe and an unavoidable impurity in the remainder was prepared and heated to a temperature range of 1100-1250 ° C., followed by at least 3 Ar points. A method for producing an unpainted weathering steel, characterized in that the steel sheet is cooled at a cooling rate of 6-15 ° C./sec in the temperature range from 550 to 350 ° C. immediately after finishing hot rolling in the temperature range of the austenitic structure. 제 1 항에 있어서, Cr 과 Mo 각각 0.01-1.0%와, Ti, Nb, V 각각 0.01-0.10% 중에서 1종 이상을 더 함유하는 것을 특징으로 하는 무도장 내후성강의 제조방법.The method for producing uncoated weather resistant steel according to claim 1, further comprising at least one of Cr and Mo, respectively 0.01-1.0%, and Ti, Nb, and V, respectively 0.01-0.10%. 제 1 항 또는 제 2 항에 있어서, 강내부의 열응력을 제거하기 위하여 가속냉각후에 500-650℃의 온도범위로 후열처리하는 것을 특징으로 하는 무도장 내후성강의 제조방법.The method of claim 1 or 2, wherein the post-heat treatment is performed in a temperature range of 500-650 DEG C after accelerated cooling to remove thermal stress in the steel.
KR10-1998-0062072A 1998-12-30 1998-12-30 Unpainted weatherproof steel manufacturing method KR100402127B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0062072A KR100402127B1 (en) 1998-12-30 1998-12-30 Unpainted weatherproof steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0062072A KR100402127B1 (en) 1998-12-30 1998-12-30 Unpainted weatherproof steel manufacturing method

Publications (2)

Publication Number Publication Date
KR20000045513A true KR20000045513A (en) 2000-07-15
KR100402127B1 KR100402127B1 (en) 2004-02-05

Family

ID=19568767

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0062072A KR100402127B1 (en) 1998-12-30 1998-12-30 Unpainted weatherproof steel manufacturing method

Country Status (1)

Country Link
KR (1) KR100402127B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797895B1 (en) * 2006-12-22 2008-01-24 성진경 Method of forming cube-on-face texture on surface, method of manufacturing non-oriented electrical steel sheets using the same and non-oriented electrical steel sheets manufactured by using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551668A (en) * 1991-08-27 1993-03-02 Nippon Steel Corp Seacost high corrosion resistance weather resistant steel
KR950005926B1 (en) * 1993-07-30 1995-06-07 포항종합제철주식회사 Making method of weather proof steel with tensile strength 80kgf/mm2
JP3520569B2 (en) * 1994-07-07 2004-04-19 住友金属工業株式会社 Weatherable refractory steel excellent in weldability and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797895B1 (en) * 2006-12-22 2008-01-24 성진경 Method of forming cube-on-face texture on surface, method of manufacturing non-oriented electrical steel sheets using the same and non-oriented electrical steel sheets manufactured by using the same

Also Published As

Publication number Publication date
KR100402127B1 (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP6008039B2 (en) High-strength hot-rolled steel sheet with a maximum tensile strength of 980 MPa or more with excellent bake hardenability and low-temperature toughness
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
KR20120127671A (en) High-strength hot-dip galvanized steel sheet with excellent formability and impact resistance, and process for producing same
WO2019221286A1 (en) Steel plate and enameled product
RU2750317C1 (en) Cold-rolled and heat-treated sheet steel and method for its production
US11365459B2 (en) High strength cold rolled steel sheet and method of producing same
JP4516924B2 (en) Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method
WO2021005959A1 (en) Seamless steel tube having excellent sulfuric-acid dew-point corrosion resistance, and manufacturing method for same
KR20100046995A (en) High-strength corrosion resistance steel, and method for producing the same
CN115151673B (en) Steel sheet, member, and method for producing same
JP5168806B2 (en) Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method
JP4147701B2 (en) Manufacturing method of bolt parts with excellent delayed fracture resistance and beach weather resistance
KR100402127B1 (en) Unpainted weatherproof steel manufacturing method
WO2021172298A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
KR101180593B1 (en) Method of manufacturing precipitative hardening galvannealed steel sheets with high strength
KR101899680B1 (en) High strength galvanized steel sheet having excellent surface property and coating adhesion and method of manufacturing the same
JP4074385B2 (en) Mechanical structural steel with excellent corrosion resistance and delayed fracture resistance in high sea salt particle environment
JPS63203721A (en) Production of hot rolled steel sheet having excellent hydrogen induced cracking resistance and stress corrosion cracking resistance
JPS6410565B2 (en)
KR100435467B1 (en) A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing
KR102153186B1 (en) Austenitic steel plate having corrosion resistance at room temperature and method for manufacturing thereof
KR102220740B1 (en) Austenitic steel plate having excellent corrosion resistance and method for manufacturing thereof
KR101125895B1 (en) Producing method of weather resistable steel having excellent toughness and high strength for using at the seaside atmosphere
WO2019146683A1 (en) High-ductility high-strength steel sheet and method for producing same
KR20240097250A (en) Hot-rolled steel plate having exellent hydrogen induced crack resistance and good tensile property at high temperature and method for manufacturing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20071004

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee